金属纳米诱导的化学发光体系的设计及在免疫分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了化学发光、化学发光免疫分析、金属纳米材料的制备和性质及其在免疫分析中的应用的研究现状。虽然化学发光的基础理论和免疫分析应用有着多年的研究历史,但一直一来,有关化学发光的研究局限于分子和离子水平。最近,金属纳米粒子直接或者间接参与的化学发光受到了研究者的关注。已经发现金属纳米粒子能够作为化学发光反应的催化剂、还原剂、微尺度反应平台和能量接受体参与化学发光。但是,目前已经开发的纳米化学发光体系仍然十分有限,其中大部分体系的发光量子产率较低,很难应用于分析测定。同时,有关纳米粒子可控的化学发光反应的研究还鲜见报道。另一方面,随着纳米化学发光的研究发展,基于金属纳米标记的化学发光免疫分析开始起步。目前的报道仍局限于“溶出”化学发光免疫分析方法。它需要苛刻的条件溶解金属纳米,方法复杂,难以在实际中获得应用。而直接利用金属纳米催化化学发光反应的非溶出化学发光免疫分析的报道却很少见。基于此,本论文以纳米金和纳米铂为研究对象,从纳米的粒径大小、分散介质两个角度,设计了两个纳米化学发光新体系,探索了这些体系的化学发光行为、规律和机理,详细研究了纳米材料对化学发光体系的调控作用。同时,基于纳米金的化学发光特性,研究了其在非溶出化学发光免疫分析中的应用。主要研究内容如下:
     1.发现小粒径纳米金(直径小于5nm)能够抑制鲁米诺—铁氰化钾体系的化学发光;而大粒径纳米金(直径大于10nm)能够增强该体系的化学发光,其中直径为25 nm的纳米金对体系的化学发光具有最大的增强作用。分析了其化学发光光谱,发现其发光体仍然为激发态的3-氨基邻苯二甲酸根离子(AP~(2-))。研究了反应前后的紫外—可见吸收光谱和X-射线光电子能谱(XPS)、鲁米诺和铁氰化钾浓度对化学发光的影响以及纳米金溶胶的荧光猝灭效率,提出了化学发光增强和抑制作用的可能机理。推测小粒径纳米金对化学发光的抑制作用可能源于其竞争消耗铁氰化钾以及对发光体AP~(2-)具有相对较高的猝灭效应。相反地,大粒径纳米金对该体系化学发光的增强作用很可能是由于纳米金对鲁米诺化学发光反应中的电子转移过程具有催化作用,同时大粒径纳米金对发光体AP~(2-)的猝灭作用相对较弱。纳米金对化学发光反应的增强和抑制作用与其粒径大小具有明显依赖性,为开发新型纳米化学发光增强剂和抑制剂提供了一个新的研究思路。
     2.发现纳米铂和乙醇同时存在时能够诱导碱性光泽精溶液产生延迟强化学发光现象。化学发光的“诱导期”与注射的纳米铂浓度具有明显的相关性。从注射到出现最大化学发光强度之间的时间(T_p)与纳米铂浓度具有很好的指数关系:而最大化学发光强度与纳米铂浓度之间存在良好的线性关系。利用紫外—可见吸收光谱、荧光光谱和化学发光光谱鉴定了光泽精的反应产物和发光体,发现体系的发光体为激发态的N-甲基吖啶酮(NMA)。实验还对化学发光反应过程中,光泽精及其产物NMA的浓度变化进行了实时检测。结果表明纳米铂和乙醇参与的光泽精化学发光反应是一个自催化反应。采用透射电子显微镜、XPS和核磁共振光谱(NMR)等表征手段对自催化化学发光机理进行了研究。结果表明,纳米铂在体系中作为一个全局催化剂,不仅催化乙醇氧化为乙醛,同时还催化乙醛对光泽精化学发光的增强作用;而乙醇是纳米铂催化反应的一个引发剂。与乙醇类似,甲醇、乙二醇和正丙醇也能与纳米铂共同作用产生光泽精自催化化学发光。这是首次在纳米参与的化学发光反应中观察到自催化现象。该体系的强光发射有望进一步用于生物分析和“冷光源”的构造。
     3.基于鲁米诺—硝酸银—纳米金化学发光体系,建立了一种微孔板化学发光免疫分析方法测定人免疫球蛋白G(IgG)。采用聚苯乙烯微孔板同时作为免疫反应的固相载体和化学发光检测容器。一抗(羊抗人IgG)首先包被在微孔板中,然后将抗原(人IgG)和纳米金标记的二抗先后结合到微孔板中,形成夹心式免疫复合物。标记的纳米金能够诱导鲁米诺和硝酸银之间的反应,产生光发射。通过凝絮实验确定形成稳定的纳米金—蛋白质生物复合物所需的最小抗体浓度。实验还对一些化学发光检测条件进行了优化,包括鲁米诺溶液pH、鲁米诺和硝酸银溶液浓度等。在优化的条件下,体系的化学发光强度与人IgG浓度的对数之间存在良好的线性关系,线性范围为25~5000 ng/mL,按三倍信噪比(S/N=3)计算检测限为12.8 ng/mL(~80 pM)。与其它报道的金标化学发光免疫分析方法相比,该方法避免了苛刻的溶出步骤以及难以控制的合成过程,使得方法更简单、省时、易于自动化。该化学发光免疫分析方法可望用于检测临床重要的生物活性物质。
     4.建立了一种基于金标银染的非溶出微孔板化学发光免疫分析方法测定人IgG。首先将一抗(羊抗人IgG)固载到聚苯乙烯微孔板中,然后相继结合抗原(人IgG)和金标二抗,形成夹心式免疫复合物。标记的纳米金能够催化对苯二酚还原乙酸银为单质银,并沉积在纳米金表面,之后直接采用鲁米诺—过氧化氢化学发光体系进行检测。实验详细研究了银染时间对化学发光响应的影响。对于不同的银染时间,可以分别获得增强和抑制化学发光响应。在此基础上,初步建立了增强和抑制两种模式的化学发光免疫分析。实验分别对增强模式和抑制模式下的化学发光条件进行了优化,包括鲁米诺的缓冲介质、pH以及鲁米诺和过氧化氢的浓度。在优化的条件下,增强模式的检测限为0.9 ng/mL;抑制模式的检测限为5.6 ng/mL。增强模式的灵敏度高于其它报道的非溶出化学发光免疫分析方法。本项工作首次将金标银染技术用于建立非溶出化学发光免疫分析方法,结果表明银染有利于提高分析的灵敏度。该方法避免了苛刻的溶出过程,以及不规则纳米金的合成。但是,目前这种方法仍有一些不足之处,如线性范围过窄、灵敏度和稳定性仍有待提高。
In this dissertation,the state of arts in the field of chemiluminescence(CL), chemiluminescence immunoassays,the synthesis and properties of metal nano-materials and their applications in immunoassays were reviewed.Although the theory of CL and its application in immunoassay have been investigated for many years,the study of CL was limited to molecular and ion systems.Recently,metal nanoparticle-involved CL has attracted great attentions,in which metal nanoparticles can participate in CL reactions as catalyst,reductant,naonosized platform and energy acceptor.However,most of the reported CL systems involving nanoparticles were of low quantum yield,limiting there applications in analysis.Meanwhile,the study of nanoparticle-controlled CL system has been rarely reported.On the other hand,with the advance of nanoparticle-involved CL,chemiluminescence immunoassays based on metal nanoparticle labels were developed.Most of these reported chemiluminescence immunoassays contained "stripping" process,in which strict conditions were required to dissolve metal nanoparticles,making the method complicated,limiting there practical application.There were few reports about non-stripping chemiluminescence immunoassays based on metal nanoparticle-catalyzed CL reactions.Therefore,in the present dissertation,gold and platinum nanoparticles were utilized to design new CL systems.The nanoparticle-dependent or-controlled CL behaviors,rules and mechanisms of these new CL systems were investigated.Moreover,based on the CL activity of gold nanoparticles,new methods for non-stripping chemiluminescence immunoassays were developed.The main results are as follows:
     1.It was found that gold nanoparticles of small size(<5 nm) could inhibit the chemiluminescence(CL) of the luminol-ferricyanide system,whereas gold nanoparticles of large size(>10 nm) could enhance this CL,and the most intensive CL signals were obtained with 25-nm-diameter gold nanoparticles.The luminophor was identified as the excited-state 3-aminophthalate anion(Ap~(2-)).The studies of UV-visible spectra,CL spectra,X-ray photoelectron spectra(XPS),effects of concentrations of luminol and ferricyanide solution,and fluorescence quenching efficiency of gold colloids were carried out to explore the CL inhibition and enhancement mechanism.The CL inhibition by gold nanoparticles of small size was supposed to originate from the competitive consumption of ferricyanide by gold nanoparticles and the relatively high quenching efficiency of the luminophor by gold nanoparticles.In contrast,the CL enhancement by gold nanoparticles of large size was ascribed to the catalysis of gold nanoparticles in the electron-transfer process during the luminol CL reaction and the relatively low quenching efficiency of the luminophor by gold nanoparticles.This work demonstrates that gold nanoparticles have the size-dependent inhibition and enhancement in the CL reaction,proposing a perspective for the investigation of new and efficient nanosized inhibitors and enhancers in CL reactions for analytical purposes.
     2.An intensive and delayed CL could be observed from the alkaline lucigenin solution in the presence of ethanol and Pt nanopartieles simultaneously.The "induction" period of the CL was largely dependent on the concentration of Pt nanoparticles.The time from injection to the occurrence of the maximum CL intensity, which defined as T_p here,was exponentially related to the concentration of Pt nanoparticles;while the maximum CL intensity was linear with Pt nanoparticles concentration.The products and luminophor of lucigenin CL reaction were characterized by UV-visible spectra,fluorescence spectra and CL spectra.The luminophor of this system was identified as the excited-state N-methylacridone (NMA).The variation of the concentration of lucigenin and its CL product NMA during the process was monitored in situ.The results showed that the reaction of lucigenin and NaOH involving Pt nanoparticles and ethanol was autocatalytic.The studies of transmission electron microscope(TEM),XPS and nuclear magnetic resonance(NMR) were carried out to explore the mechanism of the autocatalytic CL reaction.The results suggested that Pt nanoparticles acted as a "general" catalyst in the CL system that not only catalyzed the oxidation of ethanol to acetaldehyde,but also catalyzed the CL enhancement by acetaldehyde.Ethanol in this system was the initiator for catalysis.Similar to ethanol,other alcohols such as methanol,ethylene glycol and n-propanol could also initiate autocatalytic lucigenin CL in the presence of Pt nanoparticles.This is the first time autocatalytic light emission has been obtained from nanoparticles-involved CL reactions.The strong light emission in this system may find future applications in bioanalysis and fabrication of"cold light sources".
     3.A novel microplate-compatible chemiluminescence immunoassay has been developed for the determination of human immunoglobulin G(IgG) based on the luminol-AgNO_3-gold nanoparticles CL system.Polystyrene microtiter plates were used for both immunoreactions and CL measurements.The primary antibody, goat-anti-human IgG,was first immobilized on polystyrene microwells.Then the antigen(human IgG) and the gold-labeled second antibody were connected to the microwells successively to form a sandwich-type immunocomplex.The gold label could trigger the reaction between luminol and AgNO_3,accompanied by light emission.A flocculation test was carried out to determine the minimum amount of goat-anti-human IgG required to form stable nanoparticle-protein bioconjugate.Some experimental parameters influencing the CL reaction,including luminol pH and the concentration of luminol and AgNO_3,were optimized.Under the optimized conditions, the CL intensity of the system was linear with the logarithm of the concentration of human IgG in the range from 25 to 5000 ng/mL,with a detection limit of 12.8 ng/mL (~80 pM) at a signal to noise ratio of three(S/N = 3).Compared with other reported CL immunoassay method based on gold labels,the proposed CL protocol avoids a strict stripping procedure or difficult to control synthesis processes,making the method more simple,time-saving and easily automated.The present CL method is promising for the determination of clinically important bioactive analytes.
     4.A new non-stripping and microplate-compatible chemiluminescence immunoassay protocol based on gold label with silver staining has been developed for the determination of human IgG.The primary antibody,goat-anti-human IgG,was first immobilized on polystyrene microwells,and then the antigen(human IgG) and the gold-labeled second antibody were captured onto the microwells successively to form a sandwich-type immunocomplex.The gold label could catalyze the reduction of silver acetate by hydroquinone,leading to the deposition of silver on the gold nanoparticles,followed by direct CL detection using luminol-H_2O_2 system.The effect of staining time on the CL response was carefully studied.With different staining time, both enhanced and inhibited CL detention modes were established for the CL immunoassay.Some CL conditions in both modes,including the buffer media of luminol,luminol pH and the concentration of luminol and H_2O_2,were optimized. Under the optimized conditions,the detection limit of this CL method(S/N = 3) was 0.9 ng/mL for enhanced mode,and 5.6 ng/mL for inhibited mode,respectively.The sensitivity of the enhanced mode was higher than other reported non-stripping CL immunoassay methods.This work revealed that the staining of silver on the gold nanoparticles was useful to improve the sensitivity.This is the first time to imply gold-label-silver-staining technology to develop non-stripping CL immunoassays.The proposed CL protocol avoids strict stripping procedure or the synthesis of irregular gold nanoparticles.However,there are still some disadvantages,such as the narrow linear range,and the further improvement required for the sensitivity and the stability.
引文
[1]Radziszewski BR.Untersuchungen u|¨ber hydrobenzamid,amarin und lophin.Chem.Ber.,1877,10(1):70-75.
    [2]Trautz M.Studies on chemiluminescence.Z.Phys.Chem.,1905,53:1.
    [3]Kautsky H,Zocher H.The relation between chemi- and photoluminescence of unsaturated silicon compounds.Z.Phys.,1922,9(1):267-284.
    [4]Mallet L.Phenomena of luminescence in the course of oxidizing reactions in aqueous solutions.Compt.rend.,1927,185:352-354.
    [5]Albrecht HO.Chemiluminescence of aminophthalic hydrazide.Z.Phys.Chem.,1928,136:321-330.
    [6]Gleu K,Petsch W.The chemiluminescence of the dimethylbiacridylium salts.Angew.Chem.,1935,48(3):57-59.
    [7]Dodeigne C,Thunus L,Lejeune R.Chemiluminescence as a diagnostic tool.A review.Talanta,2000,51(3):415-439.
    [8]Aboul-Enein HY,Stefan RI,van Staden JF.Chemiluminescence-based(bio) sensors - An overview.Crit.Rev.Anal.Chem.,1999,29(4):323-331.
    [9]Robards K,Worsfold PJ.Analytical applications of liquid-phase chemiluminescence.Anal.Chim.Acta,1992,266(2):147-173.
    [10]Campbell AK.Chemiluminescence:Principles and applications in biology and medicine.Chichester:Horwood/VCH,1988.
    [11]Li FM,Zhang CH,Guo XJ,et al.Chemiluminescence detection in HPLC and CE for pharmaceutical and biomedical analysis.Biomed.Chromatogr.,2003,17(2-3):96-105.
    [12]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [13]陆明刚.化学发光分析.合肥:安徽科技出版社,1986.
    [14]White EH,Bursey MM.Chemiluminescence of luminol and related hydrazides:The light emission step.J.Am.Chem.Soc.,1964,86(5):941-942.
    [15]Kricka LJ,Thorpe GHG.Chemiluminescent and bioluminescent methods in Analytical Chemistry.A review.Analyst,1983,108(1292):1274-1296.
    [16]Roswell DF,White EH.The chemiluminescence of luminol and related hydrazides.Meth.Enzymol.,1978,57(Biolumin.Chemilumin.):409-423.
    [17]Seitz WR,Suydam WW,Hercules DM.Determination of trace amounts of chromium(Ⅲ)using chemiluminescence analysis.Anal.Chem.,1972,44(6):957-963.
    [18]Kalinichenko IE.Chemiluminescent method for determining nanogram amounts of manganese.Ukr.Khim.Zh.,1969,35(7):755-757.
    [19]Kalinichenko IE,Grishchenko OM.Activation of iron salts by diethylenetriamine during the oxidation of luminol by hydrogen peroxide.Ukr.Khim.Zh.,1970,36(6):610-613.
    [20]Seitz WR,Hercules DM.Determination of trace amounts of iron(Ⅱ) using chemiluminescence analysis.Anal.Chem.,1972,44(13):2143-2149.
    [21]Burdo TG,Seitz WR.Mechanism of cobalt catalysis of luminol chemiluminescence.Anal.Chem.,1975,47(9):1639-1643.
    [22]Babko AK,Dubovenko LI.Improvement of the sensitivity of the catalytic chemiluminescence reaction for copper.Fresenius Z.Anal.Chem.,1964,200(6):428-434.
    [23]汪宝祺,庞志功.用化学发光淬灭法测定中成药中的厚朴酚.药物分析杂志,1991,11(5):298.
    [24]庞志功,张清.用偶合反应化学发光法研究丹皮酚在兔体内的药物代谢动力学.分析化学,1993,21(12):1417-1419.
    [25]庞志功,王超.柱层析-化学发光法测定兔血浆中儿茶酚胺类物质.分析科学学报,1994,10(1):53-58.
    [26]Schroeder HR,Boguslaski RC,Carrico RJ,et al.Monitoring specific protein-binding reactions with chemiluminescence.Meth.Enzymol.,1978,57(Biolumin.Chemilumin.):424-445.
    [27]Kricka LJ.Chemiluminescent and bioluminescent techniques.Clin.Chem.,1991,37(9):1472-1481.
    [28]Totter JR.The quantum yield of the chemiluminescence of dimethylbiacridinium nitrate and the mechanism of its enzymically induced chemiluminescence.Photochem.Photobiol.,1964,3(3):231-241.
    [29]Maskiewicz R,Sogah D,Bruice TC.Chemiluminescent reactions of lucigenin.2.Reactions of lucigenin with hydroxide ion and other nucleophiles.J.Am.Chem.Soc.,1979,101(18):5355-5364.
    [30]Maskiewicz R,Sogah D,Bruice TC.Chemiluminescent reactions of lucigenin.1.Reactions of lucigenin with hydrogen peroxide.J.Am.Chem.Soc.,1979,101(18):5347-5354.
    [31]Afanas'ev IB,Ostrakhovitch EA,Mikhal'chik EV,et al.Direct enzymatic reduction of lucigenin decreases lucigenin-amplified chemiluminescence produced by superoxide ion.Luminescence,2001,16(5):305-307.
    [32]Veazey RL,Nieman TA.Chemiluminescent determination of clinically important organic reductants.Anal.Chem.,1979,51(13):2092-2096.
    [33]McCapra F,Richardson DG.Mechanism of chemiluminescence.New chemiluminescent reaction.Tetrahedron Letter.,1964,(43-44):3167-3172.
    [34]McCapra F.Chemical mechanisms in bioluminescence.Acc.Chem.Res.,1976,9(6):201-208.
    [35]McCapra F.Chemiluminescence of organic compounds.Pure Appl.Chem.,1970,24(3):611-629.
    [36]Mattingly PG.Chemiluminescent 10-methylacridinum-9-(N-sulfonylcarboxamide) salts.Synthesis and kinetics of light emission.J.Biolumin.Chemilumin.,1991,6(2):107-114.
    [37]Weeks I.Principles and practice of Immunoassays.New York:Stockton Press,1997.
    [38]Champiat D.Bio-chimi-luminescence,Principes et applications.Paris:Masson,1993.
    [39]Bronstein I,Edwards B,Voyta JC.1,2-Dioxetanes:novel chemiluminescent enzyme substrates.Applications to immunoassays.J.Biolumin.Chemilumin.,1989,4(1):99-111.
    [40]Gorman BA,Francis PS,Barnett NW.Tris(2,2'-bipyridyl)ruthenium(Ⅱ)chemiluminescence.Analyst,2006,131(5):616-639.
    [41]林金明.化学发光基础理论与应用.北京:化学工业出版社,2004.
    [42]Slawinska D,Slawinski J.Chemiluminescent flow method for determination of formaldehyde.Anal.Chem.,1975,47(13):2101-2109.
    [43]Halmann M,Velan B,Sery T.Rapid identification and quantitation of small numbers of microorganisms by a chemiluminescent immunoreaction.Appl.Environ.Microbiol.,1977,34(5):473-477.
    [44]Kohen F,Pazzagli M,Kim JB,et al.An assay procedure for plasma progesterone based on antibody-enhanced chemiluminescence.Febs Lett.,1979,104(1):201-205.
    [45]Schroeder HR,Yeager FM,Boguslaski RC,et al.lmmunoassay for serum thyroxine monitored by chemiluminescence.J.Immunol.Methods,1979,25(3):275-282.
    [46]Kim JB,Bamard GJ,Collins WP,et al.Measurement of plasma 17β-estradiol by solid-phase chemiluminescence immunoassay.Clin.Chem.,1982,28(5):1120-1124.
    [47]Schroeder HR.Chemiluminescence immunoassay for serum thyroxine.Meth.Enzymol.,1982,84(Immunochem.Tech.,Pt.D):303-317.
    [48]Leidy JW.High-sensitivity 2-site immunoradiometric and immunochemiluminometric assays for rat growth hormone-releasing hormone - Development of an acridinium ester based chemiluminescence assay for the avidin-coated bead system.J.Immunol.Methods,1994,172(2):197-207.
    [49]Wu TJ,Lin CL,Taylor RL,et al.Proinsulin level in diabetes mellitus measured by a new immunochemiluminometric assay.Ann.Clin.Lab.Sci.,1995,25(6):467-474.
    [50]Ogbonna G,Caines PS,Catomeris P,et al.A competitive chemiluminescent immunoassay for the sensitive measurement of apolipoprotein B 100.Clin.Biochem.,1995,28(2):117-122.
    [51]Koszegi T.Immunoluminometric detection of human procalcitonin.J.Biochem.Biophys.Methods,2002,53(1-3):157-164.
    [52]Fahnrich KA,Pravda M,Guilbault GG Recent applications of electrogenerated chemiluminescence in chemical analysis.Talanta,2001,54(4):531-559.
    [53]Yu H,Raymonda JW,McMahon TM,et al.Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenic-and electro-chemiluminescence.Biosens.Bioelectron.,2000,14(10-11):829-840.
    [54]Forest JC,Masse J,Lane A.Evaluation of the analytical performance of the Boehringer Mannheim Elecsys(R)2010 immunoanalyzer.Clin.Biochem.,1998,31(2):81-88.
    [55]Bronstein I,McGrath P.Chemiluminescence lights up.Nature,1989,338(6216):599-600.
    [56]Bronstein I,Voyta JC,Edwards B.A comparison of chemiluminescent and colorimetricsubstrates in a hepatitis B virus DNA hybridization assay.Anal.Biochem.,1989,180(1):95-98.
    [57]Schaap AP,Akhavan H,Romano LJ.Chemiluminescent substrates for alkaline phosphatase:application to ultrasensitive enzyme-linked immunoassays and DNA probes.Clin.Chem.,1989,35(9):1863-1864.
    [58]Baret A,Fert V.T_4 and ultrasensitive TSH immunoassays using luminescent enhanced xanthine oxidase assay.J.Biolumin.Chemilumin.,1989,4(1):149-153.
    [59]Fert V,Baret A.Preparation and characterization of xanthine oxidase-antibody and-hapten conjugates for use in sensitive chemiluminescent immunoassays.J.Immunol.Methods,1990,131(2):237-247.
    [60]Baret A,Fert V,Aumaille J.Application of a long-term enhanced xanthine oxidase-induced luminescence in solid-phase immunoassays.Anal.Biochem.,1990,187(1):20-26.
    [61]Ikegami T,Yamamoto M,Sekiya K,et al.The development of Luminomaster,a fully automated chemiluminescent enzyme immunoassay system.J.Biolumin.Chemilumin.,1995,10(4):219-227.
    [62]Marquette CA,Hezard P,Degiuli A,et al.Macro-molecular chemiluminescent complex for enhanced immuno-detection onto microtiter plate and protein biochip.Sens.Actuator B-Chem.,2006,113(2):664-670.
    [63]Wu YF,Chen CL,Liu SQ.Enzyme-functionalized silica nanoparticies as sensitive labels in biosensing.Anal.Chem.,2009,81(4):1600-1607.
    [64]Zheng Y,Chen H,Liu XP,et al.An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome.Talanta,2008,77(2):809-814.
    [65]Wang ZP,Li J,Liu B,et al.CdTe nanocrystals sensitized chemiluminescence and the analytical application.Talanta,2009,77(3):1050-1056.
    [66]Huang XY,Li L,Qian HF,et al.A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors(CRET).Angew.Chem.-Int.Edit.,2006,45(31):5140-5143.
    [67]Zhang QY,Wang X,Li ZJ,et al.Evaluation of alpha-fetoprotein(AFP)in human serum by chemiluminescence enzyme immunoassay with magnetic particles and coated tubes as solid phases.Anal.Chim.Acta,2009,631(2):212-217.
    [68]Xin TB,Liang SX,Wang X,et al.Determination of estradiol in human serum using magnetic particles-based chemiluminescence immunoassay.Anal.Chim.Acta,2008,627(2):277-284.
    [69]Yang MH,Kostov Y,Bruck HA,et al.Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of staphylococcal enterotoxin B in food.Anal.Chem.,2008,80(22):8532-8537.
    [70]Yang ZJ,Xie ZY,Liu H,et al.Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing.Adv.Funct.Mater.,2008,18(24):3991-3998.
    [71]Tudorache M,Tencaliec A,Bala C.Magnetic beads-based immunoassay as a sensitive alternative for atrazine analysis.Talanta,2008,77(2):839-843.
    [72]Liu H,Fu ZF,Yang ZJ,et al.Sampling-resolution strategy for one-way multiplexed inummoassay with sequential chemiluminescent detection.Anal.Chem.,2008,80(14):5654-5659.
    [73]Ann KC,Lohstroh P,Gee SJ,et al.High-throughput automated luminescent magnetic particle-based immunoassay to monitor human exposure to pyrethroid insecticides.Anal.Chem.,2007,79(23):8883-8890.
    [74]Zhang RQ,Nakajima H,Soh N,et al.Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads.Anal.Chim.Acta,2007,600(1-2):105-113.
    [75]Fu ZF,Yan F,Liu H,et al.A channel-resolved approach coupled with magnet-captured technique for multianalyte chemiluminescent immunoassay.Biosens.Bioelectron.,2008,23(10):1422-1428.
    [76]Wu YF,Liu SQ.Immunosensing system for alpha-fetoprotein through boronate immunoaffinity column in combination with flow injection chemiluminescence.Analyst,2009,134(2):230-235.
    [77]Wu YF,Zhuang YF,Liu SQ,et al.Phenylboronic acid immunoaffinity reactor coupled with flow injection chemiluminescence for determination of alpha-fetoprotein.Anal.Chim.Acta,2008,630(2):186-193.
    [78]Yang ZJ,Fu ZF,Yan F,et al.A chemiluminescent immunosensor based on antibody immobilized carboxylic resin beads coupled with micro-bubble accelerated immunoreaction for fast flow-injection immunoassay.Biosens.Bioelectron.,2008,24(1):35-40.
    [79]Fu ZF,Yan F,Liu H,et al.Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of alpha-fetoprotein and carcinoembryonic antigen.Biosens.Bioelectron.,2008,23(7):1063-1069.
    [80]王栩,林金明.化学发光免疫分析技术新进展.分析试验室,2007,26(6):111-122.
    [81]Fu Z,Yang Z,Tang J,et al.Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay.Anal.Chem.,2007,79(19):7376-7382.
    [82]Oates MR,Clarke W,Zimlich A,et al.Optimization and development of a high-performance liquid chromatography-based one-site immunometric assay with chemiluminescence detection.Anal.Chim.Acta,2002,470(1):37-50.
    [83]Zhang YX,Zhang ZJ,Yang F.Analysis of follicle-stimulating hormone by CE with chemiluminescence detection based on competitive immunoassay.Chromatographia,2007,66(7-8):539-544.
    [84]Liu YM,Zheng YL,Cao JT,et al.Sensitive detection of tumor marker CA15-3 in human serum by capillary electrophoretic immunoassay with chemiluminescence detection.J.Sep.Sci.,2008,31(6-7):1151-1155.
    [85]Wang JN,Ren JC.A sensitive and rapid immunoassay for quantification of CA125 in human sera by capillary electrophoresis with enhanced chemiluminescence detection.Electrophoresis,2005,26(12):2402-2408.
    [86]Wang JH,Huang WH,Liu YM,et al.Capillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells.Anal.Chem.,2004,76(18):5393-5398.
    [87]Tsukagoshi K,Nakamura T,Nakajima R.Batch-type chemiluminescence detection cell for sensitization and simplification of capillary electrophoresis.Anal.Chem.,2002,74(16):4109-4116.
    [88]Seidel M,Niessner R.Automated analytical microarrays:a critical review.Anal.Bioanal.Chem.,2008,391(5):1521-1544.
    [89]Templin MF,Stoll D,Schrenk M,et al.Protein microarray technology.Drug Discov.Today,2002,7(15):815-822.
    [90]Kricka LJ.Microchips,microarrays,biochips and nanochips:personal laboratories for the 21st century.Clin.Chim.Acta,2001,307(1-2):219-223.
    [91]Huang RP.Detection of multiple proteins in an antibody-based protein microarray system.J.Immunol.Methods,2001,255(1-2):1-13.
    [92]Joos TO,Schrenk M,Hopfl P,et al.A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics.Electrophoresis,2000,21(13):2641-2650.
    [93]Weller MG,Schuetz AJ,Winklmair M,et al.Highly parallel affinity sensor for the detection of environmental contaminants in water.Anal.Chim.Acta,1999,393(1-3):29-41.
    [94]Magliulo M,Simoni P,Guardigli M,et al.A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7,Yersinia enterocolitica,Salmonella typhimurium,and Listeria monocytogenes pathogen bacteria.J.Agric.Food Chem.,2007,55(13):4933-4939.
    [95]FitzGerald SP,Lamont JV,McConnell PJ,et al.Development of a high-throughput automated analyzer using biochip array technology.Clin.Chem.,2005,51(7):1165-1176.
    [96]Knecht BG,Strasser A,Dietrich R,et al.Automated microarray system for the simultaneous detection of antibiotics in milk.Anal.Chem.,2004,76(3):646-654.
    [97]Bhattacharyya A,Klapperich CM.Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples.Biomed.Microdevices,2007,9(2):245-251.
    [98]Varshney M,Li Y,Srinivasan B,et al.A microfluidic filter biochip-based chemiluminescence biosensing method for detection of Escherichia coli 0157:H7.Trans.ASABE,2006,49(6):2061-2068.
    [99]Davidsson R,Johansson B,Passoth V,et al.Microfluidic biosensing systems-Part Ⅱ.Monitoring the dynamic production of glucose and ethanol from microchip-immobilised yeast cells using enzymatic chemiluminescent mu-biosensors.Lab Chip,2004,4(5):488-494.
    [100]Yakovleva J,Davidsson R,Bengtsson M,et al.Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection.Biosens.Bioelectron.,2003,19(1):21-34.
    [101]Yakovleva J,Davidsson R,Lobanova A,et al.Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection.Anal.Chem.,2002,74(13):2994-3004.
    [102]Tsukagoshi K,Jinno N,Nakajima R.Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers.Anal.Chem.,2005,77(6):1684-1688.
    [103]Schmid G,Pfeil R,Boese R,et al.Au55[P(C6H5)3]12C16-a gold cluster of unusual size.Chem.Ber.,1981,114(11):3634-3642.
    [104]Duteil A,Schmid G,Meyer-Zaika W.Ligand stabilized nickel colloids.J.Chem.Soc,Chem.Commun.,1995,(1):31-32.
    [105]Amiens C,de Caro D,Chaudret B,et al.Selective synthesis,characterization,and spectroscopic studies on a novel class of reduced platinum and palladium particles stabilized by carbonyl and phosphine ligands.J.Am.Chem.Soc,1993,115(24):11638-11639.
    [106]Boennemann H,Braun G,Brijoux GB,et al.Nanoscale colloidal metals and alloys stabilized by solvents and surfactants.Preparation and use as catalyst precursors.J.Organomet.Chem.,1996,520(1-2):143-162.
    [107]Vidoni O,Philippot K,Amiens C,et al.Novel,spongelike ruthenium particles of controllable size stabilized only by organic solvents.Angew.Chem.-Int.Edit.,1999,38(24):3736-3738.
    [108]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2000.
    [109]Link S,El-Sayed MA.Shape and size dependence of radiative,non-radiative and photothermal properties of gold nanocrystals.Int.Rev.Phys.Chem.,2000,19(3):409-453.
    [110]Valden M,Lai X,Goodman DW.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties.Science,1998,281(5383):1647-1650.
    [111]Jia JF,Haraki K,Kondo JN,et al.Selective hydrogenation of acetylene over Au/Al2O3 catalyst.J.Phys.Chem.B,2000,104(47):11153-11156.
    [112]Bond GC,Thompson DT.Catalysis by gold.Catal.Rev.-Sci.Eng.,1999,41(3 & 4):319-388.
    [113]Bond GC.Relativistic effects in coordination,chemisorption and catalysis.J.Mol.Catal.A:Chem.,2000,156(1-2):1-20.
    [114]Mcintosh D,Ozin GA.Synthesis of binary gold carbonyls,Au(CO)n(n = 1 or 2).Spectroscopic evidence for isocarbonyl(carbonyl)gold,a linkage isomer of bis(carbonyl)gold.Inorg.Chem.,1977,16(1):51-59.
    [115]Shiraishi Y,Toshima N.Colloidal silver catalysts for oxidation of ethylene.J.Mol.Catal.A-Chem.,1999,141(1-3):187-192.
    [116]Pestryakov AN.Modification of silver catalysts for oxidation of methanol to formaldehyde.Catal.Today,1996,28(3):239-244.
    [117]Pestryakov AN,Lunin VV,Devochkin AN,et al.Selective oxidation of alcohols over foam-metal catalysts.Appl.Catal.A-Gen.,2002,227(1-2):125-130.
    [118]Lafarga D,Varma A.Ethylene epoxidation in a catalytic packed-bed membrane reactor:effects of reactor configuration and 1,2-dichloroethane addition.Chem.Eng.Sci.,2000,55(4):749-758.
    [119]Gopidas KR,Whitesell JK,Fox MA.Synthesis,characterization,and catalytic applications of a palladium-nanoparticle-cored dendrimer.Nano Lett.,2003,3(12):1757-1760.
    [120]Link S,Ei-Sayed MA.Optical properties and ultrafast dynamics of metallic nanocrystals.Annu.Rev.Phys.Chem.,2003,54:331-366.
    [121]Narayanan R,El-Sayed MA.Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:Electron-transfer reaction.J.Am.Chem.Soc,2004,126(23):7194-7195.
    [122]Narayanan R,El-Sayed MA.Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle SHAPE:Electron-transfer reaction catalyzed by platinum nanoparticles.J.Phys.Chem.B,2004,108(18):5726-5733.
    [123]Narayanan R,El-Sayed MA.Effect of catalytic activity on the metallic nanoparticle size distribution:Electron-transfer reaction between Fe(CN)(6)and thiosulfate ions catalyzed by PVP-platinum nanoparticles.J.Phys.Chem.B,2003,107(45):12416-12424.
    [124]Ohde H,Ohde M,Wai CM.Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation.Chem.Commun.,2004,(8):930-931.
    [125]Huang HX,Chen SX,Yuan C.Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation.J.Power Sources,2008,175(1):166-174.
    [126]Zhou WJ,Li WZ,Song SQ,et al.Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells.J.Power Sources,2004,131(1-2):217-223.
    [127]Zhou WJ,Zhou ZH,Song SQ,et al.Pt based anode catalysts for direct ethanol fuel cells.Appl.Catal.B-Environ.,2003,46(2):273-285.
    [128]Wang H,Jusys Z,Behm RJ.Electrooxidation of acetaldehyde on carbon-supported Pt,PtRu and Pt_3Sn and unsupported PtRuo.2 catalysts:A quantitative DEMS study.J.Appl.Electrochem.,2006,36(11):1187-1198.
    [129]Forti JC,Manzo-Robledo A,Kokoh KB,et al.Electrooxidation of acetaldehyde on platinum-modified Ti/Ru_(0.3)Ti_(0.7)O_2 electrodes.Electrochim.Acta,2006,51(14):2800-2808.
    [130]Cui H,Guo JZ,Li N,et al.Gold nanoparticle triggered chemilumineseence between luminol andAgNO_3.J.Phys.Chem.C,2008,112(30):l 1319-11323.
    [131]Safavi A,Absalan G,Bamdad F.Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application.Anal.Chim.Acta,2008,610(2):243-248.
    [132]Guo JZ,Cui H,Zhou W,et al.Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide.J.Photochem.Photobiol.A-Chem.,2008,193(2-3):89-96.
    [133]Guo JZ,Cui H.Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates.J.Phys.Chem.C,2007,111(33):12254-12259.
    [134]Zhang ZF,Cui H,Shi MJ.Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate.Phys.Chem.Chem.Phys.,2006,8(8):1017-1021.
    [135]Zhang ZF,Cui H,Lai CZ,et al.Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications.Anal.Chem.,2005,77(10):3324-3329.
    [136]Cui H,Zhang ZF,Shi MJ.Chemiluminescent reactions induced by gold nanoparticles.J.Phys.Chem.B,2005,109(8):3099-3103.
    [137]Lin JM,Liu ML.Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles.J.Phys.Chem.B,2008,112(26):7850-7855.
    [138]Xu SL,Cui H.Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.Luminescence,2007,22(2):77-87.
    [139]Gorman BA,Francis PS,Dunstan DE,et al.Tris(2,2 '-bipyridyl)ruthenium(Ⅱ)chemiluminescence enhanced by silver nanoparticles.Chem.Commun.,2007,(4):395-397.
    [140]Cui H,Zhang ZF,Shi MJ,et al.Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl)oxalate and hydrogen peroxide.Anal.Chem.,2005,77(19):6402-6406.
    [141]Wang ZP,Li J,Liu B,et al.Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect.J.Phys.Chem.B,2005,109(49):23304-23311.
    [142]Triantis TM,Papadopoulos K,Yannakopoulou E,et al.Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides.Chem.Eng.J.,2008,144(3):483-488.
    [143]Li SF,Zhang XM,Du WX,et al.Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles.J.Phys.Chem.C,2009,113(3):1046-1051.
    [144]Chowdhury MH,Asian K,Malyn SN,et al.Metal-enhanced chemiluminescence:Radiating plasmons generated from chemically induced electronic excited states.Appl.Phys.Lett.,2006,88(17):173104.
    [145]Collins GE,Latturner S,Rosepehrsson SL.Chemiluminescence detection of hydrazine vapor.Talanta,1995,42(4):543-551.
    [146]Penn SG,He L,Natan MJ.Nanoparticles for bioanalysis.Curr.Opin.Chem.Biol.,2003,7(5):609-615.
    [147]Alivisatos P.The use of nanocrystals in biological detection.Nat.Biotechnol.,2004,22(1):47-52.
    [148]Wang J.Nanomaterial-based amplified transduction of biomolecular interactions.Small,2005,1(11):1036-1043.
    [149]Rosi NL,Mirkin CA.Nanostructures in biodiagnostics.Chem.Rev.,2005,105(4):1547-1562.
    [150]Seydack M.Nanoparticle labels in immunosensing using optical detection methods.Biosens.Bioelectron.,2005,20(12):2454-2469.
    [151]Ozkan M.Quantum dots and other nanoparticles:what can they offer to drug discovery?Drug Discov.Today,2004,9(24):1065-1071.
    [152]Wilson R.The use of gold nanoparticles in diagnostics and detection.Chem.Soc.Rev.,2008,37(9):2028-2045.
    [153]Sperling RA,Rivera gil P,Zhang F,et al.Biological applications of gold nanoparticles.Chem.Soc.Rev.,2008,37(9):1896-1908.
    [154]Haes AJ,Stuart DA,Nie SM,et al.Using solution-phase nanoparticles,surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms.J.Fluoresc,2004,14(4):355-367.
    [155]Dykman LA,Bogatyrev VA.Gold nanoparticles:Preparation,functionalisation,applications in biochemistry and immunochemistry.Uspekhi Khimii,2007,76(2):199-213.
    [156]Chan WCW,Maxwell DJ,Gao XH,et al.Luminescent quantum dots for multiplexed biological detection and imaging.Curr.Opin.Biotechnol.,2002,13(1):40-46.
    [157]Weng J,Ren J.Luminescent quantum dots:a very attractive and promising tool in biomedicine.Curr.Med.Chem.,2006,13(8):897-909.
    [158]Medintz IL,Mattoussi H,Clapp AR.Potential clinical applications of quantum dots.Int.J.Nanomed.,2008,3(2):151-167.
    [159]Gupta AK,Gupta M.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,2005,26(18):3995-4021.
    [160]Tamanaha CR,Mulvaney SP,Rife JC,et al.Magnetic labeling,detection,and system integration.Biosens.Bioelectron.,2008,24(1):1-13.
    [161]Osaka T,Matsunaga T,Nakanishi T,et al.Synthesis of magnetic nanoparticles and their application to bioassays.Anal.Bioanal.Chem.,2006,384(3):593-600.
    [162]Liu YL,Jia L,Xing D.Recent advances in the preparation of magnetic microspheres and its application in bio-separation and concentration fields.Chin.J.Anal.Chem.,2007,35(8):1225-1232.
    [163]Dosev D,Nichkova M,Kennedy IM.Inorganic lanthanide nanophosphors in biotechnology.J.Nanosci.Nanotechnol.,2008,8(3):1052-1067.
    [164]Yuan JL,Wang GL.Lanthanide-based luminescence probes and time-resolved luminescence bioassays.Trac-Trends Anal.Chem.,2006,25(5):490-500.
    [165]Steinkamp T,Karst U.Detection strategies for bioassays based on luminescent lanthanide complexes and signal amplification.Anal.Bioanal.Chem.,2004,380(1):24-30.
    [166]Lyon LA,Musick MD,Natan MJ.Colloidal Au-enhanced surface plasmon resonance immunosensing.Anal.Chem.,1998,70(24):5177-5183.
    [167]Thanh NTK,Rosenzweig Z.Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles.Anal.Chem.,2002,74(7):1624-1628.
    [168]Riboh JC,Haes A J,McFarland AD,et al.A nanoscale optical biosensor:Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion.J.Phys.Chem.B,2003,107(8):1772-1780.
    [169]Haes AJ,Van Duyne RP.A nanoscale optical biosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.J.Am.Chem.Soc,2002,124(35):10596-10604.
    [170]Xu SP,Ji XH,Xu WQ,et al.Surface-enhanced Raman scattering studies on immunoassay.J.Biomed.Opt.,2005,10(3):031112.
    [171]Dou X,Takama T,Yamaguchi Y,et al.Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product.Anal.Chem.,1997,69(8):1492-1495.
    [172]Grubisha DS,Lipert RJ,Park HY,et al.Femtomolar detection of prostate-specific antigen:An immunoassay based on surface-enhanced Raman scattering and immunogold labels.Anal.Chem.,2003,75(21):5936-5943.
    [173]Ni J,Lipert RJ,Dawson GB,et al.Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids.Anal.Chem.,1999,71(21):4903-4908.
    [174]Cui Y,Ren B,Yao JL,et al.Multianalyte immunoassay based on surface-enhanced Raman spectroscopy.J.Raman Spectrosc,2007,38(7):896-902.
    [175]Ao LM,Gao F,Pan BF,et al.Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles.Anal.Chem.,2006,78(4):1104-1106.
    [176]Asian K,Geddes CD.Microwave-accelerated metal-enhanced fluorescence:Platform technology for ultrafast and ultrabright assays.Anal.Chem.,2005,77(24):8057-8067.
    [177]Chu X,Fu X,Chen K,et al.An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label.Biosens.Bioelectron.,2005,20(9):1805-1812.
    [178]Tang DP,Yuan R,Chai YQ.Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface.Anal.Chim.Acta,2006,564(2):158-165.
    [179]Fan AP,Lau CW,Lu JZ.Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label.Anal.Chem.,2005,77(10):3238-3242.
    [180]Li ZP,Wang YC,Liu CH,et al.Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay.Anal.Chim.Acta,2005,551(1-2):85-91.
    [181]Li ZP,Liu CH,Fan YS,et al.A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels.Anal.Biochem.,2006,359(2):247-252.
    [182]Wang ZP,Hu JQ,Jin Y,et al.In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label.Clin.Chem.,2006,52(10):1958-1961.
    [1]Burda C,Chen X,Narayanan R,et al.Chemistry and properties of nanocrystals of different shapes.Chem.Rev.,2005,105(4):1025-1102.
    [2]Daniel M-C,Astruc D.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104(1):293-346.
    [3]Asian K,Lakowicz JR,Geddes CD.Nanogold plasmon resonance-based glucose sensing.2.Wavelength-ratiometric resonance light scattering.Anal.Chem.,2005,77(7):2007-2014.
    [4]Elghanian R,Storhoff JJ,Mucic RC,et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science,1997,277(5329):1078-1081.
    [5]Stuart DA,Haes AJ,Yonzon CR,et al.Biological applications of localised surface plasmonic phenomenae.IEE Proc.-Nanobiotechnol.,2005,152(1):13-32.
    [6]West JL,Halas NJ.Engineered nanomaterials for biophotonics applications:Improving sensing,imaging,and therapeutics.Annu.Rev.Biomed.Eng.,2003,5:285-292.
    [7]Santra S,Dutta D,Walter GA,et al.Fluorescent nanoparticle probes for cancer imaging.Technol.Cancer Res.Treat.,2005,4(6):593-602.
    [8]El-Sayed IH,Huang X,El-Sayed MA.Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer.Nano Lett.,2005,5(5):829-834.
    [9]Lee K,El-Sayed M.Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size,shape,and metal composition.J.Phys.Chem.B,2006,110(39):19220-19225.
    [10]Asian K,Lakowicz JR,Geddes CD.Plasmon light scattering in biology and medicine:new sensing approaches,visions and perspectives.Curr.Opin.Chem.Biol.,2005,9(5):538-544.
    [11]Narayanan R,El-Sayed M.Catalysis with transition metal nanoparticles in colloidal solution:Nanoparticle shape dependence and stability.J.Phys.Chem.B,2005,109(26):12663-12676.
    [12]Zhang ZF,Cui H,Shi MJ.Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate.Phys.Chem.Chem.Phys.,2006,8(8):1017-1021.
    [13]Kim C,Kalluru R,Singh J,et al.Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection:studies on size-dependent optical properties.Nanotechnology,2006,17(13):3085-3093.
    [14]Zhang ZF,Cui H,Lai CZ,et al.Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications.Anal.Chem.,2005,77(10):3324-3329.
    [15]Brown KR,Fox AP,Natan MJ.Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO_2 electrodes.J.Am.Chem.Soc,1996,118(5):1154-1157.
    [16]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature Phys.Sci.,1973,241(105):20-22.
    [17]Merenyi G,Lind J,Eriksen TE.Luminol chemi-luminescence-chemistry,excitation,emitter.J.Biolumin.Chemilumin.,1990,5(1):53-56.
    [18]Shevlin PB,Neufeld HA.Mechanism of the ferricyanide-catalyzed chemiluminescence of luminol.J.Org.Chem.,1970,35(7):2178-2182.
    [19]Thompson D.New advances in gold catalysis Part I.Gold Bull.,1998,31(4):111-118.
    [20]Fan C,Wang S,Hong JW,et al.Beyond superquenching:Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles.Proc.Natl.Acad.Sci.U.S.A.,2003,100(11):6297-6301.
    [21]Asian K,Gryczynski I,Malicka J,et al.Metal-enhanced fluorescence:an emerging tool in biotechnology.Curr.Opin.Biotenchnol,2005,16(1):55-62.
    [22]Jana NR,Sau TK,Pal T.Growing small silver particle as redox catalyst.J.Phys.Chem.B,1999,103(1):115-121.
    [23]Zhang Z,Berg A,Levanon H,et al.On the interactions of free radicals with gold nanoparticles.J.Am.Chem.Soc,2003,125(26):7959-7963.
    [24]Freund PL,Spiro M.Colloidal catalysis:The effect of sol size and concentration.J.Phys.Chem.,1985,89(7):1074-1077.
    [25]Freund PL,Spiro M.Catalysis by colloidal gold of the reaction between ferricyanide and thiosulphate ions J.Chem.Soc,Faraday Trans.I,1986,82(7):2277-2282.
    [26]Link S,El-Sayed MA.Shape and size dependence of radiative,non-radiative and photothermal properties of gold nanocrystals.Int.Rev.Phys.Chem,2000,19(3):409-453.
    [27]Sau TK,Pal A,Pal T.Size regime dependent catalysis by gold nanoparticles for the reduction of eosin.J.Phys.Chem.B,2001,105(38):9266-9272.
    [28]Sharma RK,Sharma P,Maitra A.Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(Ⅲ)/thiosulfate redox reaction.J.Colloid Interface Sci.,2003,265(1):134-140.
    [1]Corma A,Garcia H.Supported gold nanoparticles as catalysts for organic reactions.Chem.Soc.Rev.,2008,37(9):2096-2126.
    [2]Daniel M-C,Astruc D.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104(1):293-346.
    [3]Newton MA.Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles:heterogeneous catalysis and beyond.Chem.Soc.Rev.,2008,37(12):2644-2657.
    [4]Guo JZ,Cui H,Zhou W,et al.Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide.J.Photochem.Photobiol.A-Chem.,2008,193(2-3):89-96.
    [5]Xu SL,Cui H.Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.Luminescence,2007,22(2):77-87.
    [6]Zhang ZF,Cui H,Lai CZ,et al.Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications.Anal.Chem.,2005,77(10):3324-3329.
    [7]Lin JM,Liu ML.Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles.J.Phys.Chem.B,2008,112(26):7850-7855.
    [8]Cui H,Guo JZ,Li N,et al.Gold nanoparticle triggered chemilumineseence between luminol and AgNO_3.J.Phys.Chem.C,2008,112(30):11319-11323.
    [9]Safavi A,Absalan G,Bamdad F.Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application.Anal.Chim.Acta,2008,610(2):243-248.
    [10]Duan CF,Cui H,Zhang ZF,et al.Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence.J.Phys.Chem.C,2007,111(12):4561-4566.
    [11]Wang ZP,Hu JQ,Jin Y,et al.In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label.Clin.Chem.,2006,52(10):1958-1961.
    [12]Duan CF,Yu YQ,Cui H.Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection.Analyst,2008,133(9):1250-1255.
    [13]Gill R,Polsky R,Willner I.Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins.Small,2006,2(8-9):1037-1041.
    [14]Triantis TM,Papadopoulos K,Yannakopoulou E,et al.Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides.Chem.Eng.J.,2008,144(3):483-488.
    [15]Henglein A,Ershov BG,Malow M.Absorption-spectrum and some chemical-reactions of colloidal platinum in aqueous-solution.J.Phys.Chem.,1995,99(38):14129-14136.
    [16]Maeda K,Kashiwabara T,Tokuyama M.Mechanism of the chemiluminescence of lucigenin.Ⅱ.The charge-transfer structure of lucigenin and reduction of 10,10'-dimethyl-9,9'-biacridinium dication by electron transfer from nucleophiles.Bull.Chem.Soc.Jpn,1977,50(2):473-481.
    [17]Maskiewicz R,Sogah D,Bruice TC.Chemiluminescent reactions of lucigenin.2.Reactions of lucigenin with hydroxide ion and other nucleophiles.J.Am.Chem.Soc,1979,101(18):5355-5364.
    [18]Acheson RM.Acridines.2nd ed.New York:John Wiley & Sons,1973.
    [19]Spinace EV,Neto AO,Linardi M.Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles.J.Power Sources,2004,129(2):121-126.
    [20]Jiang L,Sun G,Sun S,et al.Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation.Electrochim.Acta,2005,50(27):5384-5389.
    [21]Wang H,Jusys Z,Behm RJ.Ethanol electrooxidation on a carbon-supported Pt catalyst:Reaction kinetics and product yields.J.Phys.Chem.B,2004,108(50):19413-19424.
    [22]Forti JC,Manzo-Robledo A,Kokoh KB,et al.Electrooxidation of acetaldehyde on platinum-modified Ti/Ru_(0.3)Ti_(0.7)O_2 electrodes.Electrochim.Acta,2006,51(14):2800-2808.
    [23]Wang H,Jusys Z,Behm RJ.Electrooxidation of acetaldehyde on carbon-supported Pt,PtRu and Pt_3Sn and unsupported PtRuo.2 catalysts:A quantitative DEMS study.J.Appl.Electrochem.,2006,36(11):1187-1198.
    [24]Veazey RL,Nieman TA.Chemiluminescent determination of clinically important organic reductants.Anal.Chem.,1979,51(13):2092-2096.
    [1]Yalow RS,Berson SA.Assay of plasma insulin in human subjects by immunological methods.Nature,1959,184(Suppl 21):1648-1649.
    [2]Wu AHB.A selected history and future of immunoassay development and applications in clinical chemistry.Clin.Chim.Acta,2006,369(2):119-124.
    [3]Hempen C,Karst U.Labeling strategies for bioassays.Anal.Bioanal.Chem.,2006,384(3):572-583.
    [4]Kricka LJ.Selected strategies for improving sensitivity and reliability of immunoassays.Clin.Chem.,1994,40(3):347-357.
    [5]Matsuya T,Hoshino N,Okuyama T.Design of lanthanide complex probes for highly sensitive time-resolved fluorometric detection methods and its application to biochemical,environmental and clinical analyses.Curr.Anal.Chem.,2006,2(4):397-410.
    [6]Rongen HAH,Hoetelmans RMW,Bult A,et al.Chemiluminescence and immunoassays.J.Pharmaceut.Biomed.Anal.,1994,12(4):433-462.
    [7]Walker MR,Stott RA,Thorpe GHG Enzyme-labeled antibodies in bioassays.Methods Biochem.Anal.,1992,36(Bioanal Appl Enzymes):179-208.
    [8]Penn SG,He L,Natan MJ.Nanoparticles for bioanalysis.Curr.Opin.Chem.Biol.,2003,7(5):609-615.
    [9]Rosi NL,Mirkin CA.Nanostructures in biodiagnostics.Chem.Rev.,2005,105(4):1547-1562.
    [10]Seydack M.Nanoparticle labels in immunosensing using optical detection methods.Biosens.Bioelectron.,2005,20(12):2454-2469.
    [11]Weng J,Ren J.Luminescent quantum dots:a very attractive and promising tool in biomedicine.Curr.Med.Chem.,2006,13(8):897-909.
    [12]Jain KK.Nanotechnology in clinical laboratory diagnostics.Clin.Chim.Acta,2005,358(1-2):37-54.
    [13]Daniel M-C,Astruc D.Gold Nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104(1):293-346.
    [14]Lyon LA,Musick MD,Natan MJ.Colloidal Au-enhanced surface plasmon resonance immunosensing.Anal.Chem.,1998,70(24):5177-5183.
    [15]Thanh NTK,Rosenzweig Z.Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles.Anal.Chem.,2002,74(7):1624-1628.
    [16]Grubisha DS,Lipert RJ,Park HY,et al.Femtomolar detection of prostate-specific antigen:An immunoassay based on surface-enhanced Raman scattering and immunogold labels.Anal.Chem.,2003,75(21):5936-5943.
    [17]Xu SP,Ji XH,Xu WQ,et al.Surface-enhanced Raman scattering studies on immunoassay.J.Biomed.Opt.,2005,10(3):031112.
    [18]Ao LM,Gao F,Pan BF,et al.Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles.Anal.Chem.,2006,78(4):1104-1106.
    [19]Henry J,Anand A,Chowdhury M,et al.Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins.Anal.Biochem.,2004,334(1):1-8.
    [20]Chu X,Fu X,Chen K,et al.An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label.Biosens.Bioelectron.,2005,20(9):1805-1812.
    [21]Liao K-T,Huang H-J.Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry.Anal.Chim.Acta,2005,538(1-2):159-164.
    [22]Fan AP,Lau CW,Lu JZ.Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label.Anal.Chem.,2005,77(10):3238-3242.
    [23]Li ZP,Wang YC,Liu CH,et al.Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay.Anal.Chim.Acta,2005,551(1-2):85-91.
    [24]Li ZP,Liu CH,Fan YS,et al.A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels.Anal.Biochem.,2006,359(2):247-252.
    [25]Wang ZP,Hu JQ,Jin Y,et al.In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label.Clin.Chem.,2006,52(10):1958-1961.
    [26]Cui H,Guo JZ,Li N,et al.Gold nanoparticle triggered chemilumineseence between luminol and AgNO_3.J.Phys.Chem.C,2008,112(30):11319-11323.
    [27]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature Phys.Sci.,1973,241(105):20-22.
    [28]鲍建芳,沈建根.免疫学实验技术.浙江:浙江大学出版社,2006.
    [29]Ambrosi A,Casta(?)eda MT,Killard AJ,et al.Double-codified gold nanolabels for enhanced immunoanalysis.Anal.Chem.,2007,79(14):5232-5240.
    [30]Mao X,Jiang J,Luo Y,et al.Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG.Talanta,2007,73(3):420-424.
    [31]Ni J,Lipert RJ,Dawson GB,et al.Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids.Anal.Chem.,1999,71(21):4903-4908.
    [32]Volpe G,Draisci R,Palleschi G,et al.3,3',5,5'-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays.A comparative study.Analyst,1998,123(6):1303-1307.
    [33]Sun B,Xie W,Yi G,et al.Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection.J.Immunol.Methods,2001,249(1-2):85-89.
    [1]Dobrovolskaia MA,McNeil SE.Immunological properties of engineered nanomaterials.Nat.Nanotechnol.,2007,2(8):469-478.
    [2]Jain KK.Nanotechnology in clinical laboratory diagnostics.Clin.Chim.Acta,2005,358(1-2):37-54.
    [3]Penn SG,He L,Natan MJ.Nanoparticles for bioanalysis.Curr.Opin.Chem.Biol.,2003,7(5):609-615.
    [4]Rosi NL,Mirkin CA.Nanostrucrures in biodiagnostics.Chem.Rev.,2005,105(4):1547-1562.
    [5]Seydack M.Nanoparticle labels in immunosensing using optical detection methods.Biosens.Bioelectron.,2005,20(12):2454-2469.
    [6]Sperling RA,Rivera gil P,Zhang F,et al.Biological applications of gold nanoparticles.Chem.Soc.Rev.,2008,37(9):1896-1908.
    [7]Weng J,Ren J.Luminescent quantum dots:a very attractive and promising tool in biomedicine.Curr.Med.Chem.,2006,13(8):897-909.
    [8]Wilson R.The use of gold nanoparticles in diagnostics and detection.Chem.Soc.Rev.,2008,37(9):2028-2045.
    [9]Daniel M-C,Astruc D.Gold Nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104(1):293-346.
    [10]Lyon LA,Musick MD,Natan MJ.Colloidal Au-enhanced surface plasmon resonance immunosensing.Anal.Chem.,1998,70(24):5177-5183.
    [11]Thanh NTK,Rosenzweig Z.Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles.Anal.Chem.,2002,74(7):1624-1628.
    [12]Grubisha DS,Lipert RJ,Park HY,et al.Femtomolar detection of prostate-specific antigen:An immunoassay based on surface-enhanced Raman scattering and immunogold labels.Anal.Chem.,2003,75(21):5936-5943.
    [13]Ni J,Lipert RJ,Dawson GB,et al.Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids.Anal.Chem.,1999,71(21):4903-4908.
    [14]Xu SP,Ji XH,Xu WQ,et al.Surface-enhanced Raman scattering studies on immunoassay.J.Biomed.Opt.,2005,10(3):031112.
    [15]Ao LM,Gao F,Pan BF,et al.Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles.Anal.Chem.,2006,78(4):1104-1106.
    [16]Henry J,Anand A,Chowdhury M,et al.Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins.Anal.Biochem.,2004,334(1):1-8.
    [17]Chu X,Fu X,Chen K,et al.An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label.Biosens.Bioelectron.,2005,20(9):1805-1812.
    [18]Liao K-T,Huang H-J.Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry.Anal.Chim.Acta,2005,538(1-2):159-164.
    [19]Fan AP,Lau CW,Lu JZ.Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label.Anal.Chem.,2005,77(10):3238-3242.
    [20]Li ZP,Wang YC,Liu CH,et al.Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay.Anal.Chim.Acta,2005,551(1-2):85-91.
    [21]Wang ZP,Hu JQ,Jin Y,et al.In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label.Clin.Chem.,2006,52(10):1958-1961.
    [22]Duan C-F,Yu Y-Q,Cui H.Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection.Analyst,2008,133(9):1250-1255.
    [23]Danscher G,Stoltenberg M.Autometallography(AMG):silver enhancement of quantum dots resulting from(1) metabolism of toxic metals in animals and humans,(2) in vivo,and in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals,(3) metal ions liberated from metal implants and particles.Prog.Histochem.Cytochem.,2006,41(2):57-139.
    [24]Taton TA,Mirkin CA,Letsinger RL.Scanometric DNA array detection with nanoparticle probes.Science,2000,289(5485):1757-1760.
    [25]Xu S,Ji X,Xu W,et al.Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering.Analyst,2004,129(1):63-68.
    [26]Park S-J,Taton TA,Mirkint CA.Array-based electrical detection of DNA with nanoparticle probes.Science,2002,295(5559):1503-1506.
    [27]Li ZP,Liu CH,Fan YS,et al.A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels.Anal.Biochem.,2006,359(2):247-252.
    [28]刘辉.免疫学与免疫学检验.北京:人民军医出版社,2006.
    [29]Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature Phys.Sci.,1973,241(105):20-22.
    [30]Lu G,Cheng B,Shen H,et al.Influence of the nanoscale structure of gold thin films upon peroxidase-induced chemiluminescence.Appl.Phys.Lett.,2006,88(2):023903/023901-023903/023903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700