碳纳米管异型结构以及生长机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因其独特的电子传输、机械、气体吸附等性质,碳纳米管已在多种领域得到广泛的应用。通过介入五元、七元或者八元等非六边形环连接而成的Y、T、X、I或者L型碳纳米管异质结,可用于制造二极管和晶体管等电子器件,也已经在纳米功能材料和纳米电子领域显示出良好的应用前景,引起物理、化学及材料等学科界的极大兴趣。但由于碳纳米管及异质结的纳米级结构,限于目前实验方法和实验条件的不足,碳纳米管以及碳纳米管异质结的合成控制和性质研究仍存在许多未知问题。而理论研究,可以在原子水平上直观有效地模拟碳纳米管的结构、性质和形成过程,对实验现象进行合理的解释,并为相关的机理研究提供研究手段和理论依据。
     本论文应用Dmol~3、Gaussian 03程序包中的密度泛函理论,以及紧束缚势能函数以及Brenner势能函数对碳纳米管生长过程、碳纳米管异质结的性质进行了研究,主要内容包括:
     1.综述了碳纳米管的结构、性质和生长机理,异型碳纳米管的合成方法,结构和稳定性的关系,电学、力学、热学、光学性质以及相关的分子模拟方法在异型碳纳米管研究中的应用进展,并简要介绍了其在电子器件,储氢材料以及其它功能复合材料方面的应用。最后,讨论了目前研究中存在的问题并展望了该领域今后的发展趋势。
     2.构建了具有不同缺陷排列的X,T和Y型碳纳米管异质结,采用经验势能函数,讨论了最为稳定的缺陷排列方式并得出了异质结稳定性同管径大小的关系。结果表明,碳纳米管分支的直径、螺旋型和缺陷排列都是影响异型碳纳米管稳定型的重要因素,最稳定的Y,T和X型碳纳米管分别包括6,6和12个七元环。锯齿型异质结的稳定性高于扶手椅型,异质结原子的平均能量和管径存在一定的函数关系。
     3.采用密度泛函理论B3LYP方法结合6-31G(d)基组,优化了两组弯曲型和直型碳纳米管异质结(3,3)-(6,0)和(4,4)-(8,0),并在此基础上比较了这两种典型异质结的几何特性、稳定性、电荷分布及电子结构的不同。结果表明,弯曲型异质结的稳定性要高于直型异质结,而且弯曲型和直型异质结的前线轨道具有明显不同的分布,HOMO和LUMO轨道能级差也具有很大的不同。为得到反铁磁性的自旋极化基态,同时采用自旋非限制性方法进行计算,结果表明直型(4,4)-(8,0)存在反铁磁性的自旋极化基态,自旋极化发生在锯齿型分支和缺陷环,并引起了电子结构的极大变化。另外,采用密度泛函理论GGA近似方法结合PW91函数,基于周期性边界条件的能带结构的计算结果表明弯曲型异质结的能带宽大于直型异质结的能带宽,说明直型异质结的导电性有强于弯曲型异质结的趋势。
     4.运用密度泛函理论的GGA/PW91方法对有限长Y型碳纳米管的结构和性质进行了研究。结果表明,由于缺陷环的影响,Y型碳纳米管具有与直型管明显不同的性质。而且,Y型碳纳米管结构和性质同分支管长度有一定的关系。当分支管长度大于10(?)时,Y型碳纳米管的结构,能隙和电学性质均出现了周期性振荡变化的趋势。
     5.采用密度泛函理论研究了金属催化剂颗粒存在下的碳纳米管生长过程中吸附于管壁的碳原子如何迁移到碳纳米管靠近金属颗粒表面的底部,转化为碳纳米管完整格点的过程。所有的吸附原子均能同已经生成的碳纳米管壁结合成强的共价键,说明碳纳米管吸附原子的转移是碳纳米管生长的重要因素。通过分析碳原子吸附在各个位点的能量,得到最为稳定的吸附点在碳纳米管和催化剂的连接处。由于催化剂的存在,吸附原子的迁移呈现高度的各向异性。尽管Cr、Mn、Fe、Co、Ni、Cu和Zn都可以用作化学气相沉积生产碳纳米管的催化剂,但是Co、Ni和Zn不仅使碳纳米管生长速率加快,而且生成的碳纳米管结构较完美,缺陷少,更适合于作催化剂。这个结果是碳纳米管根部增长机理的有益补充。以Co为催化剂,计算了持续添加碳原子,碳纳米管可能的生长路径。最后,讨论了催化剂在碳纳米管生长过程中的作用,主要表现在改变已经生成的碳纳米管壁的电荷分布,从而有利于碳原子的吸附、迁移最终生成完美的结构。
Carbon nanotubes (CNTs) have been widely applied in many fields owing to unique electron transport, mechanics, and gas adsorption properties. The straight carbon nanotubes can be connected into Y-, T-, X-, I- and L-type multi-terminal heterojunctions (MTHJs) by the introduction of defect rings to the perfect hexagonal lattice. Since the potential applications for the miniaturization of electronic devices such as diode and transistor, MTHJs have also attracted the attention of many researchers focusing on the preparations and properties both experimentally and theoretically. Due to the structures of CNTs and MTHJs with nanometer size, which limited in experimental methods and conditions, many unclear or unknown problems still exist in the studies of their syntheses and properties. The structures and properties of CNTs and related MTHJs, however, can be investigated using theoretical methods, which are expected to explain and predict the experimental work.
     In this dissertation, the structures, properties of MTHJs, and growth mechanism of CNTs are studied using Dmol~3, Gaussian 03 passage, as well as some other program using tight-binding and REBO potential functions. The main contents include:
     1. The structures, properties and growth mechanisms of the CNTs, as well as the synthetic methods of MTHJs, the relationship between the structure and stability, their electrical, mechanical, thermal and optical properties, and the applications of molecular simulation methods in the formation processes of MTHJs, are reviewed. In addition, their possible applications in nano-electronic devices, hydrogen storage and functional materials are summarized. Furthermore, some questions and the research trends of MTHJs are discussed.
     2. A variety of multi-terminal junctions, including Y-, T- and X-type carbon nanotubes, were generated by connecting individual single-walled carbon nanotubes with different size and helicity. By optimizing these hetero-structures with different geometric features, the energetically favored structures were proposed. The corresponding energy features of the junctions indicate that the tube diameter, the helicity, and the distribution of defects, play an important role on the stability of junctions. The most stable Y-, T- and X-junctions contain six, six, and twelve heptagons, respectively. These defect rings tend to distributed at the corners of the junctions. The zigzag-type junctions are more stable than the armchair ones. Moreover, the average energy of an individual atom for Y-, T-, and X- junction is found to be a function of the tube diameter.
     3. The properties of four finite-lengh bent and straight intramolecular junctions (IMJs) connecting two armchair and zigzag single-walled carbon nanotube segments, viz. (3,3)-(6,0) and (4,4)-(8,0), were investigated. Their structures were calculated using the density functional theory (DFT) methods at the B3LYP/6-31G(d) level of theory. The results indicate that the bent junctions are more stable than the straight ones due to the energetically favored defect structures. Remarkable differences of the HOMO and LUMO orbitals appear between the straight and the bent IMJs. The spin-unrestricted calculations at the same level of theory were also performed to obtain the antiferromagnetic-type ground state, suggesting that the spin polarization mainly occur on the zigzag edge and the defect rings of the straight (4,4)-(8,0) IMJ, and induce marked changes of the electronic structures. Additionally, the energy band structures of the four junctions with periodic boundary conditions were calculated based on DFT calculations using generalized gradient approximation (GGA) with the Perdew and Wang function (PW91). The calculated band gaps suggest that the conductance of the straight IMJs is higher than the bent ones.
     4. The geometry and electronic structure of finite-length (4,4) Y-shaped CNTs were investigated using DFT with GGA/PW91 method. The results indicate that the difference between the Y-shaped CNTs and the pristine one is remarkable due to the influence of the defects in the junctions of the former. Furthermore, the structures and properties of the Y-shaped CNTs are found to be related to the length of the CNT branch. By comparing the properties of the Y-shaped CNTs with different lengths, the length-dependent oscillation behavior including structure, energy gap and electrical property were observed when the length is longer than 10(?).
     5. The formation processes of the CNTs with metal catalyst were simulated to decipher the underlying growth mechanism. The metal catalyst is modeled by a cluster with 13 metal atoms. The DFT method is used to investigate the migration of carbon atoms from adsorption sites on the surface to the end of the nanotube, in the process of catalytic growth. All the adsorbed carbon atoms are found to form strong bonds with the nanotube, indicating that adsorptions are an important factor for carbon nanotube growth. By studying the total energy of one carbon atoms adsorbed at all possible sites, it is found that the energy favorable sites are at the interacttion region between carbon nanotube and the discussed catalyst. Calculated migration energies for the adatoms show the migration is highly anisotropic due to the influence of catalyst. Cr, Mn, Fe, Co, Ni, Cu, and Zn are all found to favor the CNT growth, moreover, the Co, Ni and Zn appear to be better than the others. The results may be beneficial supplements for the root-growth mechanisms of carbon nanotubes. The possible growth process rooted on a Co particle was calculated by adding carbon atoms continually. Furthermore, the role of the metal catalyst was discussed, indicating that it will affect the charge distribution of the end part of the nanotube, conducive to the adsorption and migration of the carbon atom to form a perfect tube.
引文
[1]Ijima S.Helicalmicrotubules of graphitic carbon.Nature,1991,354:56-58
    [2]Ebbesen T W,Ajayan P M.Large-scale synthesis of carbon nanotubes.Nature,1992,358:220-222
    [3]Guo T,Nikolaev P,TessA,et al.Catalytic growth of single-walled nanotubes by laser vaporization.Chem Phys Lett,1995,243:48-52
    [4]Thess A,Lee R,Nikolaev P,et al.Crystalline ropes ofmetallic carbon nanotubes.Science,1996,273:483-487
    [5]Dai H,Wong W,Lu Y,et al.Synthesis and characterization of carbide nanorods.Nature,1995,375:769-771
    [6]Yacaman M J,Yoshida M M,Rendon L,et al.Catalytic growth of carbon microtubules with fullerene structure.Appl Phys Lett,1993,62:202-204
    [7]Chico L,Crespi V H,Benedict L X,et al.Pure Carbon nanoscale devices:nanotube heterojunctions.Phys Rev Lett,1996,76:971-974
    [8]Liu Y Q,Wei D C.The intramolecular junctions of carbon nanotubes.Adv Mater,2008,20:2815-2841
    [9]Gavillet J,Loiseau A,Journet C,et al.Root-growth mechanism for single-wall carbon nanotubes.Phys Rev Lett,2001,87(27):275504-1-4
    [10]Charlier J C,De Vita A,Blase X,et al.Microscopic growth mechanisms for carbon nanotubes.Science,1997,275(5300):646-649
    [11]Zhao J,Martinez-Limia A,Balbuena P B.Understanding catalysed growth of single-wall carbon nanotubes.Nanotechnology,2005,16:S575-S581
    [12]Shibuta Y,Maruyaraa S.Molecular dynamics simulation of generation process of SWNTs.Physica B,2002,323(1-4):187-189
    [13]Shibuta Y,Maruyama S.Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method.Chem Phys Lett,2003,382(324):381-386
    [14]Ding F,Rosen A,Blotom K.The role of the catalytic particle temperature gradient for SWNT growth from small particles.Chem Phys Lett,2004,393:309-303
    [15]Ding F,Rosen A,Bolton K.Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.J Chem Phys,2004,121(68):2775-2779
    [16]Ding F,Larsson P,Larsson J A,et al.The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.Nano Lett,2008,8(2):463-468
    [17]Esfaijani K,Gorjizadeh N,Nasrollahi Z.Molecular dynamics of single wall carbon nanotube growth on nickel surface.Comput Mater Sci,2006,36(122):117-120
    [18]李瑞芳,尚贞锋,许秀芳,等.扶手椅型单壁碳纳米管生长机理的研究.物理化学学报, 2006,22(11): 1388-1392
    [19] Grujicic M, Cao G, Gersten B. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes. Mater Sci Eng B, 2002, 94: 247-259
     [20] Andriotis A N, Menon M, Froudakis G.Catalytic action of Ni atoms in the formation of carbon nanotubes: a molecular dynamics study. Phys Rev Lett, 2000, 85 (15): 3193-3196
    [21] Raty J Y, Gygi F, Gallil G.Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab Initio molecular dynamics simulations. Phys Rev Lett, 2005, 95, 096103: 1-4
    [22] Charlier J C, Amara H, Lambin P. Catalytically assisted tip growth mechanism for single-wall carbon nanotubes. ACS Nano, 2007,1 (3): 202-207
    [23] Bernholc J, Brabec C, Buongiorno N M. et al. Theory of growth and mechanical properties of nanotubes. Appl Phys A, 1992, 67: 39-46
    
    [24] Guo T, Nikolaev P, Rinzler A G.et al. Self-assembly of tubular fullerenes. J Phys Chem, 1995,99(27): 10694-0697
    [25] Ebbesen T W, Hiura H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes. Chem Phys Lett, 1993, 25 (1-2): 83-90
    
    [26] Kwon Y, Lee Y H, Kim S, et al. Morphology and stability of growing multiwall carbon nanotubes. Phys Rev Lett, 1997, 79: 2065-2068
    [27] Jin C, Suenaga K, Iijima S. Direct evidence for lip-lip interactions in multi-walled carbon nanotubes. Nano Res, 2008,1: 434-439
    [28] Zou J, Ji B H, Feng X Q, et al. Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: molecular dynamics simulations. Nano Lett, 2006, 6 (3): 430-434.
    [29] Chernozatonskii L A. Carbon nanotube connectors and planar jungle gyms. Phys Lett A, 1992, 172 (28): 173-176
    
    [30] Scuseria G E. Negative curvature and hyperfullerenes. Chem Phys Lett, 1992, 195 (5-6): 534-536
    [31] Zhou D, Seraphin S. Complex branching phenomena in the growth of carbon nanotubes. Chem Phys Lett, 1995,238: 286-289
    [32] Lee J S, Gu G H, Kim H, et al. Growth of carbon nanotubes on anodic aluminum oxide templates: fabrication of a tube-in-tube and linearly joined tube. Chem Mater, 2001, 13: 2387-2391
    [33] Terrones M, Banhart F, Grobert N, et al. Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett, 2002, 89: 075505-1-4
    
    [34] Liu Q, Liu W, Cui Z M, Song W G, et al. Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon, 2007,45: 268-273
    [35] Xi G C, Zhang M, Ma D, et al. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon, 2006,44: 734-741
    [36] Ma H L, Su D S, Jin G Q, et al. The influence of formation conditions on the growth and morphology of carbon trees.Carbon,2007,45:1622-1627
    [37]Kowalczyk P,Klusek Z,Kozlowski W,et al.STM/STS investigation of carbon nanotube junctions.Appl Phys A,2007,87:37-40
    [38]Menon M,Srivastava D.Carbon nanotube "T junctions":nanoscale metal-semiconductor-metal contact devices.Phys Rev Lett,1997,79(22):4453-4456
    [39]Li J,Zhang Q,Chan-Park M B.Simulation of carbon nanotube based p-n junction diodes.Carbon,2006,44:3087-3090
    [40]Menon M,Andriotis A N,Srivastava D,et al.Carbon nanotube "T junctions":formation pathways and conductivity.Phys Rev Lett,2003,9(14):145501-1-4
    [41]Lin Y,Cai W S,Shao X G.Formation and stability of parallel carbon nanotube junctions.J Mol Struct(Theochem),2006,767(1-3):87-93
    [42]曹伟,宋雪梅,王波,等.碳纳米管的研究进展.材料导报,2007,21(5):76-82
    [43]Osvath Z,Koos A A,Horvath Z E,et al.Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy(STM).Chem Phys Lett,2002,365:338-342
    [44]Nagy P,Ehlich R,Biro L P,et al.Y-branching of single walled carbon nanotubes.Appl Phys A,2000,70:481-483
    [45]Gan B,Ahn J,Zhang Q,et al.Topological structure of Y-junction carbon nanotubes.Mater Lett,2000,45:315-319
    [46]Satishkumar B C,Thomas P J,Govindaraj A,et al.Y-junction carbon nanotubes.Appl Phys Lett,2000,77(16):2530-2532
    [47]Papadopoulos C,Rakitin A,Li J,et al.Electronic transport in Y-junction carbon nanotubes.Phys Rev Lett,2000,85(16):3476-3479
    [48]Deepak F L,Govindaraj A,Rao C N R.Synthesis strategies for Y-junction carbon nanotubes.Chem Phys Lett,2001,345:5-10
    [49]Li W Z,Wen J G,Ren Z F.Straight carbon nanotube Y junctions.Appl Phys Lett,2001,79(12):1879-1881
    [50]Sui Y C,Acosta D R,Gonzalez-Leon J A,et al.Structure,thermal stability,and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template.J Phys Chem B,2001,105:1523-11527
    [51]Zhu H W,Ci L J,Xu C L,et al.Growth mechanism of Y-junction carbon nanotubes.Diam Relat Mat,2002(11):1349-1352
    [52]Ting J M,Li T P,Chang C C.Carbon nanotubes with 2D and 3D multiple junctions.Carbon,2004,42:2997-3002
    [53]Gothard N,Daraio C,Gaillard J,et al.Controlled growth of Y-Junction nanotubes using Ti-doped vapor catalyst.Nano Lett,2004,4(2):213-217
    [54]Su L F,Wang J N,.Yu F,et al.Continuous Sythesis of Y-junction carbon nanotubes by catalytic CVD.Chem Vap Deposition,2005,11:351-354
    [55]AuBuchon J F,Chen L H,Daraio C,et al.Multibranching carbon nanotubes via self-seeded catalysts.Nano Lett,2006,6(2):324-328
    [56]Choi Y C,Choi W.Synthesis of Y-junction single-wall carbon nanotubes.Carbon,2005,43:2737-2741
    [57]Ding D Y,Wang J N,Yu F,et al.Influence of pyrolysis temperature on the growth of Y-junction carbon nanotubes.Appl Phys A,2005,81:805-808
    [58]Kong L B.Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template.Solid State Commun,2005,133:527-529
    [59]Jin Z,Li X M,Zhou W W,et al.Direct growth of carbon nanotube junctions by a two-step chemical vapor deposition.Chem Phys Lett,2006,432:177-183
    [60]Li W Z,Pandey B,Liu Y Q.Growth and structure of carbon nanotube Y-junctions.J Phys Chem B,2006,110:23694-23700
    [61]Wei D C,Liu Y Q,Cao L C,et al.A new method to synthesize complicated multibranched carbon nanotubes with controlled architecture and composition.Nano Lett,2006,6(2):186-192
    [62]Choi W,Kim D H,Choi Y C,et al.Y-Junction single-wall carbon nanotube electronics.Nanomaterials for electronic applications,2007,59(3):44-49
    [63]Yao Z Y,Zhu X,Li X X,et al.The influence of formation conditions on the growth and morphology of carbon trees.Carbon,2007,45:1566-1570
    [64]Postma H W C,Jonge M D,Yao Z,et al.Electrical transport through carbon nanotube junctions created by mechanical manipulation.Phys Rev B,2000,62(6):10653-10656
    [65]Banhart F.The formation of a connection between carbon nanotubes in an electron beam.Nano Lett,2001,1(6):329-332
    [66]Ho G W,Wee A T S,Lin J.Electric field-induced carbon nanotube junction formation.Appl Phys Lett,2001,79(29):260-262
    [67]Liu J W,Shao M W,Chen X Y,et al.Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process.J Am Chem Soc,2003,125:8088-8089
    [68]Lou Z S,Chen C L,Huang H Y,et al.Fabrication of Y-junction carbon nanotubes by reduction of carbon dioxide with sodium borohydride.Diam Relat Mat,2006,15:1540-1543
    [69]张春山,邵曼君.碳纳米管及其研究进展.化工新型材料,2004,32(7):1-5
    [70]Krasheninnikov A V,Banhart F,Li J X,et al.Stability of carbon nanotubes under electron irradiation:Role of tube diameter and chirality.Phys Rev B,2005(72):125428-1-6
    [71]Jang I,Sinnott S B.Molecular Dynamics simulation study of carbon nanotube welding under electron beam irradiation.Nano Lett,2004,4(1):109-114
    [72]Krasheninnikov A V,Nordlund K,Keinonen J.Ion-irradiation-induced welding of carbon nanotubes.Phys Rev B,2002,66:245403-1-6
    [73]Ponomareva I,Chernozatonskii L A,Andriotis A N,et al.Formation pathways for single-wall carbon nanotube multiterminal junctions.New J Phys,2003,5:119-1-12
    [74]Meng F Y,Shi S Q,Xu D S,et al.Multiterminal junctions formed by heating ultrathin single-walled carbon nanotubes.Phys Rev B,2004,70:125418-1-6
    [75]Tsai P C,Jeng Y R,Fang T H.Coalescence,melting,and mechanical characteristics of carbon nanotube junctions. Phys Rev B, 2006, 74: 045406-1-10
    [76] Xu L, Lin Y, Cai W S, et al. From multilayered graphite flakes to nanostructures: A tight-binding molecular dynamics study. J Chem Phys, 2008, 129: 224709-1-6
    [77] Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon- heptagon pair defects in carbon nanotubes. Phys Rev B, 1996, 53 (16): 11108-11113
    [78] Garau C, Frontera A, Quinonero D, et al. Structural and energetic features of single-walled carbon nanotube junctions: a theoretical ab initio study. Chem Phys, 2004, 303: 265-270
    [79] Ye Y F, Zhang M L, Zhao J W, et al. Ab initio study on the structural, energetic and electronic features of the asymmetric armchair SWCNT junction. J Mol Struct (Theochem), 2008,861:79-84
    [80] Andriotis A N, Menon M, Srivastava D, et al. Rectification properties of carbon nanotube "Y-Junctions". Phys Rev Lett, 2001, 87: 06802-1-4
    
    [81] Perkins B R, Wang D P, Soltman D, et al. Differential current amplification in three-terminal Y-junction carbon nanotube devices. Appl Phys Lett, 2005, 87: 123504-1-3
    [82] Andriotis A N, Menon M, Srivastava D, et al. Transport properties of single-wall carbon nanotube Y junctions. Phys Rev B, 2002,65: 165416-1-13
    [83] Bandaru P R. Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J Mater Sci, 2007,42: 1809-1818
    [84] Tamura R. Rectified current in the carbon nanotube junction. Physica B, 2002, 323: 211-213
    [85] Chernozatonskii L A, Ponomareva I V. Sticking of carbon nanotube Y junction branches. Jetp Lett, 2003, 78: 327-331
    [86] Meng F Y, Shi S Q, Xu D S, et al. Mechanical properties of ultrathin carbon nanotube junctions. Modelling Simul Mater Sci Eng, 2006, 14: S1-S8
    [87] Coluci V R, Dantas S O, Jorio A, et al. Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations. Phys Rev B, 2007, 75: 075417-1-7
    [88] Meng F Y, Ogata S, Xu D S, et al. Thermal conductivity of an ultrathin carbon nanotube with an X-shaped junction. Phys Rev B, 2007, 75: 205403-1-6
    [89] Grimm D, Venezuela P, Latgé A. Thermal and mechanical stability of Y-shaped carbon nanotubes. Phys Rev B, 2005, 71: 155425-1-6
    [90] Fa W, Yang X P, Chen J W, et al. Optical properties of the semiconductor carbon nanotube intramolecular junctions. Phys Lett A, 2004, 323: 122-131
    [91] Doom S K, O'Connell M J, Zheng LX, et al. Raman spectral imaging of a carbon nanotube intramolecular junction. Phys Rev Lett, 2005, 94: 016802-1-4
    [92] Huang S M, Qian Y, Chen J Y, et al. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and raman spectroscopy. J Am Chem Soc, 2008, 130: 11860-11861
    [93] Javey A, Guo J, Paulsson M, et al. High-field quasiballistic transport in short carbon nanotubes.Phys Rev Lett,2004,92:106804-1-4
    [94]Seidel R V,Graham A P,Kretz J,et al.Sub-20 nm short channel carbon nanotube transistors.Nano Lett,2005,5:147-150
    [95]Lin Y M,Appenzeller J,Chen Z H,et al.High-performance dual-gate carbon nanotube FETs with 40-nm gate length.IEEE Electron Device Lett,2005,26:823-825
    [96]Lee J U,Gipp P P,Heller C M.Carbon nanotube p-n junction diodes.Appl Phys Lett,2004,85(1):145-147
    [97]Diehl M R,Steuerman Da W,Tseng H R,et al.Single-walled carbon nanotube based molecular switch tunnel junctions.ChemPhysChem,2003,4:1335-1339
    [98]Klusek Z,Datta S,Byszewski P,et al.Scanning tunneling microscopy and spectroscopy of Y-junction in carbon nanotubes.Surf Sci,2002,507-510:577-581
    [99]Derycke V,Martel R,Appenzeller J,et al.Carbon nanotube inter-and intramolecular logic gates.Nano Lett,2001,1:453-456
    [100]Liu X L,Luo Z C,Han S,et al.Band engineering of carbon nanotube field-effect transistors via selected area chemical gating.Appl Phys Lett,2005,86:243501-1-3
    [101]Bachtold A,Hadley P,Nakanishi T,et al.Logic circuits with carbon nanotube transistors.Science,2001,294:1317-1320
    [102]Avouris P,Martel R,Derycke V,et al.Carbon nanotube transistors and logic circuits.Physica B,2002,323(1):6-14
    [103]Bandaru P R,Daraio C,Jin S,et al.Novel electrical switching behaviour and logic in carbon nanotube Y-junctions.Nat Mater,2005,4:663-666
    [104]Luxembourg D,Flamant G,B(?)che E,et al.Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor.Int J Hydrog Energy,2007,32:1016-1023
    [105]Sarkar A,Banerjee R.A quantitative method for characterization of carbon nanotubes for hydrogen storage.Int J Hydrog Energy,2004,29:1487-1491
    [106]周亚平,冯奎,孙艳,等.述评碳纳米管储氢研究.化学进展,2003,15(5):345-350
    [107]Tibbetts G G,Meisner G P,Olk C H.Hydrogen storage capacity of carbon nanotubes,filaments,and vapor-grown fibers.Carbon,2001,39:2291-2301
    [108]Lee S M,Park K S,Choi Y C,et al.Hydrogen adsorption and storage in carbon nanotubes.Synthetic Met,2000,113:209-216
    [109]Nikitin A,Li X L,Zhang Z Y,et al,A.Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds.Nano Lett,2008,8(1):162-167
    [110]Cheng H M,Yang Q H,Liu C.Hydrogen storage in carbon nanotubes.Carbon,2001,39:1447-1454
    [111]黄倬.碳纳米管储氢研究现状.稀有金属,2005,29(6):890-897
    [112]吴红丽,邱介山,郝策,唐祯安.异型碳纳米管储氢性能的分子动力学模拟研究.化学学报,2005,63(11):990-996
    [113]Wu H L,Qiua J S,Hao C,et al.Molecular dynamics study of hydrogen adsorption in Y-junction carbon nanotubes. J Mol Struct (Theochem), 2004, 684: 75-80
    [114] Hanasaki I, Nakatani A. Water flow through carbon nanotube junctions as molecular convergent nozzles. Nanotechnology, 2006, 17: 2794-2804
    
    [115] Park J H, Sinnott S B, Aluru N R. Ion separation using a Y-junction carbon nanotube. Nanotechnology, 2006, 17: 895-900
    [1] Doom S K, O'Connell M J, Zheng L X, et al. Raman spectral imaging of a carbon nanotube intramolecular junction. Phys Rev Lett, 2005, 94: 016802-1-4
    
    [2] Ponomareva I, Chernozatonskii LA, Andriotis AN, et al. Formation pathways for single-wall carbon nanotube multiterminal junctions. New J Phys, 2003, 5: 119-1-12
    [3] Yao Z, Postma W Ch, Balents L, et al. Carbon nanotube intramolecular junctions. Nature, 1999,402:273-276
    [4] Han J, Anantram M P, Jaffe R L, et al. Observation and modeling of single-wall carbon nanotube bend junctions. Phys Rev B, 1998, 57: 14983-14989
    [5] Kong J, Dai H J. Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B, 2001, 105: 2890-2893
    [6] Deepak F L, Govindaraj A, Rao C N R. Synthetic strategies for Y-junction carbon nanotubes. Chem Phys Lett, 2001, 345: 5-10
    [7] Li W Z, Pandey B, Liu Y Q. Growth and structure of carbon nanotube Y-Junctions. J Phys Chem B, 2006, 110: 23694-23700
    [8] Wei D C, Liu Y Q, Cao L C, et al. A new method to synthesize complicated multibranched carbon nanotubes with controlled architecture and composition. Nano Lett, 2006, 6 (2): 186-192
    [9] Choi W, Kim D H, Choi Y C, et al. Y-Junction single-wall carbon nanotube electronics. Nanomaterials for electronic applications, 2007, 59 (3): 44-49
    [10]Yao Z Y, Zhu X, Li X X, et al. The influence of formation conditions on the growth and morphology of carbon trees. Carbon, 2007,45: 1566-1570
    
    [11] Lefebvre J, Lynch J F, Llaguno M, et al. Single-wall carbon nanotube circuits assembled with an atomic force microscope. Appl Phys Lett, 1999, 75: 3014-3016
    
    [12] Terrones M, Banhart F, Grobert N, et al. Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett, 2002, 89: 075505-1-4
    [13] Postma H W C, Jonge M D, Yao Z, et al. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys Rev B, 2000, 62 (6): 10653-10656
    [14] Banhart F. The Formation of a Connection between Carbon Nanotubes in an Electron Beam. Nano Lett, 2001, 1 (6): 329-332
    [15] Ho G W, Wee AT S, Lin J. Electric field-induced carbon nanotube junction formation. Appl Phys Lett, 2001, 79 (29): 260-262
    [16] Liu H, The influence of defect on quantum conductivity in three-terminated Y- (or T-) junction single-walled carbon naotube. Phys Lett A, 2005, 339: 378-386
     [17] Meng F Y, Shi S Q, Xu D S, et al. Mechanical properties of ultrathin carbon nanotube junctions. Model Simul Mater Sci Eng, 2006, 14: S1-S8
    [18] Tsai PC, Jeng Y R, Fang T H. Coalescence, melting, and mechanical characteristics of carbon nanotube junctions. Phys Rev B, 2006, 74: 045406-1-10
    [19] Wu H L, Qiu J S, Hao C, et al. Molecular dynamics study of hydrogen adsorption in Y-junction carbon nanotubes. J Mol Struct (Theochem), 2004, 684: 75-80
    [20] Grimm D, Venezuela P, Latgé A. Thermal and mechanical stability of Y-shaped carbon nanotubes. Phys Rev B, 2005,71: 155425-1-6
    [21] Bródka A, Koloczek J, Burian A, et al. Molecular dynamics simulation of carbon nanotube structure. J Mol Struct, 2006,78: 792-793
    [22] Fan X, Buczko R, Puretzky A A, et al. Nucleation of single-walled carbon nanotubes. Phys Rev Lett, 2003, 14: 145501-1-4
    [23] Garau C, Frontera A, Quinonero D, et al. Structural and energetic features of single-walled carbon nanotube junctions: a theoretical ab initio study. Chem Phys, 2004, 303: 265-270
    [24] Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon- heptagon pair defects in carbon nanotubes. Phys Rev B, 1996, 53: 11108-11113
    [25] Ye Y F, Zhang M L, Zhao J W, et al. Ab initio study on the structural, energetic and electronic features of the asymmetric armchair SWCNT junction. J Mol Struct (Theochem), 2008,861:79-84
    [26] Xu C H, Wang C Z, Chan C T, et al. A transferable tight-binding potential for carbon. J Phys: Condens Matter. 1992,4: 6047-6054
    [27] Lin Y, Cai W S, Shao X G. Formation and stability of parallel carbon nanotube junctions. J Mol Struct (Theochem), 2006, 767: 87-93
    [28] Lin Y, Cai W S, Shao X G. Fullerenes connected nanotubes: an approach to build multidimensional carbon nanocomposites. Chem Phys, 2006, 331: 85-91
    [29] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program, 1989,45: 503-528
    [30] Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter, 2002, 14: 783-802
    [31] Tersoff J. New empirical model for the structural properties of silicon. Phys Rev Lett, 1984, 56: 632-635
    [32] Tersoff J. Empirical interatomic potential for carbon, with applications to amphous carbon. Phys Rev Lett, 1988, 61: 2879-2882
    [33] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B, 1988, 37: 6991-7000
    [34] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 1990,42: 9458-9471
    [35] Kroto H W, Heath J R. C 60: buckminsterfullerene. Nature, 1985, 318: 162-163
    [36] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [37] Iijima S, Ichihashi T. Energy implicationsof future stabilizationof atmospheric CO_2 content. Nature, 1993, 363: 603-605
    [38] Cai W S, Shao X G. A fast annealing evolutionary algorithm for global optimization. J Comp Chem, 2002,23: 427-435
    [39] Cai W S, Shao N, Shao X G, et al. Structural analysis of carbon clusters by using a global optimization algorithm with Brenner potential. J Mol Struct (Theochem), 2004, 678: 113-122
    [40] Cabria I, Mintmire J W, White C T. Stability of narrow zigzag carbon nanotubes. Int J Quantum Chem, 2003, 91: 51-56
    [1] Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett, 1996, 76: 971-974
    
    [2] Liu Y Q, Wei D C. The intramolecular junctions of carbon nanotubes. Adv Mater, 2008, 20: 2815-2841
    [3] Treboux G, Lapstun P, Silverbrook K. An intrinsic carbon nanotube heterojunction diode. J Phys Chem B, 1999, 103: 1871-1875
    [4] Lee J U, Gipp P P, Heller C M. Carbon nanotube p-n junction diodes. Appl Phys Lett, 2004, 85:145-147
    [5] Yao Z, Postma H W C, Balents L, et al. Carbon nanotube intramolecular junctions. Nature, 1999,402,273-276
    [6] Li Y F, Hatakeyama R, Shishido J, et al. Air-stable p-n dunction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl Phys Lett, 2007, 90, 173127-1-3
    [7] Service, R. F. Mixing Nanotube Structures to Make a Tiny Switch. Science, 1996, 271, 1232-1233
    [8] Li J Q, Zhang Q, Chan-Parkb M B. Simulation of carbon nanotube based p-n junction diodes. Carbon, 2006,44: 3087-3090
    
    [9] Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon- heptagon pair defects in carbon nanotubes. Phys Rev B, 1996,53: 11108-11113
    [10] Ye Y F, Zhang M L, Zhao J W, et al. ab initio study on the structural, energetic and electronic features of the asymmetric armchair SWCNT junctions. J Mol Struct (THEOCHEM), 2008, 861: 79-84
    
    [11] Garau C, Frontera A, Quinonero D, et al. Structural and energetic features of single-walled carbon nanotube junctions: a theoretical ab initio Study. Chem Phys, 2004, 303: 265-270
    
    [12] Rochefort A, Avouris P. Quantum size effects in carbon nanotube intramolecular junctions. Nano Lett, 2002,2: 253-256
    
    [13] Son Y W, Lee S B, Lee C K, et al. Electronic structure of straight semiconductor- semiconductor carbon nanotube junctions. Phys Rev B, 2005, 71: 205422-1-5
    
    [14] Wu G, Li B W. Thermal Rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations. Phys Rev B, 2007, 76: 085424-1-9
    
    [15] Hua F, Fa W, Dong J. Quantum interference in carbon nanotube intramolecular junction. Eur Phys J B, 2005,46: 331-334
    
    [16] Ouyang M, Huang J L, Cheung C L, et al. Energy gaps in "metallic" single-walled carbon nanotubes. Science, 2001,292: 702-705
    
    [17] Shafranjuk S E. Sensing an electromagnetic field with photon-assisted fano resonance in a two-branch carbon nanotube junction.Phys Rev B,2007,76:085317-1-6
    [18]Kim Y H,Choi J,Chang K J.Defective fullerenes and nanotubes as molecular magnets:An ab initio study.Phys Rev B,2003,68:125420-1-4
    [19]Mananes A,Duque F,Ayuela A,et al.Half-metallic finite zigzag single-walled carbon nanotubes from first principles.Phys Rev Lett,2008,78:035432-1-10
    [20]Hod O,Scuseria G E.Half-metallic zigzag carbon nanotube dots.ACS Nano,2008,2:2243-2249
    [21]Xu C H,Wang C Z,Chan C T,et al.A transferable tight-binding potential for carbon.J Phys-Condes Matter,1992,4:6047-6054
    [22]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian,Inc.,Wallingford CT,2004
    [23]Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules.J Chem Phys,1990,92(1):508-517
    [24]Delley B.From molecules to solids with the DMol~3 approach.J Chem Phys,2000,113(18):7756-7764
    [25]Vincignerra V,Buonocore F,Panzera G.,et al.Growth mechanisms in chemical vapour deposited carbon nanotubes.Nanotechnology,2003,14:655-660
    [26]Galano A,Orgaz E.Stability and electronic structure of Si,Ge,and Ti substituted single walled carbon nanotubes.Phys Rev B,2008,77:045111-1-9
    [27]Bai L,Zhou Z.Computational study of B- or N-doped single-walled carbon nanotubes as NH_3 and NO_2 sensors.Carbon,2007,45:2105-2110
    [1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991,354: 56-58
    
    [2] Antonis A N, Menon M, Srivastava D, et al. Ballistic switching and rectification in signal wall carbon nanotube Y junction. Appl Phys Lett, 2001, 79(2): 266-268
    [3] Li J, Papadopoulos C, Xu J. Growing Y-Junction carbon nanotubes. Nature, 1999,402(6759): 253-254
    [4] Andriotis A N, Menon M. Are electrical switching and rectification inherent properties of carbon nanotube Y junctions? Appl Phys Lett, 2006, 89: 132116-1-3
    [5] Papadopoulos C, Yin A J, Xu J M. Temperature-dependent studies of Y-junction carbon nanotube electronic transport. Appl Phys Lett, 2004, 85(10): 1769-1771
    [6] Perkins B R, Wang D P, Soltman D, et al. Differential current amplification in three-terminal Y-junction carbon nanotube devices. Appl Phys Lett, 2005, 87: 123504-1-3
    [7] Bandaru P R, Daraio C, Jin S. et al. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat Mater, 2005,4: 663-666
    [8] Lu X, Chen Z F. Curved Pi-Conjugation, aromaticity, and the related chemistry of small fullerenes (    [9] Gao B, Jiang J, Wu Z Y, et al. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. J Chem phy, 2008,128: 084707-1-7
    [10] Matsuo Y, Tahara K, Nakamura E. Theoretical Studies on Structures and aromaticity of Finite-Length Armchair Carbon Nanotubes. Org Lett, 2003, 5(18): 3181-3184
    
    [11] Nakamura E, Tahara K, Matsuo Y, et al. Synthesis, structure, and aromaticity of a hoop- shaped cyclic benzenoid cyclophenacene. J Am Chem Soc, 2003, 125: 2834-2835
    
    [12] Rochefort A, Avouris P. Quantum size effects in carbon nanotube intramolecular junctions. Nano Lett, 2002, 2(3): 253-256
    [13] Javey A, Guo J, Paulsson M, et al. High-Field Quasiballistic transport in short carbon nanotubes. Phys Rev Lett, 2004, 92: 106804-1-4
    [14] Seidel R V, Graham A P, Kretz J, et al. Sub-20 nm short channel carbon nanotube transistors. Nano Lett, 2005, 5: 147-150
    [15] Lin Y M, Appenzeller J, Chen Z H, et al. High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Electron Device Lett, 2005,26: 823-825
    [16] Xue B C, Shao X G, Cai W S. Structures and stabilities of multi-terminal carbon nanotube junctions. Comput Mater Sci, 2008,43(3): 531-539
    [17] Xu C H, Wang C Z, Chan C T, et al. A transferable tight-binding potential for carbon. J Phys-Condes Matter, 1992,4: 6047-6054
    [18] Delley B. An All-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys, 1990, 92(1): 508-517
    [19] Delley B. From molecules to solids with the DMol~3 approach. J Chem Phys, 2000, 113(18): 7756-7764
    
    [20] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992,45(23): 13244-13249
    
    [21] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys, 1980, 58: 1200-1211
    
    [22] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Gaussian, Inc., Pittsburgh PA, 2003
    
    [23] Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B, 1996, 53: 11108-11113
    [1]Smalley R E,Li Y B,Moore V C,et al.Single wall carbon nanotube amplification:En route to a type-specific growth mechanism.J Am Chem Soc,2006,128(49):15824-15829
    [2]Chen Y,Ciuparu D,Lim S Y,et al.Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41:effects of the catalyst prereduction and nanotube growth temperatures.J Catal,2004,225(2):453-465
    [3]Wang B,Wei L,Yao L,et al.Pressure-induced single-walled carbon nanotube(n,m)selectivity on co-mo catalysts.J Phys Chem C,2007,111,14612-14616
    [4]See C H,Harris A T.A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition.Ind Eng Chem Res,2007,46(4):997-1012.
    [5]Gavillet J,Loiseau A,Ducastelle F,et al.Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes.Carbon,2002,40(10):1649-1663
    [6]Brukh R,Mitra S.Mechanism of carbon nanotube growth by CVD.Chem Phys Lett,2006,424(1-3):126-132
    [7]Raty J Y,Gygi F,Galli G.Growth of carbon nanotubes on metal nanoparticles:a microscopic mechanism from ab initio molecular dynamics simulations.Phys Rev Lett,2005,95(9):096103-1-4
    [8]Zhang Q M,Wells J C,Gong X G,et al.Adsorption of a carbon atom on the Ni/sub 38/magic cluster and three low-index nickel surfaces:a comparative first-principles study.Phys Rev B,2004,69(20):205413-1-3
    [9]Amara H,Bichara C,Ducastelle,F.Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition.Phys Rev Lett,2008,100(5):056105-1-4
    [10]Ding F,Rosen A,Bolton K.Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.J Chem Phys,2004,121(6):2775-2779
    [11]Ding F,Larsson P,Larsson J A,et al.The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes.Nano Lett,2008,8(2):463-468
    [12]Charlier J C,Amara H,Lambin P.Catalytically assisted tip growth mechanism for single-wall carbon nanotubes.Acs Nano,2007,1(3):202-207
    [13]Young H L,Seong G K,Tomanek D.Catalytic growth of single-wall carbon nanotubes:An ab initio study.Phys Rev Lett,1997,78(12):2393-2396
    [14]Ding F,Bolton K.The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation.Nanotechnology,2006,17(2):543-548
    [15]Krasheninnikov A V,Nordlund K,Lehtinen P O,et al.Adsorption and migration of carbon adatoms on zigzag carbon nanotubes.Carbon,2004,42(5-6):1021-1025
    [16]Krasheninnikov A V,Nordlund K,Lehtinen P O,et al.Adsorption and migration of carbon adatoms on carbon nanotubes:Density-functional ab initio and tight-binding studies.Phys Rev B,2004,69(7):073402-1-4
    [17]Delley B.An all-electron numerical-method for solving the local density fimctional for polyatomic-molecules.J Chem Phys,1990,92(1):508-517
    [18]Delley B.From molecules to solids with the DMol(3) approach.J Chem Phys,2000,113(18):7756-7764
    [19]Perdew J P,Chevary J A,Vosko S H,et al.Molecules,solids,and surfaces-Applications of the generalized gradient approximation for exchange and correlation.Phys Rev B,1992,46(11):6671-6687
    [20]Perdew J P,Wang Y.Accurate and simple analytic representation of the electron-gas correlation-energy.Phys Rev B,1992,45(23):13244-13249
    [21]Lee C J,Park J,Yu J A.Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition.Chem Phys Lett,2002,360(3-4):250-255
    [22]Hofmann S,Csanyi G,Ferrari A C,et al.Surface diffusion:The low activation energy path for nanotube growth.Phy Rev Lett,2005,95:036101:1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700