繁茂膜海绵生物修复和生物监测近海养殖水体的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养殖生物的病害和养殖水域的环境污染是制约海水养殖业健康发展的关键因素。海绵是海洋中最低等的滤食性动物,具有独特的泵水、滤食能力和免疫防御机制。本文研究中国繁茂膜海绵(Hymeniacidon perleve)滤食病原细菌、清除有机质废物和间接降低水体中无机N、P盐浓度的规律,以及海绵监测海水中病原细菌的能力,分析了海绵生物修复和生物监测近海养殖水体的可行性。
     为了海绵监测养殖水体中病原细菌,获得了繁茂膜海绵的18sRNA和3个14-3-3 cDNA部分序列。使用Real-Time PCR技术评价病原细菌诱导海绵14-3-3 mRNA表达量的变化。本文首次证明了海绵具有区分海水中感染型细菌和非感染型细菌的能力。
     海绵滤食大肠杆菌和鳗弧菌Ⅱ的实验表明:海水中大肠杆菌浓度迅速降低,鳗弧菌Ⅱ的生长受到一定程度抑制。用海绵过滤分别被荧光染料DiI染色的大肠杆菌和鳗弧菌Ⅱ,在激光共聚焦显微镜下观察发现海绵原细胞内有被染色的细菌及细菌碎片,表明海绵阻留并消化这两种细菌。对于含有多种微生物的天然海水,海绵展示了滤食总细菌和大肠杆菌、弧菌的能力。
     海绵清除有机质的实验证明,海绵能有效清除500 mg/L浓度以下的有机质,其饱和清除能力为25.50 mg TOC /g-新鲜海绵。首次发现海绵清除TOC和大肠杆菌的过程符合公式:K’??exp(pt) = ln(A_1– Ct)– ln(Ct– A_2)。
     设计并验证了10 L“微藻-海绵”集成系统清除海水中50%无机N盐和90%无机P盐。
     综上所述,繁茂膜海绵是修复和监测近海养殖水体的较为理想生物。
Diseases of aquaculture organisms and negative environmental impacts of pollutants in aquacultural water areas are two key factors that restrain the increase in marine aquaculture production. As the oldest metazoan, sponges (Porifera) possess extreme abilities of pumping water to extract food and defense/immune mechanisms against a large number of pathogens in seawater. Using an inter-tidal marine sponge Hymeniacidon perleve as a model system, this thesis aims to (1) investigate the characteristics of sponges as bioremediators to remove pathogenic bacteria, organic matters, and inorganic nutrients (N and P); (2) clone H. perleve14-3-3 mRNA as biomarker to biomonitor pathogenic bacteria in seawater. In the laboratory we demonstrate that the feasibility of using sponges as bio-remediator and bio-monitoring specie in integrated aquaculture ecosystem.
     To examine a biomarker from marine sponge H. perleve in response to pathogenic bacteria in seawater, three partial 14-3-3 cDNA and partial 18s RNA of H. perleve were cloned and sequenced. The expression of 14-3-3 mRNA when exposed to non-infectious bacteria E. coli was not significantly different from that of control. However, the expression of 14-3-3 mRNA when exposed to infectious bacteria V. anguillarum II and V. alginolyticus was down-regulated respectively. The results demonstrated for the first time that sponges could differentiate the infectious bacteria from non-infectious bacteria using the 14-3-3 mRNA transcript level as a biomarker.
     The tests of H. perleve retaining and digesting pathogenic bacteria showed that H. perleve removed 96% of E.coli with initial density 7.0-8.3×106 cells/mL during 10.5 h, and kept the pathogens growth under control at initial density 6.3×105 cells/mL of 200 mL SNSW. E. coli and V. anguilarumⅡstained by fluorescence dye DiI were respectively fed to sponge. The laser confocal microscopy observation confirmed that the sponges filtering-retained and digested these bacteria by phagocytosis. For natural seawater (NSW) with mixture of different kinds of pathogenic bacteria, H. perleve exhibited the ability of retaining and digesting E. coli, Vibrio and Total bacteria.
     The tests of removing TOC in SNSW demonstrated that H. perleve could effectively removed DOMD at concentrations lower than 500 mg/L, and that the maximum removal capacity of TOC was 25.50 mg/g-fresh sponge. We firstly found that the process of sponge retaining TOC and E. coli fitted finely with the following equation: K’?exp (pt) = ln(A1– Ct)– ln(Ct– A2).
     We design and demonstrated that an integrated system of microalgae and sponge H. perleve can remove 50% inorganic nitrogen and 90% inorganic phosphate in seawater within 48 h.
     Marine sponge H. perleve is suitable organism to bioremediate and biomonitor coastal aquaculture ecosystem.
引文
1. FAO (Food and Agriculture Organization of the United Nations), 2001. The State of World Fisheries and Aquaculture 2000. Food and Agriculture Organisation of the United Nations, Rome.
    2. 中国海洋环境质量公报, 2002.
    3. 中国海洋环境质量公报, 2003.
    4. 中国海洋环境质量公报, 2004.
    5. 中国海洋环境质量公报, 2005.
    6. Vogel S. 1977. Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA, 74: 2069-2071.
    7. Reiswig HM. 1990. New Perspectives in Sponge Biology (Rutzler, K., ed) pp.
    504–515, Smithonian Institution Press, Washington, D. C.
    8. Osinga R, Belarbi EH, Grima EM, Tramper J, Wijffels RH. 2003. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. Journal of Biotechnology, 100: 141-146.
    9. Yahel G. 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnol. Oceanogr, 48(1): 141–149.
    10. Li CW, Chen JY, Hua TE. 1998. Precambrian sponges with cellular structures. Science, 279 (6): 879-882.
    11. Reitner J, Worheide G. 2002. Non-lithistid fossil Demospongiae–Origins of their palaeobiodiversity and highlights in history of preservation. In J. N. A. Hooper and R. W. M. van Soest (eds.), Systema Porifera: A guide to the classification of sponges, pp. 52–70. Kluwer Academic/Plenum Publisher,New York.
    12. Sarma AS, Daum T, Müller WEG. 1993. Secondary Metabolites from Marine Sponges, Ullstein-Mosby Verlag, Berlin.
    13. Müller WEG, Blumbach B, Müller IM. 1999. Evolution of the Innate and Adaptive Immune Systems: Relationships between Potential Immune Molecules in the Lowest Metazoan Phylum (Porifera) and Those in Vertebrates. Transplantation, 68(9): 1215-1227.
    14. Kubanek J, Whalen KE, Engel S, Kelly SR, Henkel TP, Fenical W, Pawlik JR. 2002. Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia, 131:125–136.
    15. Claus G, Madri P, Kunen S. 1967. Removal of microbial pollutants from waste effluents by the red-beard sponge. Nature, 18(216): 712-714.
    16. Madri P, Claus G, Kunen SM, Moss EE. 1967. Preliminary studies on the Escherichia coli uptake of the red beard sponge Microcionia prolifera verrill. Life Sci, 15, 6(8): 889-894.
    17. Milanese M, Chelossi E, Manconi R, Sara A, Sidri M, Pronzato R. 2003. The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomol Eng, 20: 363-368.
    18. Pronzato R, Cerrano C, Cubeddu T, Lanza S, Magnino G, Manconi R, Pantelis G, Sara A, Sidri M. 1998. Sustainable development in coastal areas: role of sponge farming in integrated aquaculture, in Grizel, H. and Kesmont, P. (Eds), Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage, European Aquaculture Society, Special publication no. 26: 231–232.
    19. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. 2003. Marine natural products. Nat Prod Rep, 20(1): 1-48.
    20. Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer R, Nickel M, Müller WEG. 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Develop, 105: 45-59.
    21. Osinga R, Tramper J, Wijffels RH. 1999. Cultivation of marine sponges. Mar Biotechnol, 1: 509-532.
    22. Downs CA,Dillon JRT, Fauth JE, Woodley CM. 2001 A molecular biomarker system for assessing the health of gastropods Ilyanassa obsoleta exposed to natural and anthropogenic stressors. Journal of Experimental Marine Biology and Ecology, 259: 189-214.
    23. Wiens M, Koziol C, Hassanein HMA, Batel R, Schroder HC, Müller WEG. 1998. Expression of the chaperones 14-3-3 and HSP70 induced by PCB 118 (2,3,4,4,5-pentachlorobiphenyl) in the marine sponge Geodia cydonium. Mar Ecol Prog Ser, 165:247–257.
    24. Batel R, Fafandjel M, Blumbach B, Schroder HC, Hassanein HMA, Müller IM, Müller WEG. 1998. Expression of the human XPBrERCC-3 excision repair gene-homolog in the sponge Geodia cydonium after exposure to ultraviolet radiation. Mutation Research, 409:123–133.
    25. M ü ller WEG, Batel R, Lacorn M, Steinhart H, SimatT, Lauenroth S, Hassanein H, Schroder HC. 1998b. Accumulation of cadmium and zinc in the marine sponge Suberites domuncula and its potential consequences on single-strand breaks and on expression of heat-shock protein: a natural field study. Mar Ecol Prog Ser, 167: 127-135.
    26. Koziol C, Wanger-Hulsmann C, Mikoc A, Gamulin V, Kruse M, Pancer Z, Müller WEG. 1996. Cloning of a heat-inducible biomarker, the cDNA encoding the 70 kDa heat shock protein, from the marine sponge Geodia cydonium: response to natural stressors. Mar Ecol Prog Ser, 136: 153-161.
    27. Schroder HC, Batel R, Lauenroth S, Hassanein HMA, Lacorn M, Simat T, Steinhart H, Müller WEG. 1999. Induction of DNA damage and expression of heat shock protein HSP70 by polychlorinated biphenyls in the marine sponge Suberites domuncula Olivi. Journal of Experimental Marine Biology and Ecology, 233: 285-300.
    28. Schroder HC, Shostak K, Gamulin V, Lacorn M, Skorokhod A, Kavsan V, Müller WEG. 2000. Purification, cDNA cloning and expression of a cadmium-inducible cysteine-rich metallothionein-like protein from the marine sponge Suberites domuncula. Mar Ecol Prog Ser, 200: 149-157.
    29. Efremova SM, Margulis BA, Guzhova IV, Itskovich VB, Lauenroth S, Müller WEG, Schroder HC. 2002. Heat shock protein Hsp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and Paper Plant. Aquatic Toxicology, 57: 267-280.
    30. Wanger C, Steffen R, Koziol C, Bater R, Lacorn M, Steinhart H, Simat T, Müller WEG. 1998. Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria). Marine Biology, 131: 411-421.
    31. UVTOX, Environment Project EVK3-CT1999-00005. Project Coordinator: Johannes Gutenberg-Universit?t Mainz. Title of the Project: Development and field validation of biosensor methods for the assessment of the effects of pollution and solar UV radiation on commercially and ecologically important marine invertebrates.
    32. Bohm M, Hentschel U, Friedrich A, Fieseler L, Steffen R, Gamulin V, Müller IM, M ü ller WEG. 2001. Molecular response of the sponge Suberites domuncula to bacterial infection. Mar Biol, 139:1037–1045.
    33. Schroder HC, Ushijima H, Krasko A, Gamulin V, Thakur NL, Diehl-Seifert B, Müller IM, Müller WEG. 2003. Emergence and Disappearance of an Immune Molecule, an Antimicrobial Lectin, in Basal Metazoa. A Tachylectin-related Protein in the Sponge Suberites Domuncula. The Journal of Biological Chemistry, 278: 32810–32817.
    34. Thakur NL, Perovic-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG. 2005. Innate immune defense of the sponge Suberites domunculaagainst gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biology, 146: 271–282.
    35. Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG. 2005. Innate Immune Defense of the Sponge Suberites domuncula against Bacteria Involves a MyD88-dependent Signaling Pathway. The Journal of Biological Chemistry, 280: 27949–27959.
    36. Nicholss S and Worheide G. 2005. Sponges: New Views of Old Animals. Integr Comp Biol, 45:333–334.
    37. Pile JP, Patterson MR, Witman JD. 1996. In situ grazing on plankton < 10 μm by the boreal sponge Mycal lingua. Mar Ecol Prog Ser, 141:95-102.
    38. Hentschel U, Hopke J, Horn M, Friedrich AB, WagnerM, Hacker J, Moore BS. 2002. Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans. Applied and Environmental Microbiology, 68(9): 4431-4440.
    39. Leys SP, Rohksar DS, Degnan BM. 2005. Sponges. Current Biology, 15 (4): 114-115.
    40. Hooper JNA. 1994. Coral reef sponges of the Sahul Shelf—a case for habitat preservation. Mem. Queensl. Mus, 36: 93–106.
    41. Bergquist PR. 1978. Sponges. London: Hutchinson, p181.
    42. Frost TM and Williamson CE. 1980. In situ determination of the effect of symbiotic algae on the growth of the freshwater sponge Spongilla lacustris. Ecology, 61:1361-1370.
    43. Sand-Jensen K, Pedersen MF. 1994. Photosynthesis by symbiotic alage in the freshwater sponge Spongilla lacustris. Limnol Oceanogr, 39: 551-561.
    44. Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA. 1997. Tropic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr, 42: 178-184.
    45. Reiswig HM. 1973. Population dynamics of three Jamaican Demospongiae. Bull Mar Sci, 23: 191-226.
    46. Dayton PK, Robilliard GA, Paine RT, Dayton LB. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr, 44: 105-128.
    47. Wilkinson CR. 1987. Interocean differences in size and nutrition of coral reef sponge populations. Science, 236: 1654-1657.
    48. Koltun VM. 1970. Sponge fauna of the north-western Pacific from the shallow to the ultra-abyssal depths. Inst Oceanol Acad Sci USSR, 86: 165-221.
    49. Pomponi SA and Meritt DW. 1990. Distribution and life history of the boring sponge Cliona trulti in the Upper Chesapeake Bay. In: Rutzler K(ed) New perspectives in sponge biology. Smithsonian Institution Press, Wishington, DC. P478-484.
    50. Vacelet J, Boury-Esnault N, Harmelin JG. 1994. Hexactinellid Cave, a unique deep-sea habitat in the scuba zone. Deep Sea Res, 41: 965-973.
    51. Muller WEG. 1995. Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwiss, 82: 321–329.
    52. Müller WEG. (ed.) 1998c: Molecular Evolution: Evidence for Monophyly ofMetazoa. Progr. Molec. Subcell. Biol., vol. 19. Berlin, Heidelberg, New York: Springer Verlag.
    53. Müller, WEG., 1998d: Origin of Metazoa: sponges as living fossils. Naturwiss. 85, 11–25.
    54. Simpson TL. 1984. The cell biology of sponges. New York: Springer.
    55. Vacelet J and Duport E. 2004. Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae). Zoomorphology, 123:179–190.
    56. Rana K, Immink A. 2001. Trends in Global Aquaculture Production: 1984-1996. Fishery Information, Data and Statistics Service, Food and Agriculture Organization of the United Nations.
    57. Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C. 2003. Integrated mariculture: asking the right questions. Aquaculture, 226: 69–90.
    58. Tacon AGJ, Forster IP. 2001. Global Trends and Challenges to Aquaculture and Aquafeed Development in the New Millennium. International Aqua Feed Directory and Buyer’s Guide. Turret RAI PLC, Uxbridge, pp. 4 –24.
    59. Pillar et al. 1992. Aquaculture and Environment. Fishing News Books. Oxford:
    56-77.
    60. 王福表.网箱养殖水污染及治理对策.海洋科学,2002 年,26 (7) :24-26.
    61. 中国海洋环境质量公报, 2001.
    62. Gifford S, Dunstan RH, O’Connor W, Roberts T, Toia R. 2004. Pearl aquaculture-profitable environmental remediation. Sci Total Environ, 319: 27-37.
    63. Reilly A, K?ferstein F. 1997. Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquac Res, 28: 735-752.
    64. Ma JF. 1990. Development of method for the detection of enteroviruses from clams. Virologica Sinica 5(1): 44-49.
    65. 卜雪峰.2004.贝类处理海水养殖废水的应用研究.硕士学位论文.中国海洋大学
    66. 关道明,战秀文. 2003. 我国沿海水域赤潮灾害及其防制对策[J]. 海洋环境科学,20 (2 ): 61-63.
    67. Mialhe E, Bachere E, Boulo V, Cadoret JP, Saraiva E, Carrera L, Calderon J, Colwell R. 1995. Biotechnology-based control of disease in marine invertebrates: development of molecular probe diagnostics and disease-resistant transgenic shrimps and molluscs. Mol Mar Biol Biotechnol, 4: 275– 283.
    68. Walker Peter and Subasinghe Rohana. 1999. DNA-based Molecular Diagnostic Techniques: Research Needs for Standardization and Validation of the Detection of Aquatic Animal Pathogens and Diseases. FAO Fisheries Technical Paper.
    69. 中华人民共和国国家标准—海水水质标准(GB 3097-1997)—海水水质分析方法;海洋监测规范生物体分析(GB 17378.7)
    70. Vici V, Bright Singh IS, Bhat SG. 2000. Application of bacterins and yeastAcremonium dyosporii to protect the larvae of Macrobrachium rosenbergii from vibriosis. Fish Shellfish Immunol, 10: 559–563.
    71. Schnick RA, Alderman DJ, Armstrong R, Le Gouvello R, Ishihara S, Lacierda EC, Percival S, Roth M. 1997. World wide aquaculture drug and vaccine registration progress. Bull Eur Ass Fish Pathol, 17: 251–260.
    72. Verschuere L, Rombaut G., Sorgeloos P, Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev, 64: 655–671.
    73. Baker K, Herson D.Bioremediation.New York: McGraw-Hill, 1994.
    74. Butler CS, Mason JR .1997. Structure, function analysis of the bacterial aromatic ring hydroxylating dioxygenases. Adv Microb Physiol, 38:47–84.
    75. 岳维忠,黄小平,黄良民,谭烨辉,殷健强. 2004. 大型藻类净化养殖水体的初步研究. 海洋环境科学, 23(1): 13-15.
    76. Huang JW, Chen J, Berti WR, Cunningham SD. 1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol, 31(3):800– 805.
    77. Timmis KN, Piper DH .1999. Bacteria designed for bioremediation. Trends Biotechnol, 17:201–204.
    78. Paniagua-Michel J, Garcia O. 2003. Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquacultural Engineering, 28: 131-139.
    79. Odd-Ivar Lekang, Anne MB, Ingfrid S. 2001. Biological lamella sedimentation used for wastewater treatment. Aquaculture sedimentation used for wasterwater treatment. Aquaculture Engineering, 24:115-127.
    80. Ryther JH, Goldman JC, Gifford CE, Huguenin JE, Wing AS, Clarner JP,Williams LD, Lapointe BE. 1975. Physical models of integrated waste recycling– marine polyculture systems. Aquaculture, 5: 163– 177.
    81. Harlin MM, Thorne-Miller B, Thursby GB. 1978. Ammonium uptake by Gracilaria sp. (Florideophyceae) and Ulva lactuca (Chlorophyceae) in closed system fish culture. In: Jensen, A., Stein, R.J. (Eds.), Proceedings of the Ninth International Seaweed Symposium. Science Press, Princeton, pp. 285–292.
    82. Vandermeulen H, Gordin H. 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: mass culture and treatment of effluent. J Appl Phycol, 2: 363– 374.
    83. Neori A, Krom MD, Ellner SP, Boyd CE, Popper D, Rabinovitch R, Davison PJ, Dvir O, Zuber D, Ucko M, Angel D, Gordin H. 1996. Seaweed biofilters as regulators of water quality in integrated fishseaweed culture units. Aquaculture, 141: 183– 199.
    84. Krom MD, Ellner S, van Rijn J, Neori A. 1995. Nitrogen and phosphorus cycling and transformations in a prototype ‘‘non-polluting’’ integrated mariculture system, Eilat, Israel. Mar Ecol Prog Ser, 118: 25– 36.
    85. Jed Brown. 1999. Halophytes for the treatment of saline aquaculture effluent. Aquaculture, 175: 255-268.
    86. 李铁, 史致丽, 仇赤斌, 王巧玲. 1999. 中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究. 海洋与湖藻, 30 (6): 640-645.
    87. 马冬冬. 2005. 基于微藻的光一膜组合式生物反应器处理海水养殖业废水. 硕士学位论文. 中国海洋大学.
    88. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C. 2001. Integrating seaweeds into marine aquaculture systems: a key towards sustainability. J Phycol, 37:975– 986.
    89. Rawson JrMV, Chen C, Ji R, Zhu M, Wang D, Wang L, Yarish C, Sullivan JB, Chopin T, Carmona R. 2001. Integration of fed and extractive aquaculture. Paper Collection of International Symposium on Marine Fishery and Aquatic Products Processing Technology, 11– 13 Sept., Rongcheng, China, pp. 263–278.
    90. Zhou Y, Yang HS, Hu HY, Liu Y, Mao YZ, Zhou H, Xu XL, Zhang FS. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture, 252: 264-276.
    91. Shpigel, M., Blaylock, R.A., 1991. The pacific oyster, Crassostrea gigas, as a biological filter for marine fish aquaculture pond. Aquaculture, 92: 187–197.
    92. Stirling HP, Okumus I. 1995. Growth and production of mussels (Mytilus edulis L.) suspended at salmon cages and shellfish farms in two Scottish sea lochs. Aquaculture, 134: 193–210.
    93. Troell M, Norberg J. 1998. Modelling output and retention of suspended solids in an integrated salmon-mussel culture. Ecol Model, 110: 65–77.
    94. Mazzola A Sara G. 2001. The effect of fish farming organic waste on food availability for bivalve mollusks (Gaeta Gulf, central Tyrrhenian, MED): stable carbon isotopic analysis. Aquaculture, 192, 361– 379.
    95. Cheshuk BW. 2001. The potential of integrated open-water mussel (Mytilus planulatus) and Atlantic salmon (Salmo salar) culture in North West Bay. Tasmania. PhD Thesis. University of Tasmania, Launceston. 281 pp.
    96. Officer CB, Smayda TJ, Mann R. 1982. Benthic fiter feeding: A natural eutrophication control. Mar Ecol Prog Ser, 9:203-210.
    97. Gili JM and Coma R. 1998. Benthic suspension feeders: Their paramount role in litteroal marine food webs. Tree, 13: 316-321.
    98. Ribes M, Coma R, Gili JM. 1998. Seasonal variation of in situ feeding rates by the temperature ascidian Halocynthia papillosa. Mar Ecol Prog Ser, 175: 201-213.
    99. Ribes M. 2005.Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr, 50 (5): 1480-1489.
    100. Roditi HA, Fisher NS, Sanudo-Wilhelmy SA. 2000. Uptake of dissolved organic carbon and trace elements by zebra mussela. Nature, 407: 78-80.
    101. Reiswig HM. 1971a. Particle feeding in natural populations of three marine Demosponges. Biol Bull 141: 568-591.
    102. Reiswig HM. 1975. Bacteria as food for temperate-water marine sponges. Can J Zool, 53: 582-589.
    103. Daypon PK. 1989. Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science, 245:1484-1486.
    104. Reiswig HM. 1971b. In situ pumping activities of tropical demospongiae. Mar Biol 9: 38-50.
    105. Reiswig HM. 1974. Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231-249.
    106. Zhao QY, Deng MC, Qu CY, Yu XJ, Jin MF, Zhang W. 2004. Elemental and total amino acid composition of two intertidal sponges in Yellow Sea. Mar Sci 3: 27-31.
    107. Wilkinson CR, Garrone R, Vacelet J. 1984. Marine sponges discriminate food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc Lond, B 220: 519-528.
    108. 奚旦立, 刘秀英, 郭安然. 1989. 环境监测. 高等教育出版社.
    109. Schaeffer DJ, Herricks EE, Kerster HW. 1988. Ecosystem health: I. Measuring ecosystem health. Environ Manage, 12: 445-455.
    110. O’Connor RJ. 1996. Toward the incorporation of spatiotemporal dynamics into ecotoxicology. In: Rhodes,. O.E., Chesser, R.K., Smith, M.H. Eds. , Population Dynamics in Ecological Space and Time. University of Chicago Press, Chicago, pp. 281-317.
    111. Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS. Eds. 1996. Measuring and Monitoring Biological Diversity: Standard Methods for Mammals. Smithsonian Institution Press, Washington, DC.
    112. Payne JF, Fancey LL, Rahimtula AD, Porter EL. 1987. Review and perspective on the use of mixed-function oxygenase enzymes in biological moitoring. Comp Biochem Physiol 86C:233-245.
    113. Roesijadi G and Robinson WE. 1994. Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular Perspectives. Lewis Publishers, CRC press, pp. 387-420.
    114. van der Oost R, Beyer J, Vermeulen NPE. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13: 57-149.
    115. Olsvik PA, Gundersen ARA, Zachariassen KE. 2000. Metal accumulation and metallothionein in two populations of brown trout Salmo trutta exposed to different natural water environments during a run-off episode. Aquat Toxicol, 50: 301-316.
    116. Bebianno MJ, Nott JA, Langston WJ. 1993. Cadmium metabolism in theclam Ruditapes decussata: the role of metallothioneins. Aquat Toxicol, 27:315-334.
    117. Nelson DR, Koymans L, Kamataki T. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6: 1-42.
    118. Parkinson A. 1995. Biotransformation of xenobiotics. In: Klaassen CD, editor. Casarett and Doull’s toxicology. New York: McGraw-Hill, pp:113-186.
    119. Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A. 2000. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. The Science of the Total Environment, 247(17): 295-311.
    120. Aas E, Baussant T, Balk L, Liewenborg B, Andersen OK.2000. PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquatic Toxicology, 51: 241-258.
    121. Hahn ME, Karchner SI, Shapiro MA, Perera SA. 1997. Molecular evolution of two vertebrate aryl hydrocarbon dioxin receptors AHR1 and AHR2 and the PAS family. Proc Natl Acad Sci USA, 94:13743-13748.
    122. Hamdoun AM, Griffin FJ, Cherr GN. 2002. Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter. Aquatic Toxicology, 61:127-140.
    123. Bard SM, Woodin B, Stegeman JJ. 1998. Induction of the multixenobiotic resistance transporter and cytochrome P450 1A in intertidal fish exposed to environmental contaminants. Toxicol Sci, 42:16-26.
    124. den Besten PJ, Valk S, van Weerlee E, Nolting RF, Postma JF, Everaarts JM.2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): a North Sea ?eld study. Marine Environmental Research 51: 365-387.
    125. Perez T. 2000. Evaluation of coastal areas quality by sponges: state of the art. Bulletin De La Societe Zoologique De France, 125 (1): 17-25.
    126. Uriz MJ, Rosell D, Martin D. 1992. The sponge population of the Cabrera archipelago (Balearic Islands): Characteristics, distribution and abundance of the most representative species. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I, 113(2):101-117.
    127. M ü ller WEG (Ed.), 1994. Use of Aquatic Invertebrates asTools for Monitoring of Environmental Hazards. Gustav Fischer, Stuttgart, Germany.
    128. Müller WEG, Müller I. 1998a. Sponge cells and tissue as biologi-cal monitors of aquatic pollution, in: Wells PG, Lee K, Blaise C. Eds, Microscale Testing in Aquatic Toxicology-Advances, Techniques and Practice, CRC Lewis Publishers, FL, pp: 97-112.
    129. Müller WEG, Koziol C, Wiens M, Schroder HC. 2000. Stress response in marine sponges: genes and molecules involved and their use as biomarkers. In: Storey, K.B.
    130. Gonzales JM and Moran MA. 1997. Numerical Dominance of a Group of Marine Bacteria in the -Subclass of the Class Proteobacteria in Coastal Seawater. Applied and Environmental Microbiology, 63: 4237–4242.
    131. Bergh O, Borsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature, 340: 467–468.
    132. Proksch P. 1994. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639-655.
    133. Metchnikoff E’. 1892. Lecons sur la Pathologie Compare’e de Inflammation. Masson, Paris.
    134. Perovic′-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG. 2004. A (1→3)-β-D-glucan recognition protein from the sponge Suberites domuncula Mediated activation of fibrinogen-like protein and epidermal growth factor gene Expression. Eur J Biochem 271: 1924–1937.
    135. Yaffe MB. 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Letters, 513: 53-57.
    136. Shaw A. 2000. 14-3-3 proteins. Current Biology, 10 (11): R400.
    137. Liu D, Bienkowska J, petosa C, Collier RJ, Fu H, Liddington R. 1995. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature, 376: 191-194.
    138. Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneli Y, Aitken A, Gamblin SJ. 1995. 14-3-3 protein and implications for coordination of multiple signaling pathways. Nature, 376: 188-191.
    139. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, et al. 1997. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell, 91:961–71.
    140. Zhang L, Wang H, Liu D, Liddington R, Fu H. 1997. Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. J Biol Chem, 272:13717–24.
    141. Wang H, Zhang L, Liddington R, Fu H. 1998. Mutations in the hydrophobic surface of an amphipathic groove of 14-3- 3zeta disrupt its interaction with Raf-1 kinase. J Biol Chem, 273:16297–304.
    142. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, et al. 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell, 4:153–66.
    143. Ferl RJ, Manak MS, Reyes MF. 2002. The 14-3-3s. Genome Biology, 3: 1-7.
    144. Lopez-Girona A, Furnari B, Mondesert O, Russell P. 1999. Nuclear localization of Cdc25 id regulated by DNA damage and a 14-3-3 protein. Nature, 397: 172-175.
    145. van Hemert MJ, Yde SH, van Heusden GPH. 2001. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays, 23: 936-946.
    146. Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 PROTEINS: Structure, Function, and Regulation. Annu Rev Pharmacol Toxicol, 40: 617–647.
    147. Chung HJ, Sehnke PC, Ferl RJ. 1999. The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci, 4: 367-371.
    148. Roberts MR, Salinas J, Collinge DB. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 1031: 1031–1039.
    149. Mhawech P. 2005. 14-3-3 proteins—an update. Cell Research, 15(4): 228-236.
    150. Moore BW, Perez VJ. 1967. Specific acidic proteins of the nervous system. In Physiological and Biochemical Aspects of Nervous Integration, ed. FD Carlson, pp. 343–59. Englewood Cliffs, NJ: Prentice-Hall.
    151. Muslin AJ and Xing H. 2000. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal, 12: 703–709.
    152. Kidou S, Umeda M, Kato A, Uchimiya H. 1993. Isolation and characterization of a rice cDNA similar to the bovine brainspecific 14-3-3 protein gene. Plant Mol Biol, 21: 191–194.
    153. Bunney TD, van Walraven HS,de Boer AH. 2001. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci USA, 98: 4249–4254.
    154. Serrano R. 1989. Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol. Plant Mol Biol, 40: 61–94.
    155. Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A, MacKintosh C. 1999. Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J, 18: 1–12.
    156. Smedegaard-Petersen V, Collinge DB, Thordal-Christensen H, Brandt J, Gregersen P L, Cho BH, Walther-Larsen H, Kristensen HJ, Vad K. 1992. Induction and molecular analyses of resistance to barley powdery mildew. In: E.C. Tjamos, G.C. Papavizas and R.J. Cook (Eds) Biological Control of Plant Diseases: Progress and Challenges for the Future, NATO-ASI Plenum Press, New York, pp. 321–326.
    157. Thordal-Christensen H, Brandt J, Cho BH, Rasmussen SK, Gregersen PL, Smedegaard-Petersen V, Collinge DB. 1992. cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiol Mol Plant Path, 40: 395–409.
    158. Roberts MR and Bowles DJ. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol, 119: 1243–1250.
    159. Lapoine G, Luckevich MD, Cloutier M, Seguin A. 2001. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. Journal of Experimental Botany, 52: 1331-1338.
    160. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 1999. 14-3-3ó is required to prevent mitotic catastrophe after DNA damage. Nature, 401: 616–620.
    161. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA, Stampfer MR, Sukumar S. 2000. High frequency of hypermethylation at the 14-3-3ó locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA, 97: 6049–6054.
    162. Yatabe Y, Osada H, Tatematsu Y, Mitsudomi T, Takahashi T. 2002. Decreased expression of 14-3-3σin neuroendocrine tumors is independent of origin and malignant potential. Oncogene, 21, 8310-8319.
    163. Hermeking H. 2003. The 14-3-3 Cancer Connection. Nature Reviews Cancer, 3: 931 –943.
    164. Peoch K, Schroder HC, Laplanchea JL, Ramljak S, Müller WEG. 2001. Determination of 14-3-3 protein levels in cerebrospinal fluid from Creutzfeldt-Jakob patients by a highly sensitive capture assay. Neuroscience Letters, 301: 167-170.
    165. Berg D, Holzmann C, Riess Olaf. 2003. 14-3-3 Proteins in the Nervous System. Nature Reviews Neuroscience, 4: 752-762.
    166. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A. 2003. 14-3-3εis important forneuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nature Genetics, 34(3): 274-285.
    167. Jon Houseman. 2003. Digital Zoology. Version 2.0. The McGraw-Hill Companies, Inc.
    1. Walker Peter and Subasinghe Rohana. 1999. DNA-based molecular diagnostic techniques: Research needs for standardization and validation of the detection of aquatic animal pathogens and diseases. FAO Fisheries Technical Paper.
    2.Vogel S. 1977. Current-induced flow through living sponges in nature. Proceedings of the National Academy of Sciences USA, 74: 2069-2071.
    3. Reiswig HM. 1990. New perspectives in sponge biology (Rutzler, K., ed) pp. 504–515, Smithonian Institution Press, Washington, D. C.
    4. Osinga R, Belarbi EH, Grima EM, Tramper J, Wijffels RH. 2003. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. Journal of Biotechnology, 100: 141-146.
    5. Gonzales JM and Moran MA. 1997. Numerical dominance of a group of marine bacteria in the -subclass of the class Proteobacteria in coastal seawater. Applied and Environmental Microbiology, 63: 4237–4242.
    6. Bergh O, Borsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature, 340: 467–468.
    7. Li CW, Chen JY, Hua TE. 1998. Precambrian sponges with cellular structures. Science, 279 (6): 879-882.
    8. Reitner J, Worheide G. 2002. Non-lithistid fossil demospongiae–origins of their palaeobiodiversity and highlights in history of preservation. In J. N. A. Hooper and R. W. M. van Soest (eds.), Systema Porifera: A Guide to the Classification of Sponges, pp. 52–70. Kluwer Academic/Plenum Publisher, New York.
    9. Müller WEG, Blumbach B, Müller IM. 1999. Evolution of the innate andadaptive immune systems: Relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation, 68(9): 1215-1227.
    10. van Hemert MJ, Yde SH, van Heusden GPH. 2001. 14-3-3 Proteins: Key regulators of cell division, signalling and apoptosis. BioEssays, 23: 936-946.
    11. Yaffe MB. 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Letters, 513: 53-57.
    12. Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 proteins: Structure, function, and regulation. Annual Review of Pharmacology and Toxicology, 40: 617–647.
    13. Bachmann M, Huber JL, Athwal GS, Wu K, Ferl RJ, Huber SC. 1996. 14-3-3 proteins associate with the regulator phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Letters, 398: 26-30.
    14. Chung HJ, Sehnke PC, Ferl RJ. 1999. The 14-3-3 proteins: Cellular regulators of plant metabolism. Trends in Plants in Sciences, 4: 367-371.
    15. Roberts MR, Salinas J, Collinge DB. 2002. 14-3-3 proteins and the response to abiotic and biotic stress. Plant Molecular Biology, 1031: 1031–1039.
    16. Shaw A. 2000. 14-3-3 proteins. Current Biology, 10 (11): R400.
    17. Wiens M, Koziol C, Hassanein HMA, Batel R, Schroder HC, Müller WEG. 1998. Expression of the chaperones 14-3-3 and HSP70 induced by PCB 118 (2,3,4,4,5-pentachlorobiphenyl) in the marine sponge Geodia cydonium. Marine Ecology Progress Series, 165: 247–257.
    18. . Zhang XY, Cao XP, Zhang W, Yu XJ, Jin MF. 2003. Primmorphs from archaeocytes-dominant cell population of the sponge Hymeniacidon perleve:Improved cell proliferation and spiculogenesis. Biotechnology and Bioengineering, 85 (7): 1-8.
    19. Sambrook J and Russell DW. 2001. Molecular Cloning, A laboratory manual, third ed. Cold Springs Harbor Laboratory Press, Cold Springs Harbor.
    20. Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, Larsson C. 2000. Evolution of the 14-3-3 protein family: Does the large number of isoforms in multicellular organisms reflect functional specificity? Journal of Molecular Evolution, 51: 446–458.
    21. Lapoine G, Luckevich MD, Cloutier M, Seguin A. 2001. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. Journal of Experimental Botany, 52: 1331-1338.
    22. Xing HM, Zhang SS, Weinheimer C, Kovacs A, Muslin AJ. 2000. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. The EMBO Journal, 19: 349-358.
    23. Gurusamy N, Watanabe K, Ma ML, Zhang SS, Muslin AJ, Kodama M, Aizawa Y. 2004. Dominant negative 14-3-3 promotes cardiomyocyte apoptosis in early stage of typeⅠdiabetes mellitus through activation of JNK. Biochemical and Biophysical Research Communications, 320: 773-780
    1. Perovic′-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG. 2004. A (1→3)-β-D-glucan recognition protein from the sponge Suberites domuncula mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. European Journal of Biochemistry, 271: 1924–1937.
    2. Schroder HC, Ushijima H, Krasko A, Gamulin V, Thakur NL, Diehl-Seifert B, Müller IM, Müller WEG. 2003. Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal Metazoa. A tachylectin-related protein in the sponge Suberites Domuncula. The Journal of Biological Chemistry, 278: 32810–32817.
    3. Thakur NL, Perovic-Ottstadt S, Batel R, Korzhev M, Diehl-Seifert B, Müller IM, Müller WEG. 2005. Innate immune defense of the sponge Suberites domuncula against gram-positive bacteria: induction of lysozyme and AdaPTin. Marine Biology, 146: 271–282.
    4. Bohm M, Hentschel U, Friedrich A, Fieseler L, Steffen R, Gamulin V, Müller IM, Müller WEG. 2001. Molecular response of the sponge Suberites domuncula to bacterial infection. Marine Biology, 139:1037–1045.
    5. Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG. 2005. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. The Journal of Biological Chemistry, 280: 27949–27959.
    6. Bachere E. 2003. Anti-infectious immune effectors in marine invertebrates: potential tools for disease control in larviculture. Aquaculture, 227: 427–438.
    7. Xia YJ, Huang WQ, Huang BC, Jin XH, Zhang RQ. 2002. Production and characterization of monoclonal anti-idiotype antibody to Vibrio anguillarum II. Fish and Shellfish Immunology, 12: 273-281.
    8. 相建海 等. 1999. 国家重点基础研究(973)项目“海水重要养殖生物病害发生和抗病力的基础研究”。
    9. Bustin SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25: 169–193.
    10. Osinga R, Tramper J, Wijffels RH. 1999. Cultivation of marine sponges. Marine Biotechnology, 1: 509-532.
    11. Simpson TL. 1984. The cell biology of sponges. New York: Springer.
    12. Reiswig HM. 1975. Bacteria as food for temperate-water marine sponges. Canadian Journal of Zoology, 53: 582-589.
    13. Lapoine G, Luckevich MD, Cloutier M, Seguin A. 2001. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. Journal of Experimental Botany, 52: 1331-1338.
    14. Valles SM, Pereira RM. 2005. Solenopsis invicta transferrin: cDNA cloning, gene architecture, and up-regulation in response to Beauveria bassiana infection. Gene, 358: 60 – 66.
    15. Xing HM, Zhang SS, Weinheimer C, Kovacs A, Muslin AJ. 2000. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. The EMBO Journal, 19: 349-358.
    16. Gurusamy N, Watanabe K, Ma ML, Zhang SS, Muslin AJ, Kodama M, Aizawa Y. 2004. Dominant negative 14-3-3 promotes cardiomyocyte apoptosis in early stage of type Ⅰdiabetes mellitus through activation of JNK. Biochemical and Biophysical Research Communications, 320: 773-780.
    17. Rosenquist M, Sehnke P, Ferl RJ, Sommarin Marianne, Larsson Christer. 2000. Evolution of the 14-3-3 protein family: Does the large number of isoforms in multicellular organisms reflect functional specificity? Journal of Molecular Evolution, 51:446–458.
    18. Widmann C, Gibson S, Jarpe MB, Johnson GL. 1999. Mitogen-activated proteinkinases: Conservation of a three-kinase module from yeast to human. Physiological Reviews, 79:143-180.
    19. Wang XS, Diener K, Manthey CL, Wang SW, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY Mantlo N, Lichenstein HS, Zukowski M, Yao ZB. 1997. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. The Journal of Biological Chemistry, 272: 23668–23674.
    20. Kultz D. 1998. Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. Journal of Molecular Evolution, 46: 571–588.
    1. Reilly A, K?ferstein F. 1997. Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquaculture Research, 28: 735-752.
    2. Simpson TL. 1984. The cell biology of sponges. New York: Springer.
    3. Claus G, Madri P, Kunen S. 1967. Removal of microbial pollutants from waste effluents by the red-beard sponge. Nature 18(216): 712-714.
    4. Madri P, Claus G, Kunen SM, Moss EE. 1967. Preliminary studies on the Escherichia coli uptake of the red beard sponge Microcionia prolifera verrill. Life Sciciences, 15, 6(8): 889-894.
    5. Milanese M, Chelossi E, Manconi R, Sara A, Sidri M, Pronzato R. 2003. The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomolecular Engineering, 20: 363-368.
    6. Fuller ME, Streger SH, Rothmel RK, Mailloux BJ, Hall JA, Onstott TC, Fredrickson JK, Balkwill DL, Deflaun MF. 2000. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments. Applied Environment Microbiololy, 66: 4486-4496.
    7. Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR. 1999. Establishment of a primary cell culture from a sponge: Primmorphs from Suberites domuncula. Marine Ecology Progress Series, 178: 205-219.
    8. Zhang W, Sun LM, Jin MF, Yu XJ. 2005. CN Appl. No. 20051045852.3. An isolation and purification method of the marine sponge stemcells-archaeocytes.
    9. Coughlan J. 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology, 2:356-358.
    10. Reiswig HM. 1971b. In situ pumping activities of tropical demospongiae. Marine Biology, 9: 38-50.
    11. 赵权宇, 邓麦春,曲传宇,虞星烥,金美芳,张卫。2004. 两种黄海潮间带海绵的元素和氨基酸成分分析。海洋科学,3: 27-31.
    12. Frost TM. 1980b. Clearance rate determinations in the freshwater sponges Spongilla Lacuslris: Effects of temperature, particle type and concentration, and sponge size. Archiv Fur Hydrobiologie, 90: 330-356.
    13. Ribes M, Coma R, Gili JM. 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series, 176:179–190.
    14. Turon X, Galera J, Uriz MJ. 1997. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. Journal of Experimental Zoology, 78:22-36.
    15. Reiswig HM. 1975. Bacteria as food for temperate-water marine sponges. Canadian Journal of Zoology, 53: 582-589.
    16. Frost TM. 1980a. Selection in sponge feeding processes. In: D.C. Smith and Y. Tiffon (eds.). Nutrition in the Lower Metazoa. Pergamon Press, Oxford. p 33-44.
    17. Thomassen S, Riisg?rd HU. 1995. Growth and energetics of the sponge Halichondria panicea. Marine Ecology Progress Series, 128:239–246.
    18. Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC. 2004. Removal of bacteria and nutrient dynamics within the coral reef framework of Cura?ao(Netherlands Antilles). Coral Reefs J Int Soc for Reef Studies. Springer-Verlag.
    10.1007/s00338-004-0400-3: 1-17.
    19. Xia YJ, Huang WQ, Huang BC, Jin XH, Zhang RQ. 2002. Production and characterization of monoclonal anti-idiotype antibody to Vibrio anguillarum II. Fish and Shellfish Immunology, 12:273-281.
    20. Reiswig HM. 1971a. Particle feeding in natural populations of three marine Demosponges. The Biological Bulletin, 141: 568-591.
    1. Kobayashi T, Enomoto S, Sakazaki R, Kuwahara S. 1963. A new selective isolation medium for Vibrio group on a modified Nakanishi’s medium (TCBS agar medium). Japanese Journal of Bacteriology, 18: 387-392.
    2. Metchnikoff E’. 1892. Lecons sur la Pathologie Compare’e de Inflammation. Masson, Paris.
    3. Reiswig HM. 1975. Bacteria as food for temperate-water marine sponges. Canadian Journal of Zoology, 53: 582-589.
    4. Frost TM. 1980a. Selection in sponge feeding processes. In: D.C. Smith and Y. Tiffon (eds.). Nutrition in the Lower Metazoa. Pergamon Press, Oxford. p 33-44.
    5. Simpson TL. 1984. The cell biology of sponges. New York: Springer.
    1. 中国海洋环境质量公报, 2002.
    2. 中国海洋环境质量公报, 2003.
    3. 中国海洋环境质量公报, 2004.
    4. 中国海洋环境质量公报, 2005.
    5. Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C. 2003. Integrated mariculture: asking the right questions. Aquaculture, 226: 69–90.
    6. Reiswig HM. 1971. Particle feeding in natural populations of three marine Demosponges. The Biological Bulletin, 141: 568-591.
    7. Ribes M, Coma R, Gili JM. 1999. Natural diet and grazing rate of the temperature sponge Dysidea adara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series, 176: 179-190.
    8. Yahel G. 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography, 48(1), 141–149.
    9. Simpson TL. 1984. The cell biology of sponges. New York: Springer.
    10. Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer R, Nickel M, Müller WEG. 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mechanisms of Ageing and Development, 105: 45-59.
    11. Osinga R, Tramper J, Wijffels RH. 1999. Cultivation of marine sponges. Marine Biotechnology, 1: 509-532.
    12. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. 2003. Marinenatural products. Natural Product Reports, 20(1): 1-48.
    13. Pronzato R, Cerrano C, Cubeddu T, Lanza S, Magnino G, Manconi R, Pantelis G, Sara A, Sidri M. 1998. Sustainable development in coastal areas: role of sponge farming in integrated aquaculture, in Grizel, H. and Kesmont, P. (Eds), Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage, European Aquaculture Society, Special publication no. 26: 231–232.
    14. 赵权宇, 邓麦春,曲传宇,虞星烥,金美芳,张卫。2004. 两种黄海潮间带海绵的元素和氨基酸成分分析。海洋科学,3: 27-31.
    15. Frost TM. 1980. Clearance rate determinations in the freshwater sponges Spongilla Lacuslris: Effects of temperature, particle type and concentration, and sponge size. Archiv Fur Hydrobiologie, 90: 330-356.
    16. Thomassen S, Riisg?rd HU. 1995. Growth and energetics of the sponge Halichondria panicea. Marine Ecology Progress Series, 128:239–246.
    17. Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC. 2004. Removal of bacteria and nutrient dynamics within the coral reef framework of Cura?ao (Netherlands Antilles). Coral Reefs J Int Soc for Reef Studies. Springer-Verlag. 10.1007/s00338-004-0400-3: 1-17.
    18. Reiswig HM. 1974. Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology, 14:231-249.
    19. Coughlan J. 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology, 2:356-358.
    20. Turon X, Galera J, Uriz MJ. 1997. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. Journal of Experimental Zoology, 78:22-36.
    21. Williams LG. 1982. Mathematical analysis of the effects of particle retention efficiency on determination of filtration rate. Marine Biology, 66: 171-177.
    22. Ribes M, Coma R, Gili JM. 1998. Seasonal variation of in situ feeding rates by the temperature ascidian Halocynthia papillosa. Marine Ecology Progress Series, 175: 201-213.
    23. Lin MC, Liao CM, Dai CF. 2002. Modeling the Effects of Satiation on the Feeding rate of a colonia susension feeder, Acanthorgia vegae, in a circulating Ssystem under lab conditions. Zoological Studies, 41(4): 355-365.
    24. Marchetti C, Meyer PS, Ausubel JH. 1996. Human population dynamics revisited with the Logistic model: How much can be modeled and predicted? Technol Forecast Social Change 52: 1-30.
    1. 中国海洋环境质量公报, 2005.
    2. Vandermeulen H, Gordin H. 1990. Ammonium uptake using Ulva (Chlorophyta) in intensive fishpond systems: Mass multure and treatment of effluent. Journal of Applied Phycology, 2: 363– 374.
    3. Neori A, Krom MD, Ellner SP, Boyd CE, Popper D, Rabinovitch R, Davison PJ, Dvir O, Zuber D, Ucko M, Angel D, Gordin H. 1996. Seaweed biofilters as regulators of water quality in integrated fishseaweed culture units. Aquaculture, 141: 183– 199.
    4. 岳维忠,黄小平,黄良民,谭烨辉,殷健强. 2004. 大型藻类净化养殖水体的初步研究. 海洋环境科学, 23(1): 13-15.
    5. 李铁, 史致丽, 仇赤斌, 王巧玲. 1999. 中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究. 海洋与湖藻, 30 (6): 640-645.
    6. Vogel S. 1977. Current-induced flow through living sponges in nature. Proceedings of the National Academy of Sciences USA, 74: 2069-2071.
    7. Reiswig HM. 1990. New perspectives in sponge biology (Rutzler, K., ed) pp. 504–515, Smithonian Institution Press, Washington, D. C.
    8. Osinga R, Belarbi EH, Grima EM, Tramper J, Wijffels RH. 2003. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. Journal of Biotechnology, 100: 141-146.
    9. Yahel G. 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography, 48(1): 141–149.
    10. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. 2003. Marinenatural products. Natural Product Reports, 20(1): 1-48.
    11. Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer R, Nickel M, Müller WEG. 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mechanisms of Ageing and Development, 105: 45-59.
    12. Osinga R, Tramper J, Wijffels RH. 1999. Cultivation of marine sponges. Marine Biotechnology, 1: 509-532.
    13. Reiswig HM. 1971. Particle feeding in natural populations of three marine Demosponges. The Biological Bulletin,141: 568-591.
    14. Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels RH. 2001. Development of In vivo sponge cultures: Particle feeding by the tropical sponge Pseudosuberites aff Andrewsi. Marine Biotechnology, 3: 544–554.
    15. Duckworth AR, Samples GA, Wright AE, Pomponi SA. 2003. In vitro culture of the tropical sponge Axinella corrugata (Demospongiae): Effect of food cell concentration on growth, clearance rate, and biosynthesis of stevensine. Marine Biotechnology, 5: 519–527.
    16. Claus G, Madri P, Kunen S. 1967. Removal of microbial pollutants from waste effluents by the red-beard sponge. Nature 18(216): 712-714.
    17. Milanese M, Chelossi E, Manconi R, Sara A, Sidri M, Pronzato R. 2003. The marine sponge vhondrilla nucula schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomolecular Engineering, 20: 363-368.
    18. Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC. 2004. Removal of bacteria and nutrient dynamics within the coral reef framework of Cura?ao (Netherlands Antilles). Coral reefs J Int Soc for Reef Studies. Springer-Verlag.10.1007/s00338-004-0400-3: 1-17.
    19. Gonzalez J. Moranm MA. 1997. Numerical dominance of a group of marine bacteria in the a-Subclass of the class proteobacteria in coastal seawater. Applied and Environmental Microbiology, 63 (11): 4237–4242.
    20. Webster NS, Hill RT. 2001. The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Marine Biology, 138: 843-851.
    21. Hentschel U, Hopke J, Horn M, Friedrich AB, WagnerM, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology, 68(9): 4431-4440.
    22. Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C. 2003. Integrated mariculture: Asking the right questions. Aquaculture, 226: 69–90.
    23. 徐君怡。2004。繁茂膜海绵相关微生物的多样性研究。硕士学位论文。中国科学院大连化学物理研究所。
    24. Officer CB, Smayda TJ, Mann R. 1982. Benthic filter feeding: A natural eutrophication control. Marine Ecology Progress Series, 9:203-210.
    25. Gili JM and Coma R. 1998. Benthic Suspension Feeders: Their paramount role in litteroal marine food webs. Tree, 13: 316-321.
    26. Ribes M, Coma R, Gili JM. 1998. Seasonal variation of in situ feeding rates by the temperature Ascidian Halocynthia papillosa. Marine Ecology Progress Series, 175: 201-213.
    27. Roditi HA, Fisher NS, Sanudo-Wilhelmy SA. 2000. Uptake of dissolved organic carbon and trace elements by zebra mussela. Nature, 407: 78-80.
    28. Wilkinson CR, Garrone R, Vacelet J. 1984. Marine sponges discriminate food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proceedings of the Royal Society, London, B 220: 519-528.
    29. Webster NS, Wilson KJ, Blackall LL, Hill RT. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 67:434–444.
    30. Althoff K, Schutt C, Steffen R, Batel R, Müller WEG. 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Marine Biology,130:529–536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700