阿司匹林抑制TNF-α诱导的NF-κB活化在瘢痕疙瘩治疗中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     瘢痕疙瘩是机体对损伤的异常愈合反应,以成纤维细胞的增殖异常和细胞外基质成分的过度堆积为主要特征,其发病机制至今不明。在治疗上尚无特效方法,是目前整形外科研究的热点和难点问题。
     近年来的研究表明核因子-κB(nuclear factor-κB NF-κB)信号转导通路贯穿于创伤修复与愈合的整个生物学过程,它是信号从细胞表面转导到细胞内部的重要传递者,参与细胞生长、发育、凋亡等多种生理功能,并在细胞恶性转化、纤维化等方面起重要作用。越来越多的研究表明:许多疾病的发生和发展都与NF-κB的过度活化有关,以NF-κB为作用靶点治疗或缓解疾病已经成为研究热点。
     以NF-κB为作用靶点治疗或缓解疾病已经成为研究热点。阿司匹林是重要的非甾体类抗炎药NSAIDs,主要通过抑制环氧化酶(COX)进而抑制前列腺素E_2的合成,控制炎症反应。最近研究证实,阿司匹林可以呈剂量和时间依赖性抑制NF-κB的活化,具有治疗和预防肿瘤的作用。
     研究表明瘢痕疙瘩在临床特征、基因突变、细胞因子与受体及治疗方法等方面与肿瘤具有相似性,正常皮肤和瘢痕疙瘩来源的成纤维细胞在基因表达和细胞凋亡方面有显著的差异,瘢痕疙瘩来源的成纤维细胞具有较强的增殖能力和耐受细胞死亡的能力——即凋亡抗性。
     目前,有关NF-κB信号转导通路在瘢痕疙瘩发病机制中的作用、阿司匹林抑制NF-κB的活化对瘢痕疙瘩形成的影响尚未见文献报道。
     目的
     本研究拟利用临床收集的瘢痕疙瘩以及正常皮肤标本,观察NF-κB信号传导通路关键基因p65、其上游抑制基因IκB-α以及下游靶基因cyclinD1在组织中的静息状态表达水平是否存在差异。
     选择在瘢痕疙瘩发病中起主要作用的成纤维细胞作为进一步观察对象,原代培养成纤维细胞,利用细胞外源性细胞因子—肿瘤坏死因子-α(TNF-α)作为NF-κB信号传导通路的活化剂,观察TNF-α对瘢痕疙瘩成纤维细胞(KFs)的增殖的影响;对NF-κB信号转导通路p65、IκB-α以及cyclinD1动态变化规律的影响;并与正常皮肤成纤维细胞(NFs)相比较。
     选择阿司匹林作为NF-κB信号转导通路的有效阻滞剂,采用不同浓度阿司匹林预处理KFs后,再给予TNF-α刺激细胞,观察对NF-κB信号转导通路上、下游相关基因p65、IκB-α以及cyclinD1的影响;对KFs增殖、细胞周期和凋亡的影响。
     方法
     收集临床标本,包括15例瘢痕疙瘩组织以及10例正常皮肤。采用组织免疫组织化学方法分析标本中NF-κB p65蛋白表达;提取mRNA以及核蛋白,实时荧光定量RT-PCR检测组织中IκB-α的转录水平以及TransAM~(TM) NF-κB p65试剂盒检测NF-κB p65的DNA结合活性水平;利用Western blot技术检测细胞周期蛋白D1(cyclinD1)的蛋白水平。
     组织块法培养瘢痕疙瘩以及正常皮肤成纤维细胞;取第4-8代细胞用于实验。分别应用10ng/ml、50ng/ml以及100ng/ml TNF-α处理瘢痕疙瘩成纤维细胞24h、48h、72h、96h以及120h,MTT法观察TNF-α对细胞增殖的影响;应用50ng/ml TNF-α刺激成纤维细胞15min、30min、1h、2h以及4h,免疫荧光技术观察NF-αB P65和IκB-α在静息状态和TNF-a刺激后在成纤维细胞的亚细胞分布;收集成纤维细胞,提取细胞核蛋白以及细胞浆蛋白,用TransAM~(TM) NF-κB p65试剂盒检测细胞核NF-κB p65的DNA结合活性,Western blot技术检测细胞浆IκB-α蛋白表达。
     取原代培养的KFs,分为空白对照组、50ng/mlTNF-α处理组、1.0mM、2.5mM、5.0mM以及10.0mM阿司匹林预作用2h后合并TNF-α再处理组,作用时间为15min,抽提细胞浆与细胞核蛋白,应用Western Blot技术检测细胞浆IκB-α以及p-IκBα蛋白表达水平,TransAM~(TM) NF-κB p65 Kit试剂盒检测细胞核NF-κBp65 DNA结合活性水平;同样上述分组而TNF-α再作用时间改为1h,免疫荧光技术观察NF-κB P65及其上游抑制因子IκB-α在瘢痕疙瘩成纤维细胞中的亚细胞分布;1.0mM、2.5mM、5.0mM、10.0mM阿司匹林预作用细胞2h后TNF-α再分别处理24h、48h、72h、96h、120h,MTT法检测阿司匹林的抗成纤维细胞增殖效应;1.0mM、5.0mM、10.0mM阿司匹林预作用细胞2h后TNF-α再处理24h,应用流式细胞仪检测不同处理组瘢痕疙瘩成纤维细胞的凋亡率以及对细胞周期的影响。
     结果
     瘢痕疙瘩组织在静息状态下存在着NF-κB的持续活化,表现为NF-κB p65在瘢痕疙瘩中蛋白表达以及DNA结合活性高于正常皮肤,NF-κB通路上游抑制因子IκB-α在瘢痕疙瘩中转录水平低于正常皮肤组织,下游靶基因cyclinD1蛋白表达水平高于正常皮肤。
     不同浓度TNF-α处理瘢痕疙瘩成纤维细胞,在低浓度时随着浓度增加具有促进其增殖的作用,最大刺激增殖浓度为50ng/ml TNF-α,当浓度达到100ng/ml TNF-α时,则出现抑制其生长作用;TNF-α刺激成纤维细胞后,细胞浆p-IκB-α蛋白水平在刺激后15min升高至最高值,4h基本检测不到;细胞浆IκB-α蛋白水平在刺激后15min降至最低值,4h基本接近正常;NF-κB P65从细胞浆转移至细胞核;NF-κB p65 DNA结合活性水平在刺激后1h达到高峰,4h接近正常;在各个时间点,IκB-α蛋白表达水平以及NF-κB p65 DNA结合活性水平的变化幅度KFs较NFs剧烈,对TNF-α的刺激更为敏感。
     阿司匹林预处理后联合TNF-α作用于成纤维细胞,可以阻止细胞浆IκB-α的磷酸化和降解,抑制NF-κB P65的细胞核移位,降低NF-κB p65 DNA结合活性,表现为阿司匹林呈剂量和时间依赖性促进KFs TNF-α诱导的凋亡,使KFs滞留于G0期,抑制KFs的增殖。
     结论
     1.NF-κB信号转导通路的上游抑制因子IκB-α在瘢痕疙瘩的表达低于正常皮肤对照组,而NF-κB p65 DNA蛋白结合活性以及其下游靶基因cyclnD1蛋白表达水平高于正常皮肤对照组,这种异常暗示NF-κB信号转导通路可能参与了瘢痕疙瘩的发生机制。
     2.KFs对不同浓度的TNF-α的反应不一致,低浓度TNF-α可刺激KFs增殖,高浓度TNF-α可抑制其增殖。
     3.与NFs相比较,KFs对于低浓度的TNF-α的刺激反应更为强烈,表现在NF-κB信号通路相关基因的变化幅度较大,这种差异有可能是造成KFs异常增殖和凋亡抗性产生的原因。
     4.阿司匹林可以有效阻止TNF-α诱导的NF-κB上游抑制因子IκB-α的磷酸化和降解,阻止NF-κB p65的核移位。
     5.阿司匹林可以促进KFs凋亡,抑制其增殖,使细胞停滞于细胞周期G0期,其作用强度呈时间—剂量依赖性。
RESEARCH BACKGROUND
     Keloid represents an abnormal healing response to injuries, characterized by excess accumulation of disproportionate extracelluar matrix (ECM) and fibroblast proliferation. But the pathogenesis of keloid formation has been unknown. There is no effective method to treat it on clinic. Keloid is the attractive research problem in the department of plastic surgery.
     Recent studies indicate that the Rel homology domain/ nuclear factor-kappaB (NF-κB) signal transduction pathway play a crucial role in skin biology. It exists in the whole biological process of wound healing; transduces signal from cell surface to intracellular; participate in cell growth, development, apoptosis and other biological functions. More and more studies demonstrate that NF-κB activation has been involved in the pathogenesis of many types of human cancers and fibrosis. So targeting the NF-κB signaling pathway has been the focus to treat or release disease.
     NF-κB has been an attractive target for the therapeutic strategies against diseases including cancer. Acetylsalicylic acid (ASA) is one important drug of nonsteroidal anti-inflammatory drugs (NSAIDs). It inhibits prostaglandin E_2 synthesis to treat chronic inflammatory diseases by blocking cyclooxygenase (COX). Recent reports suggest that aspirin show anti-tumor activity and prevention of carcinogenesis through the inhibition of NF-κB activation in a dose- and time-dependent manner.
     Recent studies demonstrated that there are similarity between keloid and cancer such as clinical feature, gene mutation, cytokines and its acceptors, and treatment methods. There is a significant difference in apoptotic profiles between normal skin and keloid fibroblasts, whereas keloid fibroblasts are more resistant to cell death than their normal skin counterparts.
     At present, there have been no related reports about the effect of NF-κB signaling pathway in keloid pathogensis and aspirin inhibits NF-κB activation on keloid formation.
     AIM
     The aim of the paper is to study the effect of NF-κB signaling pathway in the pathogenesis of keloid and to search effective inhibitory agent which will be adopted to prevent and treat keloid.
     Keloid tissue and normal skin tissue will be collected from clinic. To observe the expression level of the related gene to the NF-κB signaling pathway such as NF-κB p65, IκB-αand cyclinD1 which is the target gene of activated NF-κB p65 in these tissue and to compare the difference expression of NF-κB signaling pathway between the keloid and normal shin.
     We choose fibroblast which plays a crucial role in the pathogenesis of keloid as the object of our research, and primary cultured KFs. Tumor necrosis factor-α(TNF-α) as the stimulation agent of NF-κB signaling pathway will be used to stimulate KFs and NFs. To observe the effect on the proliferation of KFs, to observe the difference of dynamic diversity of p65, IκB-αand cyclinD1 on the NF-κB signaling pathway; to compare the variability change between the KFs and NFs.
     We choose aspirin as the inhibitory agent of NF-κB signaling pathway. We pretreat the KFs with a serious of concentration of aspirin and then with TNF-αstimulation. To examine the effects of aspirin on related gene such as p65, IκB-αand cyclinD1 on the NF-κB signaling pathway, cellular growth rates, cell cycle analysis and apoptosis in keloid fibroblasts (KFs).
     METHODS
     Keloid and normal skin samples were collected from patients in the Department of Plastic Surgery of the Second Affiliation Hospital of Shandong University, 15 cases respectively, nuclear protein and total mRNA were prepared, the protein expression of NF-κB p65 in tissues was detected by immunohistochemistry, the transcriptional level of IκB-αmRNA and NF-κB p65 DNA-binding activity were examined with real time quantitative RT-PCR and TransAM~(?) NF-κB Kit respectively. Nuclear proteins were prepared and cyclinD1 protein level was examined with Western blot technique.
     Primary KFs and NFs were cultured and the low passages (4-8th) were employed in the study. The KFs were treated with various concentrations TNF-α(10ng/mL; 50ng/mL; 100ng/mL) for 24h, 48h, 72h, 96h, or 120h. The proliferative effects were measured by the MTT assay; the cells were stimulated with 50ng/mL TNF-αfor 15 minutes, 30 minutes, 1 hour, 2 hours, and 4 hours, to observe the location of NF-κB P65 and IκB-αin KFs and NFs at quiescent condition and the nuclear translocation of NF-κB P65 after TNF-αstimulation by immunofluorescence technique; the treated KFs were collected and prepared for protein, to detect the expression of NF-κB p65 DNA-binding activity with TransAM~(?)NF-κB p65 Kit and to investigate the IκB-αprotein level by means of Western blot technique.
     Primary KFs were cultured; KFs were divided into six groups: control group (group A); treated with 50ng/ml TNF-αgroup (group B); pretreated with 1.0mM (group C), 2.5 mM (group D), 5.0mM (group E), 10.0mM aspirin (group F) for 2 hours and then with TNF-αstimulation for 15minutes, Nuclear and cytoplasmic proteins were extracted from each treated cells group. To observe the subcellular location of NF-κB P65 and IκB-αby immunofluorescence technique; to detect the expression of NF-κB p65 DNA binding activity with TransAM~(?) NF-κB p65 Kit; to investigate the change of IκB-αand p-IκBαprotein level by means of Western Blot technique. Cells were plated at a density of 3×10~3 cells/well of 96-well microtiter plates. Twenty-four hours after seeding, the cells were treated with various concentrations aspirin (1.0mM, 2.5mM, 5.0mM, 10.0mM) and 50ng/ml TNF-α-containing culture medium for 24h, 48h, 72h, 96h, or 120h. The anti-proliferative effects were measured by the MTT assay. KFs were pre-treated with 1.0mM; 5.0mM; 10.0mM aspirin for 2h and then with TNF-αfor 24h to observe the apoptosis rate and the change of cell cycle with flow cytometer (FCM).
     RESULTS
     The clinical samples show that the protein expression level of NF-κB p65 and its DNA Binding Activity in Keloids tissues at quiescent condition were higher than those in normal skin tissues. The mRNA transcription level and protein expression level of IκB-αas the upstream target gene in the NF-κB p65 signaling pathway in Keloid tissues were lower than their counterparts from normal skin. The protein expression level of cyclinD1 as the downstream target in the NF-κB p65 signaling pathway in keloid tissue was higher than in normal skin.
     Low concentration of TNF-αcan promote the KFs proliferation and the max promote concentration is 50ng/ml TNF-α, but 100ng/ml TNF-αinhibits the KFs proliferation; after TNF-αstimulation, TNF-αinduced IκB-αphosphorylation inceases at 15 minutes and becomes undetectable in cytoplasm after 4 hours; NF-κB p65 translocation into the nucleus, NF-κB p65 DNA binding activity arrived its maximum at 1 hour and was close to normal at 4 hours; TNF-αinduces most degradation of IκB-αat 15 minutes and becomes detectable in cytoplasm after 4 hours. At each time point, the change degree of IκB-αand NF-κB p65 DNA binding activity in KFs are higher than in NFs. KFs showed more sensitive ability to TNF-αstimulations than NFs.
     TNF-αinduces most phosphorylation and degradation of IκB-αand NF-κB p65 translocation into the nucleus and NF-κB p65 DNA binding activity increase. Aspirin prevents TNF-α-induced phosphorylation and degradation of IκB-αprotein and NF-κB p65 translocation into the nucleus and decreases NF-κB p65 DNA binding activity. In addition, aspirin preloading sensitizes keloid fibroblasts to TNF-α-induced apoptosis and inhibits KFs proliferation in a dose- and time-dependent manner. Aspirin inhibits KFs proliferation by retaining the cells at the GO phase in a dose-dependent manner.
     CONCLUSION
     1. The expression level of the related genes to NF-κB signal pathways in keloid such as NF-κB p65, NF-κB DNA binding activity, and cyclinD1 are much higher than in normal skin. But the up-stream inhibitory factor IκB-αexpress lower level compared with normal skin. The abnormal expression suggests that NF-κB signal pathway may play a role in keloid pathogenesis.
     2. The raction to the TNF-αstimulation of KFs is different. Low concentration TNF-αcan promote the KFs proliferation and high concentration TNF-αinhibits the KFs proliferation.
     3. KFs show a more intensive reaction to TNF-αstimulation, which displays a higher change degree of the related genes to the NF-κB signal pathway than the change in NFs. The difference may be the reason of KFs which posses the abnormal proliferation and anti-apoptosis ability.
     4. Aspirin can effectively inhibit the phosphorylation and degration of IκB-α, the nuclear translocation of NF-κB, and decrease NF-κB DNA binding activity induced by TNF-α.
     5. Aspirin sensitizes KFs to TNF-α-induced apoptosis, inhibits KFs proliferation, and arrests the cell cycle in GO phase in a dose- and time-dependent manner.
引文
1. Gao Z, Wang Z, Shi Y, et al. Modulation of collagen synthesis in keloid fibroblasts by silencing Smad2 with siRNA. Plast Reconstr Surg, 2006, 118(6): 1328-37.
    2. Campaner AB, Ferreira LM, Graganani A, et al. Upregulation of TGF-betal expression may be necessary but is not sufficient for excessive scarring. J Invest Dermatol, 2006; 126(5): 1168-76.
    3. Hasegawa T, Nakao A, Sumiyoshi K, et al. SB-431542 inhibits TGF-β-induced contraction of collagen gel by normal and keloid fibroblasts. J Dermatol Sci, 2005; 39(1): 33-8.
    4. Ghazizadeh M. Essential role of IL-6 signaling pathway in keloid pathogenesis. J Nippon Med Sch, 2007; 74(1): 11-22.
    5. Ghazizadeh M, Tosa M, Shimizu H, et al. Functional implication of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol, 2007; 127(1): 98-105.
    6. 姜笃银,付小兵,盛志勇.瘢痕组织愈合中成纤维细胞凋亡抗性及其临床意义.中华外科杂志,2006;44(7):496-8.
    7. Hinata K, Gervin AM, Zhang YJ, et al. Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene, 2003, 22(13): 1955-64.
    8. 蔡景龙,安刚,徐斌,等.单发性与多发性瘢痕疙瘩转化生长因子-β_1 Ⅱ型受体PolyA位点基因突变研究.中华整形外科杂志,2006,22(1):41-3.
    9. Perkins ND. Integrating cell-signalling pathway with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007; 8(1): 49-62. Review.
    10. Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest, 2005; 115(10): 2625-32. Review.
    11. Spano JP, Bay JO, Blay JY, et al. Proteasome inhibition: a new approach for the treatment of malignancies. Bull Cancer, 2005; 92(11): E61-6, 945-52.
    12. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci, 2006; 97(6): 439-47. Review.
    13. Aggarwal BB. Nuclear factor-kappaB: The enemy within. Cancer Cell, 2004; 6(3): 203-8.
    14. Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol, 1997; 65: 111-37.
    15. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001; 107(1): 7-11.
    16. Yang L, Cohn L, Zhang DH, et al. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J Exp Med, 1998; 188(9): 1739-50.
    17. Donovan CE, Mark DA, He HZ, et al, NF-kappaB/Rel transcription factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J Immunol, 1999; 163(12): 6827-33.
    18. Bondeson J, Foxwell B, Brennan F, et al. Defining therapeutic targets by using adenovirus: blocking NF-kappaB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc Natl Acad Sci U S A, 1999; 96(10): 5668-73.
    19. Miagkov AV, Kovalenko DV, Brown CE, et al. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci U S A, 1998; 95(23): 13859-64.
    20. Zhang Q, Oh CK, Messadi DV, et al. Hypoxia-induced HIF-1 α accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: Involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res. 2006; 312(2): 145-55.
    21. Harty M, Neff AW, King MW, et al. Regeneration or scarring: an immunologic perspective. Dev Dyn, 2003; 226(2): 268-79.
    22. Nirodi CS, Devalaraja R, Nanney LB, et al. Chemokine and chemokine receptor expression in keloid and normal fibroblasts. Wound Repair Regen, 2000; 8 (5): 371-82.
    23. Mayo MW, Norris JL, and Baldwin AS. Ras regulation of NF-kappa B and apoptosis. Methods Enzymol, 2001;333: 73-87.
    24. Kim BY. Gaynor RB, Song K, et al. Constitutive activation of NF-kappa B in Ki-ras-transformed prostate epithelial cells. Oncogene, 2002; 21(29): 4490-7.
    25. Kim DW, Gazourian L, Quadri SA, et al. The RelA NF-kappa B subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene, 2000; 19(48): 5498-5506.
    26. Messadi DV, Doung HS, Zhang Q, et al. Activation of NF-kappaB signal pathways in keloid fibroblasts. Arch Dematol Res, 2004; 296(3): 125-33.
    27. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999; 18(49): 6853-66.
    28. Osbom L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A, 1989; 86(7): 2336-40.
    29. Biswas DK, Cruz AP, Gansberger E, et al. Epidermal growth factor-induced nuclear factor kappa B activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA, 2000; 97(15): 8542-7.
    30. Bhat-Nakshatri P, Sweeney C J, Nakshatri H. Identification of signal transduction pathways involved in constitutive NF-kappa B activation in breast cancer cells. Oncogene, 2002; 21 (13): 2066-78.
    31. Guttridge DC, Albanese C, Reuther JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol, 1999; 19(8): 5785-99.
    32. Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis, 2000; 21 (5): 857-64.
    33. Mukhopadhyay A, Banerjee S, Stafford LJ, et al. Curcumin-induced suppression of cell proliferation correlates with downregulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 2002; 21(57): 8852-61.
    34. Nakamura Y, Yasuda T, Weisel RD, et al. Enhanced cell transplantation: preventing apoptosis increase cell survival and ventricular function. Am J Physiol Heart Physiol. 2006; 291(2): H939-47.
    35.刘嘉锋,张一鸣,易传勋,等.性激素受体在瘢痕中的表达及与细胞周期调控蛋白相互关系的研究.中华整形外科杂志,2004;20(4):265-7.
    36. Liu Y, Ren LS, Cen Y. Experimental study of Bcl-2 and Fas gene expression in fibroblast of scar. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2001; 15(6): 351-3.
    37. Wang W, Abbruzzese JL, Evans DB, et al. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene, 1999; 18(32): 4554-63.
    38. Loch T, Michalski B. Mazurek U, et al. Vascular endothelial growth factor (VEGF) and its role in neoplastic processes. Postepy Hig Med Dosw, 2001; 55(2): 257-74.
    39. Chilov D, Kukk E, Taira S, et al. Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem, 1997; 272(40): 25176-83.
    40. Levine L, Lucci JA 3rd, Pazdrak B, et al. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res, 2003; 63(13): 3495-502.
    41. Yu HG, Yu LL, Yang Y, et al. Increased expression of RelA/nuclear factor-kappa B protein correlates with colorectal tumorigene tumorigenesis. Oncology, 2003; 65(1): 37-45.
    42. Le AD, Zhang Q, Wu Y, et al. Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs, 2004; 176(1-3): 87-94.
    43. Gira AK, Brown LF, Washington CV, et al. Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol, 2004; 50(6): 850-3.
    44. Wu Y, Zhang Q, Ann DK, et al. Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am J Physiol Cell Physiol, 2004; 286(4): C905-12.
    45. Tuan TL, Wu H, Huang EY, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol, 2003; 162(5): 1579-89.
    46. Leake D, Doerr TD, Scott G. Expression of urokinase-type plasminogen activator and its receptor in keloids. Arch Otolaryngol Head Neck Surg, 2003; 129(12): 1334-8.
    47. Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts shou increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol, 2005; 253(2): 295-300.
    48. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer. J Clin Invest, 2001; 107(2): 135-42.
    49.王春梅,百束比古,张启旭,等.瘢痕疙瘩成纤维细胞的基因组学研究.中华整形外科杂志,2005,21(4):299-301.
    50. Sayah DN, Soo C, Shaw WW, et al. Downregulation of apoptosis-related genes in keloid tissues. J Surg Res, 1999; 87(2): 209-16.
    51. Messadi DV, Le A, Berg S, et al. Expression of apoptosis-associated genes by human dermal scar fibroblasts, Wound Repair Regen, 1999; 7 (6): 511-7.
    52. Akasaka Y, Ito K, Rujita K, et al. Activated caspase expression and apoptosis increase in keloids: cytochrome c release and caspase-9 activation during the apoptosis of keloid fibroblast lines. Wound Repair Regen, 2005; 13(4): 373-82.
    53. Funayama E, Chodon T, Oyama A, et al. Keratinocytes promote proliferation and inhibit apoptosis of the underlying fibroblasts: an important role in the pathogenesis of keloid. J Invest Dermatol, 2003, 121(6): 1326-31.
    54. Komura E, Tonetti C, Penard-Lacronique V, et al. Role for the nuclear factor kappaB pathway in transforming growth factor-betal production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. CancerRes, 2005; 65(8): 3281-9.
    55. Anan A, Baskin-Bey ES, Bronk SF, et al. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology, 2006; 43(2): 335-44.
    56. Lin A, Karin M. NF-kappa B in cancer: a marked target. Semin Cancer Biol, 2003, 13(2): 107-14.
    1. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol, 2006; 6(2): 111-30.
    2. Shishodia S, Majumdar S, Banerjee S, et al. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res, 2003; 63(15): 4375-83.
    3. Chen X, Shen B, Xia L, et al. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res, 2002; 62(4): 1213-21.
    4. Messadi DV, Le A, Berg S, et al. Expression of apoptosis-associated genes by human dermal scar fibroblasts. Wound Repair Regen, 1999; 7(6): 511-7.
    5.章建林,林子豪,江华,等.增生性瘢痕组织中TNF-α基因的表达及其意义.第二军医大学学报,2005;26(1):48-50.
    6.章建林,林子豪,江华,等.增生性瘢痕组织中TNF-α mRNA的动态表达及其临床意义.中华整形外科杂志,2004;20(1):57-60.
    7. Inoue J, Gohda J, Akiyama T, et al. NF-kappaB activation in development and progression of cancer. Cancer Sci, 2007; 98(3): 268-74.
    8. Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol, 2006, 72(9): 1090-101.
    9. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ, 2003; 10(1): 45-65.
    10. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science, 1996, 274(5288): 787-9.
    11. Chen G, Goeddel DV. TNF-Rl signaling: a beautiful pathway. Science, 2002, 296(5573): 1634-5.
    12. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science, 1998; 279(5358): 1954-8.
    13. Kelliher MA, Grimm S, Ishida Y, et al. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 1998; 8(3): 297-303.
    14. Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity, 1997; 7(5): 715-25.
    15. Ventura JJ, Kennedy NJ, Lamb JA, et al. c-jun NH(2)-terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol Cell Biol, 2003; 23(8): 2871-82.
    16. Duncan MR, Berman B. Differential regulation of collagen, glycosaminoglycan, fibronection and collagenase activity production in cultured human adult dermal fibroblasts by interleukinl-alpha and beta and TNF-alpha and beta. J Inest Dermatol, 1989; 92(5): 699-706.
    17. Boyce DE, Thomas A, Hart J, et al. Hyaluronic acid induces tumor necrosis factor-alpha production by human macrophages in vitro. Br J Plast Surg, 1997; 50(5): 362-8.
    18. Zhang HG, Huang N, Liu D, et al. Gene therapy that inhibits nuclear thranslocation of nuclear factor kappaB results in tumor necrosis factor alpha-iduced apoptosis of human synovial fibroblasts. Arithritis Rheum, 2000; 43(5): 1094-105.
    19. Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature, 1996; 384: 372-5.
    20. Fedyk ER, Jones D, Critchley HO, et al. Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and in dermal wound healing. J Immunol, 2001; 166: 5749-54.
    21. Theiss AL, Simmons JG, Jobin C, et al. Tumor necrosis (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem, 2005; 280(43): 36099-109.
    22. Chen W, Fu X, Sun T, et al. Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res, 2003, 113(2): 208-16.
    23. Diana V. Messadi, Hai S. Doung, Qhunzhou Zhang, et al. Activation of NF-κB signal pathways in keloid fibroblasts. Archives of Dermatological Research, 2004, 293 (3): 125-33.
    24.马艳霞,徐波,崔景荣,等.以NF-κB为靶的药物筛选方法的建立与应用研究.生物化学与生物物理进展,2006,33(2):149-54.
    1. Michael Karin. Nuclear factor-κB in cancer development and progression [J]. Nature, 2006, 441 (7092): 431-436.
    2.马艳霞,徐波,崔景荣,等.以NF-κB 为靶的药物筛选方法的建立与应用研究.生物化学与生物物理进展,2006,33(2):149-154.
    3. Rao CV, Reddy BS, NSAIDs and chemoprevention. Curr Cancer Drag Targets, 2004; 4(1): 29-42.
    4. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst, 2002; 94(4): 252-66.
    5. Gu Q, Wang JD, Xia HH, et al. Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis, 2005; 26(3): 541-6.
    6. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I (kappa)B kinase-beta. Nature, 1998; 396(6706): 77-80.
    7. Gao J, Liu X, Rigas B. Nitric oxide-donating aspirin induces apoptosis inhuman colon cancer cells through induction of oxidative stress. Proc Natl Acad Sci U S A. 2005; 102(47): 17207-12.
    8. Kutuk O, Basaga H. Aspirin inhibits TNFalpha- and IL-l-induced NF-kappaB activation and sensitizes HeLa cells to apoptosis. Cytokine 2004; 25(5): 229-237.
    9. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274(5288):787-9.
    10. Russo SM, Tepper JE, Baldwin AS Jr, et al. Enhancement of radio sensitivity by proteasome inhibition: implications for a role of NF-kappaB. J Int Radiat Oncol Biol Phys, 2001; 50(1): 183-93.
    11. Dong QG, Sclabas GM, Fujiokas S, et al. The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. J Oncogene, 2002, 21(42): 6510-9.
    12. Holmes-McNary M, Baldwin AS Jr. Chemopreventive properties of transreveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res, 2000, 61(13): 3477-83.
    13. Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 inhibition of cell cycle arrest and apoptosis by apigeninin human prostate carcinoma cells. Oncogene, 2002; 21 (23): 3727-38.
    14. Mouria M, Gukovskaya AS, Jung Y, et al. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer, 2002; 98(5): 761-9.
    15. Nawata H, Maeda H, Sumimoto Y, et al. A mechanism of apoptosis induced by all-trans retinoic acid on adult T-cells leukemia cells: a possible involvement of the Tax/NF-kappa B signaling pathway. Leuk Res, 2001; 25(4): 323-31.
    16. Dhanalakshmi S, Singh RP, Agarwal C, et al. Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappa B and smsitizes human prostate carcinoma DU 145 cells to TNFalpha-induced apoptosis. Oncogene, 2002; 21(11): 1759-67.
    17. Chan AT, Giovannucci EL, Schernhammer ES, et al. A prospective study of aspirin use and the risk for colorectal adenoma. Ann Intern Med, 2004; 140(3): 157-66.
    18. Rahme E, Ghosn J, Dasgupta K, et al. Association between frequent use of nonsteroidal anti-inflammatory drugs and breast cancer. BMC Cancer, 2005; 5: 159.
    19. Harris RE, Beebe-Donk J, Alshafie GA. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 2006; 6: 27.
    20. Chang ET, Zheng T, Weir EG, et al. Aspirin and the risk ofHodgkin's lymphoma in a population-based case-control study. J Natl Cancer Inst, 2004, 96(4): 305-15.
    21. Hur C, Nishilka NS, Gazelle GS. Cost-effectiveness of aspirin chemoprevention for Barrett's esophagus. J Natl Cancer Inst, 2004; 96(4): 316-25.
    22. Lefort J, Vargaftig BB. Salicylic acid prevents inhibition by aspirin of arachidonic acid-induced hypotension, bronchoconstriction and thrombocytopenia. Br J Pharmacol, 1977; 60(2): 292P-3P.
    23. Humes JL, Winter CA, Sadowski S J, et al. Multiple sites on prostaglandin cyclooxygenase are determinants in the action of nonsteroidal antiinflammatory agents. Proc Natl Acad Sci U S A, 1981, 78(4): 2053-6.
    24. Hanif R, Pittas A, Feng Y, et al. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol, 1996; 52(2): 237-45.
    25. Zhang X, Morham SG, Langenbach R, et al. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med, 1999; 190(4): 451-9.
    26. Biemond P, Swaak AJ, Penders JM, et al. Superoxide production by polymorphonuclear leucocytes in rheumatoid arthritis and osteoarthritis: in vivo inhibition by the anti-rheumatic drug piroxicam due to interference with the activation of the NADPH-oxidase. Ann Rheum Dis, 1986; 45(3): 249-55.
    27. Shift SJ, Rigas B. Nonsteroidal anti-inflammatory drugs and colorectal cancer: evolving concepts of their chemopreventive actions. Gastroenterology, 1997; 113(6): 1992-8.
    28. Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science, 1994; 265(5174): 956-9.
    29. Stark LA, Din FV, Zwacka R M, et al. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J, 2001; 15(7): 1273-5.
    30. Schwenger P, Bellosta P, Vietor I, et al. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci U S A, 1997; 94(7): 2869-73.
    31. Lehmann JM, Lenhard JM, Oliver BB, et al. Peroxisome proliferator-activated receptors and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem, 1997; 272(6): 3406-10.
    32. Ruschoff J, Wallinger S, Dietmaier W, et al. Aspirin suppresses the mutator phenotype associated with hereditary nonpolyposis colorectal cancer by genetic selection. Proc Natl Acad Sci U S A, 1998; 95(19): 11301-6.
    33. Goel A, Chang DK, Ricciardiello L, et al. A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells. Clin Cancer Res, 2003; 9(1): 383-90.
    34. Redondo S, Santos-Gallego CG, Ganado P, et al. Acetylsalicylic acid inhibits cell proliferation by involving transforming growth factor-eta. Circulation, 2003; 107(4): 626-9.
    35. Zhou XM, Wong BC, Fan XM, et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis, 2001; 22(9): 1393-7.
    36. Kim KM, Song J J, An JY, et al. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 Gene expression. J Biol Chem, 2005; 280(49): 41047-56.
    37. Dikshit P, Chatterjee M, Goswami A, et al. Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem, 2006, 281 (39): 29228-35.
    1. Hinata K, Gervin AM, Zhang YJ, et al. Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene, 2003, 22(13): 1955-64.
    2.姜笃银,付小兵,盛志勇.瘢痕组织愈合中成纤维细胞凋亡抗性及其临床意义.中华外科杂志,2006;44(7):496-8.
    3. Perkins ND. Integrating cell-signalling pathway with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007; 8(1): 49-62. Review.
    4. Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7, 12-dimethylbenz
    (a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res, 2002; 62(17): 4945-54.
    5. Anto RJ, Mukhopadhyay A, Shishodia S, et al. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis, 2002; 23(9): 1511-8.
    6. Shishodia S, Majumdar S, Banerjee S, et al. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of lkappaBalpha kinase and p65 phosphorylation: conelation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res, 2003: 63(15): 4375-83.
    7. Chen X, Shen B, Xia L, et al. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res, 2002; 62(4): 1213-21.
    8. Aggarwal BB. Nuclear thctor-κB: The enemy within. Cancer Cell, 2004; 6(3): 203-8.
    9. Feinman R, Koury J, Thames M. et al. Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood, 1999; 93(9): 3044-52.
    10. Griffin JD. Leukemia stem cells and constitutive activation of NF-κB. Blood, 2001: 98(8): 2291.
    11. Kordes U, Krappmann D, Heissmeyer V. et al. Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia. 2000; 14(3): 399—402.
    12. Baron F, Turhan AG, Giron-Michel J, et al. Leukemic target susceptibility to natural killer cytotoxicity: Relationship with BCR-ABL expression. Blood, 2002; 99(6): 2107-13.
    13. Palayoor ST, Youmell MY, Calderwood SK, et al. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene, 1999; 18(51): 7389-94.
    14. Nakshatri H, Bhat-Nakshatri P, Martin DA, et al. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol, 1997; 17(7). 3629-39.
    15. Bharti AC, Aggarwal BB. Nuclear factor-κB and cancer: its role in prevention and therapy. Biochem Pharmacol, 2002; 64(5-6): 883-8.
    16. Seitz CS. Lin Q, Deng H, et al. Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc Natl Acad Sci U S A, 1998; 95(5): 2307-12.
    17. Van Hogerlinden M, Rozell BL, Ahrlund-Richter L, et al. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear thctor-kappaB signaling. Cancer Res, 1999; 59(14): 3299-303.
    18. Dajee M. Lazarov M, Zhang JY, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature, 2003; 421(6923): 639-43.
    19. Van Hogerlinden M, Auer G, Toftgard R. Inhibition of Rel/Nuclear Factor-kappaB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras- and p53-independent tumor development. Oncogene, 2002; 21(32): 4969-77.
    20. Zhang JY, Green CL, Tao S, et al. NF-kappaB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev, 2004; 18(1): 17-22.
    21. KarinM. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem, 1995; 270(28): 16483-6.
    22. Mayo MW, Norris JL, Baldwin AS. Ras regulation of NF-kappaB and apoptosis. Methods Enzymol, 2001; 333: 73-87.
    23. Kim BY, Gaynor RB, Song K, et al. Constitutive activation of NF-kappaB in Ki-ras-transformed prostate epithelial cells. Oncogene, 2002; 21(29): 4490-7.
    24. Kim DW. Gazourian L, Quadri SA, et al. The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene, 2000; 19(48): 5498-506.
    25. Fox CJ, Hammerman PS, Cinalli RM, et al. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev, 2003; 17(15): 1841-54.
    26.胡振富,罗力生,罗盛康.病理性瘢痕中c-myc、c-fos和ras原癌基因表达的实验研究.中华整形外科杂志,2002;18(3):165-8.
    27. Chen W, Fu XB, Ge SL, et al. Development of gene microarray in screening differently expressed genes in keloid and normal-control skin. Chin Med J (Engl), 2004; 117(6): 877-81.
    28. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 1999; 18(49): 6853-66.
    29. Osborn L, Kunkel S. Nabcl GJ. Tumor necrosis factor alpha and interleukin l stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappaB. Proc Natl Acad Sci U S A, 1989; 86(7): 2336-40.
    30. Biswas DK, Cruz AP, Gansberger E, et al. Epidermal growth factor-induced nuclear lhctor κB activation: A major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci U S A. 2000; 97(15): 8542-7.
    31. Bhat-Nakshatri P, Sweeney CJ, Nakshatri H. Identification of signal transduction pathways involved in constitutive NF-kappaB activation in breast cancer cells. Oncogene, 2002; 21(13): 2066-78.
    32. Guttridge DC, Albanese C, Reuther JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin Dl. Mol Cell Biol, 1999; 19(8): 5785-99.
    33. Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis, 2000; 21(5): 857-64.
    34. Mukhopadhyay A, Banerjee S, Stafford LJ, et al. Curcumin-induced suppression of cell proliferation correlates with downregulation of cyclin Dl expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 2002; 21(57): 8852-61.
    35. Nakamura Y, Yasuda T, Weisel RD, et al. Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. Am J Physiol Heart Physiol. 2006; 291(2): H939-47.
    36.王春梅,百束比古,张启旭,等.瘢痕疙瘩成纤维细胞的基因组学研究.中华整形外科杂志,2005,21(4):299-301.
    37. Sayah DN, Soo C, Shaw WW, et al. Downregulation of apoptosis-related genes in keloid tissues. J Surg Res, 1999; 87(2): 209-16.
    38.刘嘉锋,张一鸣,易传勋,等.性激素受体在瘢痕中的表达及与细胞周期调控蛋白相互关系的研究.中华整形外科杂志,2004;20(4):265-7.
    39. Liu Y, Ren LS, Cen Y. Experimental study of Bcl-2 and Fas gene expression in fibroblast of scar. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2001; 15(6): 351-3.
    40. Messadi DV, Le A, Berg S, et al. Expression of apoptosis-associated genes by human dermal scar fibroblasts. Wound Repair Regen, 1999; 7 (6): 511-7.
    41. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer. J Clin Invest, 2001; 107(2): 135-42.
    42. Wang W, Abbruzzese JL, Evans DB, et al. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene, 1999; 18(32): 4554-63.
    43. Loch T, Michalski B, Mazurek U, et al. Vasular endothelial growth factor (VEGF) and its role in neoplastic processed. Postepy Hig Med Dosw, 2001; 55(2): 257-74.
    44. Chilov D, Kukk E, Taira S, et al. Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem, 1997; 272(40): 25176-83.
    45. Levine L, Lucci JA 3rd, Pazdrak B, et al. Bombesin stimulates nuclear factor kappaB activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res, 2003; 63(13): 3495-502.
    46. Yu HG, Yu LL, Yang Y, et al. Increased expression of RelA/nuclear factor-kappaB protein correlates with colorectal tumorigene tumorigenesis. Oncology, 2003; 65(1): 37-45.
    47. Le AD, Zhang Q, Wu Y, et al. Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs, 2004; 176(1-3): 87-94.
    48. Gira AK, Brown LF, Washington CV, et al. Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol, 2004; 50(6): 850-3.
    49. Wu Y, Zhang Q, Ann DK, et al. Increased vascular endothelial growth factor may account for elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am J Physiol Cell Physiol, 2004; 286(4): C905-12.
    50. Tuan TL, Wu H, Huang EY, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol, 2003; 162(5): 1579-89.
    51. Leake D, Doerr TD, Scott G. Expression of urokinase-type plasminogen activator and its receptor in keloids. Arch Otolaryngol Head Neck Surg, 2003; 129(12): 1334-8.
    52. Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts shou increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol, 2005; 253(2): 295-300.
    53. Thomsen LL, Miles DW. Role of nitric oxide in tumour progression: Lessons from human tumours. Cancer Metastasis Rev, 1998; 17: 107-18.
    54. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, et al. NFkappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem, 2003; 278(24): 21631-8.
    55. Fujioka S, Sclabas GM, Schmidt C, et al. Function of nuclear factor κB in pancreatic cancer metastasis. Clin Cancer Res, 2003; 9(1): 346-54.
    56. Jiang DY, Fu XB, Sheng ZY, et al. Relationship between the proliferation and immunoinduction of epithelial cells and the destruction of hair follicles and sebaceous glands in keloids. Zhonghua Zheng Xing Wai Ke Za Zhi, 2006; 22(2): 106-8.
    57. Hsu YC, Hsiao M, Wang LF, et al. Nitric oxide produced by iNOS is associated with collagen synthesis in keloid scar formation. Nitric Oxide, 2006; 14(4): 327-34.
    58. Chau CH, Clavijo CA, Deng HT, et al. Etk/Bmx mediates expression of stress-induced adaptive genes VEGF, PAl-l, and iNOS via multiple signaling cascades in different cell systems. Am J Physiol Cell Physiol, 2005; 289(2): C444-54.
    59. Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol, 1997; 65: 111-37.
    60. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001; 107(1): 7-11.
    61. Yang L, Cohn L, Zhang DH, et al. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. J Exp Med, 1998; 188(9): 1739-50.
    62. Donovan CE, Mark DA, He HZ, et al. NF-kappaB/Rel Transcription Factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J Immunol, 1999; 163(12): 6827-33.
    63. Bondeson J, Foxwell B, Brennan F, et al. Defining therapeutic targets by using adenovirus: blocking NF-kappaB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc Natl Acad Sci U S A, 1999; 96(10): 5668-73.
    64. Miagkov AV, Kovalenko DV, Brown CE, et al. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA, 1998; 95(23): 13859-64.
    65. Zhang Q, Oh CK, Messadi DV, et al. Hypoxia-induced HIF-1 alpha accumulation is augmented in a co-culture of keloid fibroblasts and human mast cells: Involvement of ERK1/2 and PI-3K/Akt. Exp Cell Res. 2006; 312(2): 145-55.
    66. Harty M, Neff AW, King MW, et al. Regeneration or scarring: an immunologic perspective. Dev Dyn, 2003; 226(2): 268-79.
    67. Nirodi CS, Devalaraja R, Nanney LB, et al. Chemokine and chemokine receptor expression in keloid and normal fibroblasts. Wound Repair Regen, 2000; 8 (5): 371-82.
    68. Ghazizadeh M. Essential role of IL-6 signaling pathway in keloid pathogenesis. J Nippon Med Sch, 2007; 74(1): 11-22.
    69. Ghazizadeh M, Tosa M, Shimizu H, et al. Functional implication of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol, 2007; 127(1): 98-105.
    70. Komura E, Tonetti C, Penard-Lacronique V, et al. Role for the nuclear factor kappaB pathway in transforming growth factor-betal production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. CancerRes, 2005; 65(8): 3281-9.
    71. Anan A, Baskin-Bey ES, Bronκ SF, et al. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology, 2006; 43(2): 335-44.
    1. Chen W, Fu X, Sun X, et al. 2003. Analysis of differentially expressed genes in keloids and normal skin with eDNA microarray. J Surg Res, 2003; 113: 208-16.
    2. Karin M, Ben Nariah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol, 2000; 18:621-3.
    3. Wang CY, Mayo MW, Korneluk R, et al. NF-κB anti-apoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998; 281: 1680-3.
    4. Messadi DV, Doung HS, Zhang Q, et al. Activation of NF-κB signal pathways in keloid fibroblasts. Arch Dermato Res, 2004; 293:125-33.
    5. Lin A, Karin M. NF-κB in cancer: a marked target. Semin Cancer Biol, 2003; 13: 107-114.
    6. Nair A, Venkatraman M, Maliekal TT, et al. NF-κB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene, 2003; 22: 50-8.
    7. Yin MH, Yamamoto Y, Gaynor RB. The anti-inflammatory agent aspirin and salicylate inhibit the activity of IκB kinase-β. Nature, 1998; 396: 77-80.
    8. Berman KS, Verma UN, Harburg G, et al. Sulindac Enhances Tumor Necrosis Factor-alpha-mediated Apoptosis of Lung Cancer Cell Lines by Inhibition of Nuclear Factor-κB. Clin Cancer Res 2002; 8:354-60.
    9. Choudon T, Sugihara T, Lgawa HH, et al. Keloid derived fibroblasts are refractory to Fas-mediated apoptosis, and neutralization of autocrine TGF-beta 1 can abrogate this resistance. Am J Pathol, 2000; 157:1661-9.
    10. Ladin DA, Hou Z, Patel D, et al. P53 and apoptosis alteration in keloids and keloids fibroblasts. Wound Pepair Regen, 1998; 1: 28-37.
    11. Messadi DV, Le A, Berg S, et al. Role of apoptosis in keloid formation. Int J Oral Biol, 1998; 23: 31-6.
    12. Messadi DV, Jewett A, Le A, et al. Apoptosis assoiciated genes and abnormal scar formation. Wound Pepair Regen, 1999; 7:511-7.
    13. Sayah D, Soo C, Shaw W, et al. Downregulation of apoptosis-related genes in keloid tissues. J Surg Res, 1999; 87: 209-16.
    14. Pande V, Ramos MJ. NF-κB in Human Disease: Current Inhibitors and Prospects for De Novo Structure Based Design of Inhibitors. Curr Med Chem 2005; 12: 357-74.
    15. Goel A, Chang KD, Ricciardiello L, et al. A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells. Clin Cancer Res, 2003; 9: 383-90.
    16. Stark LA, Din FV, Zwacka RM, et al. Aspirin-induced activation of the NF-κB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J 2001; 15: 1273-5.
    17. Schwenger, P, Bellosta P, Victor I, et al. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci USA, 1997; 94: 2869-73.
    18. Zhang X, Morham SG, Langenbach R, et al. Malignant transformation and antineoplastic actions of nonsteroidal anti-inflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 1999; 190: 451-9.
    19. Surazynski A, Palka J, Wotczynski S. Acetylsalicylic acid-dependent inhibition of collagen biosynthesis and beta-integrin signaling in cultured fibroblasts. Med Sci Monit, 2004; 10: 175-9.
    20. Petri JB, Haustein UF. Lysine acetylsalicylate decrease proliferation and extracellular matrix gene expression rate in keloid fibroblasts in vitro. Eur J Dermatol, 2002; 12:231-5.
    21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth, 1983; 65:55-63.
    Bharti AC, Aggarwal BB (2002). Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol/64:883-8.
    Castano E., Dalmau M., Barragan M. et al. (1999) Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells. Br J Cancer/81: 294—9.
    Choudon T, Sugihara T, Lgawa HH, et al (2000). Keloid derived fibroblasts are refractory to Fas-mediated apoptosis, and neutralization of autocrine TGF-beta 1 can abrogate this resistance. Am J Pathol/157:1661-9.
    Denis CG, Chris A, Julie YR, Richard GP, Albert SB (1999). NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol/19: 5785 99.
    Ladin DA, Hou Z, Patel D, et al (1998). P53 and apoptosis alteration in keloids and keloids fibroblasts. Wound Pepair Regen/1: 28-37.
    Messadi DV, Doung HS, Zhang Q, et al (2004). Activation of NF-κB signal pathways in keloid fibroblasts. Arch Dermatol Res./296 (3): 125-33.
    Messadi DV, Jewett A, Le A, et al (1999). Apoptosis assoiciated genes and abnormal scar formation. Wound Pepair Regen/7:511-7.
    Messadi DV, Le A, Berg S, et al (1998). Role of apoptosis in keloid formation. Int J Oral Biol/23:31-6.
    Mohammad Ghazizadeh, Mamiko Tosa, Hajime Shimizu, et al (2006). Functional Implications of the IL-6 Signaling Pathway in Keloid Pathogenesis. J Invest Dermatol/127: 98-105.
    Mutalik Sharad (2005). Treatment of keloids and hypertrophic scars. India Journal of Dermatology, Venereology and Leprology/71 (1): 3-8.
    Pique M, Barragan M, Dalmau M, et al. (2000) Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS Lett/480:193—6.
    Qiao L, Hanif R, Sphicas E, Shift S J, Rigas B (1998). Effect of aspirin on induction of apoptosis in HT-29 human colon adenocarcinoma cells. Biochem. Pharmacol/55: 53—64.
    Sayah D, Soo C, Shaw W, et al (1999). Downregulation of apoptosis-related genes in keloid tissues. J Surg Res/87: 209-16.
    Sherr JS, Roberts JM (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes and Development/9:1149-63.
    Stark LA, Din FV, Zwacka RM, et al (2001). Aspirin-induced activation of the NF-κB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J/15: 1273-5.
    Subbegowda R. and Frommel T.O. (1998) Aspirin toxicity for human colonic tumor cells results from necrosis and is accompanied by cell cycle arrest. Cancer Res/58: 2772—6.
    Suzui M, Masuda M, Lim JT, et al (2002). Growth inhibition of human hepatoma cells by acyclic retinoid is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Research/62: 3997-4006.
    Wang WH, Huang JQ, Zheng GF, et al (2003). Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J. Natl Cancer Inst/95: 1784--91.
    Wong BC, Zhu GH, Lam SK (1999). Aspirin induced apoptosis in gastric cancer cells. Biomed Pharmacother/ 53:315--8.
    Yin MH, Yamamoto Y, Gaynor RB (1998). The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature/396: 77-80.
    Zimmermann KC, Waterhouse NJ, Goldstein JC, et al (2000). Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia/2: 505--13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700