胶质瘤中BMPs/smad1信号路径的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨形态发生蛋白(Bone morphogenetic proteins,BMPs)在机体的生长发育以及组织细胞的定向分化过程中具有重要的调节作用,而sma和mad的同源蛋白(sma and mad homologues,smads)是介导BMPs转录调节信号的胞内重要的信号分子。目前研究表明BMPs/smad1信号路径参与了许多肿瘤的发生发展,但是有关其在胶质瘤中的表达及功能作用还知之甚少。
     我们研究组利用自行设计合成的、含有218个与神经系统发育相关的寡核苷酸微阵列芯片,检测到Smad1在胶质瘤组织中的表达比正常脑组织明显降低,据此,我们研究组采用60例不同级别胶质瘤组织标本(20例Ⅱ级胶质瘤、20例Ⅲ级胶质瘤、20例胶质母细胞瘤)、20例正常脑组织标本及U251胶质母细胞瘤细胞系,利用Western蛋白印记杂交(Western blot,WB),反转录聚合酶链反应(Reverse transcriptase-polymerasechainreaction,RT-PCR),免疫组化等技术研究BMPs/Smad1相关信号分子在不同级别胶质瘤中的表达,结果显示磷酸化-Smad1(phosphorylated-smad1,P-smad1)的蛋白表达随着胶质瘤恶性级别的增高而降低,而其上游信号分子骨形态发生蛋白受体-IB亚单位(Bone morphogenetic proteins receptor-IB subunit,BMPR-IB)mRNA在大部分恶性胶质瘤中低表达,在以上研究基础上我们进一步通过对U251细胞BMPR-IB和Smad1等基因的瞬时转染,观察到过表达BMPR-IB、smad1可活化U251细胞中的smad1及BMPs信号通路并诱导瘤细胞的分化和凋亡,同时,我们应用外源BMP-2刺激U251细胞,观察到BMP-2可以时间依赖方式引起瘤细胞的增殖抑制和分化,并伴有BMPR-IB和P-smad1表达的上调。
     上述研究结果提示胶质瘤的恶性进展过程中伴有smad1的磷酸化活化障碍,而其上游信号分子BMPR-IB的低表达是引起smad1活化障碍的因素之一。过表达BMPR-IB、smad1或外源BMP-2刺激均可引起U251细胞中smad1及BMPs信号路径的活化,而BMPs/smad1信号路径的活化可引起胶母细胞瘤细胞系U251的增殖抑制、分化和凋亡。该项研究为胶质瘤的诊断和新的治疗靶点的选择提供了线索和实验依据。
BMPs play an essential role in cell fate determination, and smads proteins play akey role in transforming BMPs signal transduction. Although extensively investigated inmany tumors, smad1-associated pathway has only received limited study in glioma.
     In this study, we have examined one glioblastoma cell line-U251 and tissuespeciments of 60 gliomas: 20 astrocytomas(AST), 20 anaplastic astrocytomas(AAST),and 20 gliomblastoma multiform gradeⅣ(GBM).. We found that phospho-smad1decreased in U251 cell line and most malignant glioma tissues, and smad1 decreased inU251 and GBM tissues by Western blotting analysis compared with normal braintissues. Using RT-PCR and Western blot we detected the lower expression of BMPR-IBon most glioma tissues as well as U251 cells. Transient transfection of BMPR-IB,smad1, or both activated smad1 and caused transient apoptosis and differentiation ofU251 cells, accompanied by a significant increase in the activity of BRE-luciferasereporter and the expression levels of phospho-smad1 and GFAP compared withtransfection of empty vector. Treatment with an inhibitor smad protein-smad6significantly inhibited these effects. We then studied the effects of BMP-2 on U251 cells,and found that BMP-2 treatment of U251 cells delayed cell growth and inducedglioblastoma cell differentiation. Of note, we found a significant up-regulation ofBMPR-IB and P-smad1 in response to BMP-2.
     Our results suggested that the lower expressions of BMPR-IB and smad1 blockedthe activation of BMPs/smad1 signaling pathway in gliomas, over-expression ofBMPR-IB and smad1 could induce apoptosis and differentiation of U251 cells throughtheir activation of smad1. Our results also suggest that BMP-2 could regulate the growthand differentiation of gliomblastoma by autocrine or paracrine mode. BMPs/smad1signal pathway might provide a new therapeutic strategy for gliomas.
引文
1. Fulci G, Labuhn M, Maier D, et al.p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma[J]. Oncogene. 2000, 19:3816-3822.
    2. Dong L, Pu PY, Wang H, et al. Study on the expression of epidermal growth factor receptor and p53 in astrocytic gliomas: evidence for a distinct genetic pathway[J]. Zhonghua Bing Li Xue Za Zhi. 2006, 35:232-236.
    3. Shoshan Y, Nishiyama A, Chang A, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: Implications for the histogenesis of brain tumors[J]. Med. Sci.1999,96: 10361-10366.
    4. Preusser M, Haberler C, Hainfellner JA. Malignant glioma: neuropathology and neurobiology[J]. Wien Med Wochenschr. 2006, 156:332-337.
    5. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increase B7-H1 expression and immunoresistance in glioma. Nat med. 2007, 13:84-88.
    6. Amos S, Redpath GT, Polar G, et al. Farnesylthiosalicylic acid induces caspase activation and apoptosis in glioblastoma cells[J]. Cell Death Differ. 2006, 13:642-651.
    7. Grau SJ, Trillsch F, Herms J, et al. Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J Neurooncol. 2006, Nov 17[Epub ahead of print].
    8. Eller JL, Longo SL, Hicklin DJ, et al. Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme[J]. Neurosurgery. 2002, 51: 1005-1014.
    9. Mishima K, Johns TG, Luwor RB, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody(mAb)806, a novel monoclonal antibody directed to the receptor[J]. Cancer Res. 2001, 61: 5349-5354.
    10. 刘爽,田增民,郑国强等, Identification of novel genes related to glioma by Oligonucleotide array. 中华医学遗传学杂志,2007,24(2): 182-185.
    11. Nakashima K, Yanagisawa M, Arakawa H,et al. Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300. Science 1999; 284: 479-482.
    12. Hiroko NB, Karen D, David B, et al. Bone morphogenetic protein-5 (BMP-5) promotes dendritic growth in cultured sympathetic neurons. BMC Neurosci. 2001, 2:12-18.
    13. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577-584.
    14. Ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ. Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrino 2003; 211: 105-113.
    15. Valdimarsdottir G, Goumans MJ, Rosendahl A, et al. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 2002; 106: 2263-2270.
    16. Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 2000; 100: 229-240.
    17. Zwijsen A, Verschueren K, Huylebroeck D. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 2003; 546: 133-139.
    18. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002; 23: 787-823.
    19. Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 2002; 118: 99-109.
    20. Lechleider RJ, Ryan JL, Garrett L, et al. Targeted mutagenesis of Smadl reveals an essential role in chorioallantoic fusion. Dev Biol 2001; 240: 157-167.
    21. Tremblay KD, Dunn NR, Robertson EJ. Mouse embryos lacking Smadl signals display defects in extra-embryonic tissues and germ cell formation. Development 2001; 128: 3609-3621.
    22. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122: 2977-2986.
    23. Delot EC. Control of endocardial cushion and cardiac valve maturation by BMP signaling pathways. Mol. Genet. Metab. 2003; 80: 27-35.
    24. Gaussin V, van de Putte T, Mishina Y, et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 2002; 99: 2878-2883.
    25. Dick A, Risau W, Drexler H. Expression of Smad1 and Smad2 during embryogenesis suggests a role in organ development. Dev Dyn 1998; 211: 293-305.
    26. Flanders KC, Kim ES, Roberts AB. Immunohistochemical expression of Smads 1-6 in the 15-day gestation mouse embryo: signaling by BMPs and TGF-betas. Dev Dyn 2001; 220: 141-154.
    27. Kleeff J, Maruyama H, Ishiwata T, et al. Bone morphogenetic protein-2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology 1999; 116: 1202-1216.
    28. Ide H, Yoshida T,.Matsumoto N, et al. Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 1997; 57: 5022-5027.
    29. Chen S, Guttridge DC, Tang E, Shi S, Guan K, Wang CY Suppression of tumor necrosis factor-mediated apoptosis by nuclear factor n B-independent bone morphogenetic protein/Smad signaling. J Biol Chem 2001; 276: 39259-39263.
    30. Izumi M, Fujio Y, Kunisada K, et al. Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smadl pathway. J Biol Chem 2001; 276: 31133-31141.
    31.Hjertner O, Hjorth-Hansen H, Borset M, Seidel C, Waage A, Sundan A. Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 2001; 97: 516-522.
    32. Franzen A, Heldin NE. BMP-7-induced cell cycle arrest of anaplastic thyroid carcinoma cells via p21(CIPl) and p27(KIPl). Biochem Biophys Res Commun 2001; 285: 773-781.
    33. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood. 2000; 96: 2005-2011.
    34. Liu F, Hata A, Baker JC, et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996;381:620-623.
    35. De Robertis EM, Kuroda H. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol. 2004, 20:285-308.
    36. Rajan P, Panchision DM, Newell LF, et al. BMPs signal alternately through a SMAD of FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol. 2003, 161:911-21.
    37. Hogan, B.L., Bone morphogenetic proteins in development.Curr. Opin. Genet. Dev. 1996; 6, 432-438.
    38.Yoshida Y, Tanakas S, Umemori H, et al. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell. 2000,103(7): 1085-97.
    39. Huang S, Flanders KC, Roberts AB, Characterization of the mouse Smad1 gene and its expression pattern in adult mouse tissues. Gene. 2000; 258(1-2): 43-53.
    40. Bengtsson H, So"derstro"m S, Ebendal T et al. Expression of activin receptors type I and II only partially overlaps in the nervous system. Neuroreport 1995, 7:13-116.
    41. ten Dijke P, Miyazono K, Heldin C-H et al. Signaling via heterooligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 1996,8:139-145.
    42. Massague' J et al. TGFb signaling: receptors, transducers, and Mad proteins. Cell 1996, 85:947-950.
    43. So"derstro"m S, Bengtsson H, Ebendal T et al. Expression of serine/threonine kinase receptors including the bone morphogeneticfactor type II receptor in the developing and adult rat brain. CellTissue Res 1996, 286:269-279.
    44. Rosenzweig BL, Imamura T, Okadome T, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995,92:7632-7636.
    45. Loqeart-Avramoqlou D, Bourquiqnon M, Oudina K, et al. An assay for the determination of biologically active bone morphogenetic proteins using cells transfected with an inhibitor of differentiation promoter-luciferase construct. Anal Biochem. 2006, 349(1):78-86.
    46. Tanabe Y, Jessell TM. Diversity and pattern in the developing spinal cord.Science. 1996; 274(5290):1115-23.
    47. Mark R. Iantosca, Clifton E. McPherson, Shih-Yieh Ho, et al.Bone Morphogenetic Proteins-2 and -4 Attenuate Apoptosis in a Cerebellar Primitive Neuroectodermal Tumor Cell Line. Journal of Neurosci ence Research 1999, 56:248-258.
    48. Prithi Rajan, David M. Panchision, et al. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. The Journal of Cell Biology, 2003, 161(5): 911-921.
    49. Shyam G, Patrick M. W, Diane P,et al. BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells. Experimental Neurology 2004, 188:205-223.
    50. S. G. M. Piccirillo, B. A. Reynolds, N. Zanetti, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 2006, 444:761-765.
    51. Yohko Nakamura, Toshinori Ozaki, Haruhiko Koseki, et al. Accumulation of p27KTP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochemical and Biophysical Research Communications. 2003, 307: 206-213.
    52. Toshikazu T, Hideharu A, Hidenori A, et al. Activation of STAT3/Smadl Is a Key Signaling Pathway for Progression to Glomerulosclerosis in Experimental Glomerulonephritis. J. Biol chem. 2005, 290(8): 7100-7106.
    
    54. Tomari K, Kumagai T, Shimizu T, et al. Bone morphogenetic protein-2 induces hypophosphorylation of Rb protein and repression of E2F in androgen-treated LNCaP human prostate cancer cells. Int J Mol Med. 2005; 15(2):253-8.
    
    55. EM Langenfeld, Y Kong, J Langenfeld. Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene 2006, 25: 685-692.
    1. Fulci G, Labuhn M, Maier D, et al.p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma[J]. Oncogene. 2000, 19(33): 3816-3822.
    2. Dong L, Pu PY, Wang H, et al. Study on the expression of epidermal growth factor receptor and p53 in astrocytic gliomas: evidence for a distinct genetic pathway[J]. Zhonghua Bing Li Xue Za Zhi. 2006, 35(4):232-236.
    3. Bello MJ, Rey JA. The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas[J]. Cancer Genet Cytogenet. 2006, 164(2):172-173.
    4. Watanabe T, Katayama Y, Yoshino A, et al. Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course[J]. Clin Cancer Res. 2003, 9(13):4884-4890.
    5. Cui W, Wu R, Cao H, et al. P53 gene mutation and expression of MDM2, P53, P16 protein and their relationship in human glioma[J]. J Huazhong Univ Sci Technolog Med Sci. 2005, 25(6): 622-624, 635.
    6. Alonso ME, Bello MJ, Arjona D, et al. Real-time quantitative PCR analysis of gene dosages reveals gene amplification in low-grade oligodendrogliomas[J]. Am J Clin Pathol. 2005, 123(6):900-906.
    7. Gupta M, Djalilvand A, Brat DJ. Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma[J]. Am J Clin Pathol. 2005, 124(5):755-768.
    8. Kaulich K, Blaschke B, Numann A, et al. Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas[J]. J Neuropathol Exp Neurol. 2002, 61 (12): 1092-1099.
    9. Preusser M, Haberler C, Hainfellner JA. Malignant glioma: neuropathology and neurobiology[J]. Wien Med Wochenschr. 2006, 156(11-12):332-337.
    10. Puduvalli VK, Kyritsis AP, et al. Patterns of expression of Rb and p16 in astrocytic gliomas, and correlation with survival[J]. Int J Oncol. 2000, 17(5):963-969.
    11 Biernat W, Tohma Y, Yonekawa Y, et al. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas[J]. Acta Neuropathol. 1997, 94(4): 303-309.
    12 Fricker-Gates R.A, Winkler C, Kirik D, et al. EGF infusion stimulates the proliferation and migration of embryonic progenitor cells transplanted in the adult rat striatum[J]. Exp. Neurol. 2000, 165(2): 237-247.
    13 Zhu G, Mehler M.F, Mabie P.C, et al. Developmental changes in progenitor cell responsiveness to cytokines[J]. J. Neurosci. Res. 1999, 56(2): 131-145.
    14 Amos S, Redpath GT, Polar G, et al. Farnesylthiosalicylic acid induces caspase activation and apoptosis in glioblastoma cells[J]. Cell Death Differ. 2006, 13(4):642-651.
    15 Calver A.R, Hall A.C, Yu W.P, et al. Oligodendrocyte population dynamics and the role of PDGF in vivo[J]. Neuron.1998, 20(5): 869-882.
    16 Fidler P, Schuette K, Asher R, et al. Comparing astrocytic cell lines that are inhinitory of permissive for axon growth: The major axon-inhibitory proteoglycan is NG2[J].J. Neuros. 1999, 19(20): 8778-8788.
    17 Shoshan Y, Nishiyama A, Chang A, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: Implications for the histogenesis of brain tumors[J]. Proc Natl Acad Sci U S A. 1999, 96(18): 10361-10366.
    18 li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine Phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science. 1997, 275(5308): 1943-1947.
    19 Jenkins RB, Curran W, Scott CB, et al. Pilot evaluation of 1p and 19q deletions in anaplastic oligodendrogliomas collected by a national cooperative cancer treatment group[J]. Am J Clin Oncol. 2001, 24(5): 506-508.
    20 Hussein MR, Baidas S. Advances in diagnosis and management of oligodendroglioma[J]. Expert Rev Anticancer Then 2002, 2(5): 520-528.
    21 Smith JS, Perry A, Borell TJ, et al. Alterations of chromosome arms lp and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas[J]. J Clin Oncol. 2000, 18(3): 636-645.
    22 Ino Y, Zlatescu MC, Sasaki H, et al. Long survival and therapeutic responses in patients with histologically disparate high-grade gliomas demonstrating chromosome 1p loss[J]. J Neurosurg. 2000, 92(6): 983-990.
    23 Eller JL, Longo SL, Hicklin DJ, et al. Activity of anti-epidermal growth factor receptor monoclonal antibody C225 against glioblastoma multiforme[J]. Neurosurgery. 2002, 51 (4): 1005-1014.
    24 Mishima K, Johns TG, Luwor RB, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody(mAb)806, a novel monoclonal antibody directed to the receptor[J]. Cancer Res. 2001, 61(14): 5349-5354.
    25 Williams KJ, Telfer BA, Stratford IJ, et al. ZD1839, a specific oral epidermal growth factor receptor-tyrosine kinase inhibitor, potentiates radiotherapy in a human colorectal cancer xenograft model[J]. Br J Cancer. 2002, 86(7): 1157-1161.
    1、Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995,270: 467-470.
    2. Baguma-Nibasheka M, Reddy T, Abbas-Butt A, et al. Fetal ocular movements and retinal cell differentiation: analysis employing DNA microarrays. Histol Histopathol, 2006,21:1331-1337.
    3. Kitano M, Kakinuma M, Takatori A, et al. Gene Expression Profiling of Mouse Embryonic Stem Cell Progeny Differentiated by Lumelsky's Protocol. Cells Tissues Organs, 2006,183:24-31.
    4. Wang F, Shi S, Zhang R, et al. Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis. Biol Chem, 2006,387:1215-1218.
    5. Yamad K, Nagai T, Nabeshima T. Drug dependence, synaptic plasticity, and tissue plasminogen activator. J Pharmacol Sci, 2005, 97:157-161.
    6. Yao M, Tabuchi H, Nagashima Y, et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol, 2005, 205:377-387.
    7. Michael BE, Paul TS, Patrick OB, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95: 14863-14868.
    8. David SR, Miroslav PB, David EM, et al. Distinctive Molecular Profiles of High-Grade and Low-Grade Gliomas Based on Oligonucleotide Microarray Analysis. Cancer Research, 2001, 61:6885-6891
    9. Julia YL, Alexander JL, Anna L, et al. Overexpression of a4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Research, 2001, 61: 5601-5610.
    10 Kuo CHW, Mitchel SB, Anil S, et al. Cloning, sequencing and expression analysis of a novel gene RB-1 that is expressed in normal human brain tissue but not in glioma tumor samples. Anticancer Research, 2002, 22: 745-754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700