激光诱导荧光DNA分析系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA分析技术是从生物的分子—基因水平揭示生物的特性,它为生命科学研究提供了最有效、最便捷的技术和手段。因此,DNA分析仪器的研究十分重要,它是获取信息的源头和基础。本论文开展了激光诱导荧光DNA分析系统的相关理论和研制工作,先后完成了两套检测系统的设计与构建。它们是基于微通道毛细管电泳技术的现代光学检测系统,具有结构简单、性能良好、成本较低的优点,分辨率达到1bp,也就是单碱基分辨。灵敏度高,对标准DNA样品pGEM-3Zf(+)/HaeⅢMarkers的检测限是2.4×10~(-11)mol/L。满足测序和短串联重复序列(short tandem repeat,STR)分型对分辨率和灵敏度的要求。主要工作包括两大部分:微通道毛细管电泳部分和激光诱导荧光检测部分。
     电泳部分主要包括:对微通道内壁进行改性,以控制电渗流和抑制吸附;制备性能良好的筛分介质能够对样品电泳分离;对涂层、灌胶、进样系统以及荧光染料的选择进行优化,选用非交联的线性聚丙烯酰胺(Linear Polyacrylamide,LPA)作为涂层材料和可替换的筛分介质;测量得到的自制涂层管的电渗流淌度为2.5165×10~(-8)m~2V~(-1)s~(-1),对电渗流的控制满足DNA样品分离的要求;研究了电场强度与迁移率的关系,得到电场强度与电泳电流的关系曲线;对于本筛分系统,提出了一种新的Ogston修正模型,从而能够简单、良好地解释实验结果;考察了DNA样品中不同长度的片段在不同浓度筛分介质中,随电场强度条件变化的信号强度、展宽和分辨率的变化情况,优化筛分质浓度为4%LPA。
     检测部分设计为共焦光路,建立了分别以488nmAr+激光器和532nm固体激光器为光源的两套系统,由激光器激发电泳到检测窗口的DNA片段(标记有荧光染料),发射的荧光信号由光电倍增管收集检测,激发光路和收集光路三维可调。通过理论分析和实验优化本系统的设计:优化聚焦于微通道中的激发光斑大小,增大聚焦到毛细管内径中的激发光斑尺寸,使光斑尺寸由最小的10μm增大到50μm(充满了整个毛细管内径),光电倍增管接收到的荧光信号提高了2-3倍,从而提高系统的信噪比和灵敏度;提出在聚焦物镜处加折射率匹配液的方法,加匹配液后的荧光信号得到了增强,因而提高了荧光收集效率和灵敏度。通过理论和实验分析阵列毛细管电泳技术中杂散光的强度与分布,激发光束直接照射到毛细管的内径中心时,毛细管产生的杂散光强度是无毛细管的情况下的2.7025倍;对不同内径的微通道毛细管进行比较,优化内径为50μm;分析了不同间距的阵列毛细管杂散光情况;所得结果对提高检测系统荧光收集效率、提高信噪比、采取最佳扫描方式十分有意义。
DNA analysis is the technology to reveal the biological characteristic in molecular and genetic level; it is the most effective and convenient way for research in life sciences. So, the study of DNA analyzer is very important; it is the source of the information. The laser induced fluorescence DNA analysis system was researched and developed. Two detection systems were designed and setup, which were the modern optical detection systems based on microchannel and capillary electrophoresis. They were simple, cost effective, high sensitivity and good performance. Single basepair could be resolved and the limit of detection (LOD) of DNA sample pGEM-3Zf(+)/Hae III Markers was 2.4×10~(-11)mol/L. which meet the requirement of DNA sequencing and short tandem repeat (STR) typing. The system could be divided in two parts: microchannel capillary electrophoresis and laser induced fluorescence detection.
     The electrophoresis section included the work as follows. The inner wall of the microchannel was modified to control the electroosmotic flow and restrain adsorption. The good performance sieving gel medium was prepared to separate the samples. The processes of coating, gel injection, sample injection and the flouorescece selection were optimized. The replacebale noncross-link linear polyacrylamide (LPA) was selected to be coating material and sieving medium. The electroosmotic flow mobility (EOF) of coated microchannel was 2.5165×10~(-8) m~2 V~(-1) s~(1) which suited DNA separation. The characteristics of mobility were investigated and a new modified Ogston model was applied. The model was simple and suitable for the results of experiments. The electric field strength versus current curve was obtained. The signal intensity, band broading and resolution were analysed using different sizes of DNA fragment in different concentrations of sieving medium. The optimal concentration was 4%LPA.
     The detection section was designed of confocal optical path. Two systems were setup using 488nmAr+ laser and 532nm solid laser respectively. The laser excited the DNA fragments labeled dyes when they electrophoresed to the detection window. F fluorescence signals were collected by photomultiplier (PMT); the exciting and collecting optical system could be 3D adjusted. The design was optimized for maximum signal intensity by simulation and experiments. The size of focal spot in the micro-channel capillary was optimized. Fluorescence signal was enhanced 2~3 times when increasing the diameter of focal spot from 10μm to 50μm (full of the inner wall of capillary), through which the sensitivity and signal-noise ratio (SNR) were also improved. A technique of using refractive matching liquid was presented. The fluorescence signals were boosted up and the signal collection efficiency was also meliorated when using this method. The intensity and distribution of stray light in capillary any system were analysed by simulation and experiments. When the exciting beams illuminated at the center of capillaries, the stray light was strongest and was 2.7025 times of that without capillary. Stray light was compared for capillaries with different inner diameters; the optimum value was 50μm. The stray light of array with different spaces between capillaries was also researched. The results all above were useful for improving the signal collection efficiency, SNR and the mode selection of scanning.
引文
[1]M.J.Heller,"DNA microarray technology:devices,systems,and applications," Annu Rev Biomed Eng,vol.4,pp.129-53,2002.
    [2]A.Barbaro,P.Cormaci,and A.Barbaro,"DNA analysis from mixed biological materials,"Forensic Sci Int,vol.146 Suppl,pp.S123-5,2004.
    [3]P.J.Obeid and T.K.Christopoulos,"Microfabricated systems for nucleic acid analysis,"Crit Rev Clin Lab Sci,vol.41,pp.429-65,2004.
    [4]V.M.Ugaz,R.D.Elms,R.C.Lo,F.A.Shaikh,and M.A.Bums,"Microfabricated electrophoresis systems for DNA sequencing and genotyping applications:current technology and future directions," Philos Transact A Math Phys Eng Sci,vol.362,pp.1105-29,2004.
    [5]I.L.Medintz,B.M.Paegel,and R.A.Mathies,"Microfabricated capillary array electrophoresis DNA analysis systems," J Chromatogr A,vol.924,pp.265-70,2001.
    [6]M.A.Jobling and P.Gill,"Encoded evidence:DNA in forensic analysis.," NATURE REVIEWS GENETICS,vol.5,pp.739-751 2004.
    [7]X.Zhou,D.Liu,R.Zhong,Z.Dai,D.Wu,H.Wang,Y.Du,Z.Xia,L.Zhang,X.Mei,and B.Lin,"Determination of SARS-coronavirus by a microfluidic chip system," Electrophoresis,vol.25,pp.3032-9,2004.
    [8]B.Lin and J.Qin,"Laboratory on a microfluidic chip," Se Pu,vol.23,pp.456-63,2005.
    [9]J.M.Butler,E.Buel,F.Crivellente,and B.R.McCord,"Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis,"Electrophoresis,vol.25,pp.1397-412,2004.
    [10]J.B.Sgueglia,S.Geiger,and J.Davis,"Precision studies using the ABI prism 3100 genetic analyzer for forensic DNA analysis," Anal Bioanal Chem,vol.376,pp.1247-54,2003.
    [11]P.Koumi,H.E.Green,S.H.Darren,J.Sharon,L.R.J.Livett,K.W.Tsang,and D.M.Ward,"Evaluation and validation of the ABI 3700,ABI 3100,and the MegaBACE 1000capillary array electrophoresis instruments for use with short tandem repeat microsatellite typing in a forensic environment," Electrophoresis,vol.25,pp.2227-2241,2004.
    [12]L.Berti,I.L.Medintz,J.Tom,and R.A.Mathies,"Energy-transfer cassette labeling for capillary array electrophoresis short tandem repeat DNA fragment sizing," Bioconjug Chem,vol.12,pp.493-500,2001.
    [13]C.K.Ratnayake,C.S.Oh,and M.P.Henry,"Characteristics of particle-loaded monolithic sol-gel columns for capillary electrochromatography.Ⅰ.Structural,electrical and band-broadening properties," J Chromatogr A,vol.887,pp.277-85,2000.
    [14]D.Meldrum,"Automation for genomics,part one:preparation for sequencing," Genome Res,vol.10,pp.1081-92,2000.
    [15]D.Meldrum,"Automation for genomics,part two:sequencers,microarrays,and future trends," Genome Res,vol.10,pp.1288-303,2000.
    [16]A.Marziali and M.Akeson,"New DNA sequencing methods," Annu Rev Biomed Eng,vol.3,pp.195-223,2001.
    [17]S.W.Forrest,T.D.Kupferschmid,B.C.Hendrickson,T.Judkins,D.J.Petersen,and T.Scholl,"Two rare novel polymorphisms in the D8S1179 and D13S317 markers and me- thod to mitigate their impact on human identification," Croat Med J,vol.45,pp.457-60,2004.
    [18]P.Liu,T.S.Seo,N.Beyor,K.J.Shin,J.R.Scherer,and R.A.Mathies,"Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing," Anal Chem,vol.79,pp.1881-9,2007.
    [19]J.R.Gilder,T.E.Doom,K.Inman,and D.E.Krane,"Run-specific limits of detection and quantitation for STR-based DNA testing," J Forensic Sci,vol.52,pp.97-101,2007.
    [20]D.Schmalzing,L.Koutny,D.Chisholm,A.Adourian,P.Matsudaira,and D.Ehrlich,"Two-Color Multiplexed Analysis of Eight Short Tandem Repeat Loci with an Electrophoretic Microdevice," Analytical Biochemistry,vol.270,pp.148-152,1999.
    [21]S.C.Beale,"Capillary Electrophoresis," Anal.Chem.,vol.70,pp.279-300,1998.
    [22]S.Hjerten,"Free zone electrophoresis," Chromatogr Rev,vol.9,pp.122-219,1967.
    [23]F.E.P.Mikkers,F.M.Everaerts,and J.A.F.Peek,"Isotachophoresis:The concepts of resolution,load capacity separation efficiency Ⅱ.Experimental evaluation," Journal of Chromatography A,vol.168,pp.317-332,1979.
    [24]F.E.P.Mikkers,E.M.Everaerts,and J.A.F.Peek,"Isotachophoresis:The concepts of resolution,load capacity and separation efficiency I.Theory," Journal of Chromatography A,vol.168,pp.293-315,1979.
    [25]S.Yue and Y.Xue-Feng,"Novel multi-depth microfiuidic chip for single cell analysis," J Chromatogr A,vol.1117,pp.228-33,2006.
    [26]X.Weng,H.Bi,B.Liu,and J.Kong,"On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel," Electrophoresis,vol.27,pp.3129-35,2006.
    [27]S.Tuomikoski,N.Virkkala,S.Rovio,A.Hokkanen,H.Siren,and S.Franssila,"Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchip," J Chromatogr A,vol.1111,pp.258-66,2006.
    [28]T.Vilkner,D.Janasek,and A.Manz,"Micro Total Analysis Systems.Recent Developments,"Anal.Chem.,vol.76,pp.3373-3386,2004.
    [29]S.Liu,H.Ren,Q.Gao,D.J.Roach,R.T.Loder,Jr.,T.M.Armstrong,Q.Mao,I.Blaga,D.L.Barker,and S.B.Jovanovich,"Automated parallel DNA sequencing on multiple channel microchips," Proc Natl Acad Sci USA,vol.97,pp.5369-74,2000.
    [30]S.Liu and A.Guttman,"Electrophoresis microchips for DNA analysis," Trends in Analytical Chemistry,vol.23,pp.422-431,2004.
    [31]L.Shaorong,"A microfabricated hybrid device for DNA sequencing," Electrophoresis,vol.24,pp.3755-3761,2003.
    [32]J.A.Fruetel,R.F.Renzi,V.A.Vandernoot,J.Stamps,B.A.Horn,J.A.West,S.Ferko,R.Crocker,C.G.Bailey,D.Arnold,B.Wiedenman,W.Y.Choi,D.Yee,I.Shokair,E.Hasselbrink,P.Paul,D.Rakestraw,and D.Padgen,"Microehip separations of protein biotoxins using an integrated hand-held device," Electrophoresis,vol.26,pp.1144-54,2005.
    [33]R.F.Renzi,J.Stamps,B.A.Horn,S.Ferko,V.A.Vandernoot,J.A.West,R.Crocker,B.Wiedenman,D.Yee,and J.A.Fruetel,"Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins," Anal Chem,vol.77,pp.435-41,2005.
    [34]G.J.Bruin,"Recent developments in electrokinetically driven analysis on microfabricated devices," Electrophoresis,vol.21,pp.3931-51,2000.
    [35]D.Erickson,"Towards numerical prototyping of labs-on-chip:modeling for integrated microfluidic devices," Microfluid Nanofluid,vol.1,pp.301-318,2005.
    [36]A.Alonso,C.Albarran,P.Martin,P.Garcia,J.Capilla,O.Garcia,C.de la Rua,N.Izaguirre,F.Pereira,L.Pereira,A.Amorim,and M.Sancho,"Usefulness of microchip electrophoresis for the analysis of mitochondrial DNA in forensic and ancient DNA studies,"Electrophoresis,vol.27,pp.5101-9,2006.
    [37]H.Shadpour and S.A.Soper,"Two-dimensional electrophoretic separation of proteins using poly(methyl methacrylate)microchips," Anal Chem,vol.78,pp.3519-27,2006.
    [38]L.J.Jin,B.C.Giordano,and J.P.Landers,"Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre- or postcolumn labeling," Anal Chem,vol.73,pp.4994-9,2001.
    [39]J.F.Dishinger and R.T.Kennedy,"Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells," Anal Chem,vol.79,pp.947-54,2007.
    [40]S.H.Yeung,S.A.Greenspoon,A.McGuckian,C.A.Crouse,C.A.Emrich,J.Ban,and R.A.Mathies,"Rapid and high-throughput forensic short tandem repeat typing using a 96-lane microfabricated capillary array electrophoresis microdevice," J Forensic Sci,vol.51,pp.740-7,2006.
    [41]T.Anazawa,S.Takahashi,and H.Kambara,"A Capillary Array Gel Electrophoresis System Using Multiple Laser Focusing for DNA Sequencing," Anal Chem.,vol.68,pp.2699-2704,1996.
    [42]S.Behr,M.Matzig,A.L.Holger,and E.C.Heller,"A fully automated multicapillary electrophoresis device for DNA analysis," Electrophoresis,vol.20,pp.1492-1507,1999.
    [43]J.Zhang,K.O.Voss,D.F.Shaw,K.P.Roos,D.F.Lewis,J.Yan,R.Jiang,H.Ren,J.Y.Hou,Y.Fang,X.Puyang,H.Ahmadzadeh,and N.J.Dovichi,"A multiple-capillary electrophoresis system for small-scale DNA sequencing and analysis," Nucleic Acids Res,vol.27,pp.e36,1999.
    [44]C.Emanuel,"DNA sequencing by capillary array electrophoresis and microfabricated array systems," Electrophoresis,vol.21,pp.55-65,2000.
    [45]C.A.Emrich,H.Tian,I.L.Medintz,and R.A.Mathies,"Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis,"Anal Chem.,vol.74,pp.5076-5083,2002.
    [46]H.Tian,L.C.Brody,and J.P.Landers,"Rapid detection of deletion,insertion,and substitution mutations via heteroduplex analysis using capillary- and microchip-based electrophoresis,"Genome Res,vol.10,pp.1403-13,2000.
    [47]X.C.Huang,M.A.Quesada,and R.A.Mathies,"Capillary array electrophoresis using laser-excited confocal fluorescence detection," Anal.Chem.,vol.64,pp.967-972,1992.
    [48]J.A.Taylor and E.A.Yeung,"Multiplexed fluorescence detector for capillary electrophoresis using axial optical fiber illumination," Anal Chem.,vol.65,pp.956-960,1993.
    [49]S.Takahashi,K.Murakami,T.Anazawa,and H.Kambara,"Multiple Sheath-Flow Gel Capillary-Array Electrophoresis for Multicolor Fluorescent DNA Detection," Anal Chem.,vol.66,pp.1021-1026,1994.
    [50]X.Wang,T.Sawaguchi,and A.Sawaguchi,"Application of electrophoresis technology to DNA analysis," Electrophoresis,vol.21,pp.334-337,2000.
    [51]L.Mitnik,L.Carey,R.Burger,S.Desmarais,L.Koutny,O.Wernet,P.Matsudaira,and D.Ehrlich,"High-speed analysis of multiplexed short tandem repeats with an electrophoretic microdevice," Electrophoresis,vol.23,pp.719-726,2002.
    [52]L.Koutny,D.Schmalzing,O.Salas-Solano,S.El-Difrawy,A.Adourian,S.Buonocore,K.Abbey,P.McEwan,P.Matsudaira,and D.Ehrlich,"Eight Hundred-Base Sequencing in a Microfabricated Electrophoretic Device," Anal.Chem.,vol.72,pp.3388-3391,2000.
    [53]B.M.Paegel,C.A.Emrich,G.J.Wedemayer,J.R.Scherer,and R.A.Mathies,"High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor," PNAS,vol.99,pp.574-579,2002.
    [54]N.Goedecke,B.M.Sameh,E.-D.L.Carey,P.Matsudaira,and D.Ehrlich,"A high-performance multilane microdevice system designed for the DNA forensics laboratory,"Electrophoresis,vol.25,pp.1678-1686,2004.
    [55]G.-A.L.Ya Jin,"Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips," Electrophoresis,vol.24,pp.1242-1252,2003.
    [56]Y.Sun,X.F.Yin,Y.Y.Ling,and Z.L.Fang,"Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis," Anal Bioanal Chem,vol.382,pp.1472-6,2005.
    [57]Z.J.Jia,Q.Fang,and Z.L.Fang,"Bonding of Glass Microfluidic Chips at Room Temperatures,"Anal.Chem.,vol.76,pp.5597-5602,2004.
    [58]J.Gao,X.-F.Yin,and Z.-L.Fang,"Integration of single cell injection,cell lysis,separation and detection of intracellular constituents on a microfluidic chip," Lab Chip vol.4,pp.47-52,2004.
    [59]L.Chen and J.Ren,"High-throughput DNA analysis by microchip electrophoresis," Comb Chem High Throughput Screen,vol.7,pp.29-43,2004.
    [60]J.Qin,N.Ye,L.Yu,D.Liu,Y.Fung,W.Wang,X.Ma,and B.Lin,"Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis," Electrophoresis,vol.26,pp.1155-62,2005.
    [61]X.Liu,X.Liu,A.Liang,Z.Shen,Y.Zhang,Z.Dai,B.Xiong,and B.Lin,"Studying prorein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection," Electrophoresis,vol.27,pp.3125-8,2006.
    [62]J.Qin,F.C.Leung,Y.Fung,D.Zhu,and B.Lin,"Rapid authentication of ginseng species using microchip electrophoresis with laser-induced fluorescence detection," Anal Bioanal Chem,vol.381,pp.812-9,2005.
    [63]J.Qin,Y.Fung,D.Zhu,and B.Lin,"Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection," J Chromatogr A,vol.1027,pp.223-9,2004.
    [64]Z.Shen,X.Liu,X.Zhou,A.Liang,D.Wu,L.Yu,Z.Dai,J.Qin,and B.Lin,"Quantitative evaluation of the interaction between netropsin and double stranded oligodeoxynu- cleotides by microfabricated capillary array electrophoresis," J Sep Sci,vol.30,pp.1544-8,2007.
    [65]A.Cantafora,I.Blotta,N.Bruzzese,S.Calandra,and S.Bertolini,"Rapid sizing of microsatellite alleles by gel electrophoresis on microfabricated channels:application to the D19S394 tetranucleotide repeat for cosegregation study of familial hypercholesterolemia,"Electrophoresis,vol.22,pp.4012-5,2001.
    [66]M.A.Schwarz and P.C.Hauser,"Recent developments in detection methods for microfabricated analytical devices," Lab on a Chip,vol.1,pp.1-6,2001.
    [671 J.Y.Frank,"On-column detection using a fused silica column," Journal of High Resolution Chromatography,vol.4,pp.83-85,1981.
    [68]W.Hellmich,D.Greif,C.Pelargus,D.Anselmetti,and A.Ros,"Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane)microfluidic devices," J Chromatogr A,vol.1130,pp.195-200,2006.
    [69]C.F.Duffy,B.MacCraith,D.Diamond,R.O'Kennedy,and E.A.Arriaga,"Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection," Lab Chip,vol.6,pp.1007-11,2006.
    [70]J.Z.Zhang,D.Y.Chen,S.Wu,H.R.Harke,and N.J.Dovichi,"High-Sensitivity Laser-Induced Fluorescence Detection for Capillary Electrophoresis," CLIN.CHEM.,vol.37,pp.1492-1496,1991.
    [71]S.Gotz and U.Karst,"Recent developments in optical detection methods for microchip separations," Anal Bioanal Chem,vol.387,pp.183-92,2007.
    [72]V.Heleg-Shabtai,N.Gratziany,and Z.Liron,"Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence," Electrophoresis,vol.27,pp.1996-2001,2006.
    [73]G.Hempel and G.Blaschke,"Direct determination of zolpidem and its main metabolites in urine using capillary electrophoresis with laser-induced fluorescence detection," J Chromatogr B Biomed Appl,vol.675,pp.131-7,1996.
    [74]Z.Nackerdien,S.Morris,S.Choquette,B.Ramos,and D.Atha,"Analysis of laser-induced plasmic DNA photolysis by capillary electrophoresis," J Chromatogr B Biomed Appl,vol.683,pp.91-6,1996.
    [75]E.H.Turner,K.Lauterbach,H.R.Pugsley,V.R.Palmer,and N.J.Dovichi,"Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence," Anal Chem,vol.79,pp.778-81,2007.
    [76]E.T.Lagally,I.Medintz,and R.A.Mathies,"Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device," Anal.Chem.,vol.73,pp.565-570,2001.
    [77]W.D.Wilson,"Analyzing Biomolecular Interactions," Science,vol.295,pp.2103-2105,2002.
    [78]T.Yamamoto,M.Kyo,T.Kamiya,T.Tanaka,J.D.Engel,H.Motohashi,and M.Yamamoto,"Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements," Genes Cells,vol.11,pp.575-91,2006.
    [79]M.Kyo,T.Yamamoto,H.Motohashi,T.Kamiya,T.Kuroita,T.Tanaka,J.D.Engel,B.Kawakami,and M.Yamamoto,"Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique," Genes Cells,vol.9,pp.153-64,2004.
    [80]W.B.J.K.T.S.Heinz Engelhardt,"Capillary Electrophoresis:Methods and Scope," Angewandte Chemie International Edition in English,vol.32,pp.629-649,1993.
    [81]Y.Iwasaki,T.Tobita,K.Kurihara,T.Horiuchi,K.Suzuki,and O.Niwa,"Imaging of electrochemical enzyme sensor on gold electrode using surface plasmon resonance," Biosens Bioelectron,vol.17,pp.783-8,2002.
    [82]D.Boecker,A.Zybin,V.Horvatic,C.Grunwald,and K.Niemax,"Differential surface plasmon resonance imaging for high-throughput bioanalyses," Anal Chem,vol.79,pp.702-9,2007.
    [83]H.P.Ho,C.L.Wong,K.S.Chan,S.Y.Wu,and C.Lin,"Application of two-dimensional spectral surface plasmon resonance to imaging of pressure distribution in elastohydrodynamic lubricant films," Appl Opt,vol.45,pp.5819-26,2006.
    [84]Y.H.Lin,G.B.Lee,C.W.Li,G.R.Huang,and S.H.Chen,"Flow-through sampling for electrophoresis-based microfluidic chips using hydrodynamic pumping," J Chromatogr A,vol.937,pp.115-25,2001.
    [85]T.Natsume,H.Nakayama,O.Jansson,T.Isobe,K.Takio,and K.Mikoshiba,"Combination of Biomolecular Interaction Analysis and Mass Spectrometric Amino Acid Sequencing,"Anal.Chem.,vol.72,pp.4193-4198,2000.
    [86]J.Borch and P.Roepstorff,"Screening for Enzyme Inhibitors by Surface Plasmon Resonance Combined with Mass Spectrometry," Anal.Chem.,vol.76,pp.5243-5248,2004.
    [87]C.Shang,T.Shibahara,K.Hanada,Y.Iwafune,and H.Hirano,"Mass Spectrometric Analysis of Posttranslational Modifications of a Carrot Extracellular Glycoprotein," Biochemistry,vol.43,pp.6281-6292,2004.
    [88]M.Kyo,K.Usui-Aoki,and H.Koga,"Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique," Anal Chem,vol.77,pp.7115-21,2005.
    [89]T.Livache,E.Maillart,N.Lassalle,P.Mailley,B.Corso,P.Guedon,A.Roget,and Y.Levy,"Polypyrrole based DNA hybridization assays:study of label free detection processes versus fluorescence on microchips," J Pharm Biomed Anal,vol.32,pp.687-96,2003.
    [90]H.J.Lee,T.T.Goodrich,and R.M.Corn,"SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on Gold Thin Films," Anal.Chem.,vol.73,pp.5525-5531,2001.
    [91]N.Ly,K.Foley,and N.Tao,"Integrated label-free protein detection and separation in real time using confined surface plasmon resonance imaging," Anal Chem,vol.79,pp.2546-51,2007.
    [92]陈义,毛细管电泳技术及应用.北京:化学工业出版社,2000.
    [93]T.S.Stevens and H.J.Cortes,"Electroosmotic propulsion of eluent through silica-based chromatographic media," Anal.Chem.,vol.55,pp.1365-1370,1983.
    [94]X.Xuan,B.Xu,D.Sinton,and D.Li,"Electroosmotic flow with Joule heating effects,"Lab Chip,vol.4,pp.230-236,2004.
    [95]N.Kocaturk,N.Oztekin,and F.Bedia Erim,"Direct determination of bromide ions in seawater by capillary zone electrophoresis using polyethyleneimine-coated capillaries,"Anal Bioanal Chem,vol.377,pp.1207-11,2003.
    [96]J.Lahann,M.Balcells,H.Lu,T.Rodon,K.F.Jensen,and R.Langer,"Reactive Polymer Coatings:A First Step toward Surface Engineering of Microfluidic Devices," Anal.Chem.,vol.75,pp.2117-2122,2003.
    [97]D.R.Reyes,D.Iossifidis,P.A.Auroux,and A.Manz,"Micro Total Analysis Systems.1.Introduction,Theory,and Technology," Anal.Chem.,vol.74,pp.2623-2636,2002.
    [98]B.B.Haab and R.A.Mathies,"Optimization of Single-Molecule Fluorescence Burst Detection of ds-DNA:Application to Capillary Electrophoresis Separations of 100-1000 Basepair Fragments," Applied Spectroscopy,,vol.51,pp.1579-1584 1997.
    [99]E.A.S.Doherty,C.W.Kan,B.M.Paegel,S.H.I.Yeung,S.Cao,R.A.Mathies,and A.E.Barron,"Sparsely Cross-Linked "Nanogel" Matrixes as Fluid,Mechanically Stabilized Polymer Networks for High-Throughput Microchannel DNA Sequencing," Anal.Chem.,vol.76,pp.5249-5256,2004.
    [100]E.A.Doherty,C.W.Kan,and A.E.Barron,"Sparsely cross-linked "nanogels" for microchannel DNA sequencing," Electrophoresis,vol.24,pp.4170-80,2003.
    [101]V.M.Ugaz,S.N.Brahmasandra,D.T.Burke,and M.A.Burns,"Cross-linked polyacrylamide gel electrophoresis of single-stranded DNA for microfabricated genomic analysis systems," Electrophoresis,vol.23,pp.1450-9,2002.
    [102]Q.Fang,"Sample introduction for microfluidic systems," Anal Bioanal Chem,vol.378,pp.49-51,2004.
    [103]Z.L.Fang and Q.Fang,"Development of a low-cost microfluidic capillary-electrophoresis system coupled with flow-injection and sequential-injection sample introduction(review)," Fresenius J Anal Chem,vol.370,pp.978-83,2001.
    [104]I.M.Lazar,J.Grym,and F.Foret,"Microfabricated devices:A new sample introduction approach to mass spectrometry," Mass Spectrom Rev,vol.25,pp.573-94,2006.
    [105]W.B.Du,Q.Fang,Q.H.He,and Z.L.Fang,"High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows,"Anal Chem,vol.77,pp.1330-7,2005.
    [106]邓延倬,何金兰,高效毛细管电泳.北京:科学出版社,2000.
    [107]M.Gong,K.R.Wehmeyer,A.M.Stalcup,P.A.Limbach,and W.R.Heineman,"Study of injection bias in a simple hydrodynamic injection in microchip CE," Electrophoresis,vol.28,pp.1564-71,2007.
    [108]K.Hata,T.Kaneta,and T.Imasaka,"Hadamard transform capillary electrophoresis combined with laser-induced fluorometry using electrokinetic injection," Anal Chim Acta,vol.556,pp.178-82,2006.
    [109]L.M.Fu,C.H.Lin,and G.L.Chang,"Multiple volume injection technique for high-resolution DNA sample detection utilizing planar microfluidic chip," Conf Proc IEEE Eng Med Biol Soc,vol.7,pp.5017-20,2004.
    [110]C.J,H.F,and C.P.,"Numerical study on sample stacking in capillary electrophoresis," Se Pu,vol.25,pp.183-188.,2007
    [111]Q.L.Wang,L.Y.Fan,W.Zhang,and C.X.Cao,"Sensitive analysis of two barbiturates in human urine by capillary electrophoresis with sample stacking induced by moving reaction boundary," Anal Chim Acta,vol.580,pp.200-5,2006.
    [112]X.Wang,W.Zhang,L.Y.Fan,B.Hao,A.N.Ma,C.X.Cao,and Y.X.Wang,"Sensitive quantitative determination of oxymatrine and matrine in rat plasma by capillary electrophoresis with stacking induced by moving reaction boundary," Anal Chim Acta,vol.594,pp.290-6,2007.
    [113]H.J,P.J,M.V,T.E,V.L,A.DW,G.B,and S.J.,"On-line preconcentration of weak electrolytes by electrokinetic accumulation in CE:experiment and simulation," Electrophoresis,vol.28,pp.1540-1547,2007
    [114]宋立国,陈洪,张乐,程介克,“样品稀释对毛细管电泳分离检测DNA片段的影响,”色谱 Chinese Journal of chromatograph,vol.17,pp.379-382,1999.
    [115]范国荣,胡晋红,林梅,安登魁,“毛细管电泳生物样品预处理技术,”中国药科大学学报,vol.30,pp.477-480,1999.
    [116]S.A.S.Scott McWhorter,"Near-infrared laser-induced fluorescence detection in capillary electrophoresis," Electrophoresis,vol.21,pp.1267-1280,2000.
    [117]M.Funes-Huacca,L.C.Regitano,O.Mueller,and E.Carrilho,"Semiquantitative determination of Alicyclobacillus acidoterrestris in orange juice by reverse-transcriptase polymerase chain reaction and capillary electrophoresis--laser induced fluorescence using microchip technology," Electrophoresis,vol.25,pp.3860-4,2004.
    [118]G.Jiang,S.Attiya,G.Ocvirk,W.E.Lee,and D.J.Harrison,"Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis,"Biosens Bioelectron,vol.14,pp.861-9,2000.
    [119]H.J.Crabtree,S.J.B.Darren,F.Lewis,J.Zhang,L.D.Coulson,G.A.Fitzpatrick,S.L.D.D.J.arrison,and N.J.Dovichi,"Construction and evaluation of a capillary array DNA sequencer based on a micromachined sheath-flow cuvette," Electrophoresis,vol.21,pp.1329-1335,2000.
    [120]E.Gassmann,J.E.Kuo,and R.N.Zare,"Electrokinetic Separation of Chiral Compounds,"Science,vol.230,pp.813-814,1985.
    [121]J.A.Taylor and E.S.Yeung,"Axial-beam laser-excited fluorescence detection in capillary electrophoresis," Anal Chem.,vol.64,pp.1741-1744,1992.
    [122]R.A.Mathies,K.Peck,and L.Stryer,"Optimization of high-sensitivity fluorescence detection,"Anal Chem.,vol.62,pp.1786-1791,1990.
    [123]M.C.Ruiz-Martinez,J.Berka,A.Belenkii,F.Foret,A.W.Miller,and B.L.Karger,"DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection," Anal Chem,vol.65,pp.2851-8,1993.
    [124]Z.S.A and L.F.E.,"Comparison of 90° and Epi-geometry for Two-Photon Excitation in Capillaries" Appl Spectrosc,vol.54,pp.1490-1494,2000.
    [125]Y.X.Sun,F.Zhu,and W.Y.Ma,"[Study on multi-photon excited fluorescence combined with capillary electrophoresis]," Guang Pu Xue Yu Guang Pu Fen Xi,vol.25,pp.502-5,2005.
    [126]N.G,N.M,and V.P,"Ball-lens laser-induced fluorescence detector as an easy-to-use highly sensitive detector for capillary electrophoresis application to the identification of biogenic amines in dairy products," J Chromatogr A,vol.717,pp.335-343,1995.
    [127]Y.Shi,P.C.Simpson,J.R.Scherer,D.Wexler,C.Skibola,M.T.Smith,and R.A.Mathies,"Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis," Anal Chem.,vol.71,pp.5354-5361,1999.
    [128]F.J.L,F.Q,and Z.T,"Laser-Induced Fluorescence Detection System for Microfluidic Chips Based on an Orthogonal Optical Arrangement," Anal Chem,vol.78,pp.3827-3834,2006.
    [129]石岩,王立强,郑华,汪洁,陆祖康,“提高荧光收集效率的新型微流控芯片检测系统,”光电子.激光,in press.
    [130]Y.Shi,L.Wang,H.Zheng,J.Wang,and Z.Lu,"Research on the Technology of Fluorescence Separation from Exciting Light for LIF Detection," presented at SPIE The 3rd SPIE International Symposium on Advanced Optical Manufacturing and Testing Technologies,2007.
    [131]施心路,光学显微镜及生物摄影基础教程.北京:科学出版社,2002.
    [132]V.Namasivayam,R.Lin,B.Johnson,S.Brahmasandra,Z.Razzacki,D.T.Burke,and a.M.A.Burns,"Advances in on-chip photodetection for applications in miniaturized genetic analysis systems," JOURNAL OF MICROMECHANICS AND MICROENGINEERING,vol.14,pp.81-90,2004.
    [133]P.D.Angus,C.W.Demarest,T.Catalano,and J.F.Stobaugh,"Aspects of column fabrication for packed capillary electrochromatography," J Chromatogr A,vol.887,pp.347-65,2000.
    [134]D.Sinton,C.Escobedo-Canseco,L.Ren,and D.Li1,"Direct and Indirect Electroosmotic Flow Velocity Measurements in Microchannels," Journal of Colloid and Interface Science vol.254,pp.184-189,2002.
    [135]W.Wang,L.Zhao,L.P.Jiang,J.R.Zhang,J.J.Zhu,and H.Y.Chen,"EOF measurement by detection of a sampling zone with end-channel amperometry in microchip CE," Electrophoresis,vol.27,pp.5132-7,2006.
    [136]L.E.Locascioa,C.E.Persoa,and C.S.Lee,"Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate,"Journal of Chromatography A,,vol.857,pp.275-284,1999.
    [137]张凌怡,张维冰,张玉奎,“微电渗流毛细管原位柱中流动相组成对电渗流的影响,”分析化学,vol.32,pp.569-572,2004.
    [138]X.Huang,M.J.Gordon,and R.N.Zare,"Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis," Anal.Chem.,vol.60,pp.1837-1838,1988.
    [139]J.Gaudioso and H.G.Craighead,"Characterizing electroosmotic flow in microfluidic devices,"Journal of Chromatography A,vol.971,pp.249-253,2002.
    [140]O.Salas-Solano,D.Schmalzing,L.Koutny,S.Buonocore,A.Adourian,P.Matsudaira,and D.Ehrlich,"Optimization of High-Performance DNA Sequencing on Short Microfabricated Electrophoretic Devices," Anal Chem.,vol.72,pp.3129-3137,2000.
    [141]B.F.Liu,H.Hisamoto,and S.Terabe,"Subsecond separation of cellular flavin coenzymes by microchip capillary electrophoresis with laser-induced fluorescence detection," J Chromatogr A,vol.1021,pp.201-7,2003.
    [142]Y.Okamoto,F.Kitagawa,and K.Otsuka,"Online Concentration and Affinity Separation of Biomolecules Using Multifunctional Particles in Capillary Electrophoresis under Magnetic Field," Anal Chem,vol.79,pp.3041-7,2007.
    [143]D.M.H.L.A.A.Sourav Saha,"Electrophoretic mobility of linear and star-branched DNA in semidilute polymer solutions," Electrophoresis,vol.27,pp.3181-3194,2006.
    [144]J.R.J.N.C.T.M.L.Gary W.Slater,"Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels," Biopolymers,vol.27,pp.509-524,1988.
    [145]J.A.Luckey and L.M.Smith,"A model for the mobility of single-stranded DNA in capillary gel electrophoresis," Electrophoresis,vol.14,pp.492-501,1993.
    [146]J.A.Luckey and L.M.Smith,"Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis," Anal.Chem.,vol.65,pp.2841-2850,1993.
    [147]P.D.B.H.Z.Oscar J.Lumpkin,"Theory of gel electrophoresis of DNA," Biopolymers,vol.24,pp.1573-1593,1985.
    [148]汪洁,王立强,石岩,郑华,陆祖康,“线性聚丙烯酰胺凝胶毛细管电泳的迁移特性分析,”分析化学,in press.
    [149]C.Backhouse,M.Caamano,F.Oaks,E.Nordman,A.Carrillo,B.Johnson,and S.Bay,"DNA sequencing in a monolithic microchannel device," Electrophoresis,vol.21,pp.150-156,2000.
    [150]D.Schmalzing,A.Adourian,L.Koutny,L.Ziaugra,P.Matsudaira,and D.Ehrlich,"DNA Sequencing on Microfabricated Electrophoretic Devices," Anal.Chem.,vol.70,pp.2303-2310,1998.
    [151]D.V.Jarikote,N.Krebs,S.Tannert,B.Roder,and O.Seitz,"Exploring base-pair-specific optical properties of the DNA stain thiazole orange," Chemistry,vol.13,pp.300-10,2007.
    [152]V.Karunakaran,J.L.Perez Lustres,L.Zhao,N.P.Ernsting,and O.Seitz,"Large dynamic Stokes shift of DNA intercalation dye Thiazole Orange has contribution from a high-frequency mode," J Am Chem Soc,vol.128,pp.2954-62,2006.
    [153]X.Wang and U.J.Krull,"Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide:development of a self-contained DNA biosensor on a fiber optic surface," Bioorg Med Chem Lett,vol.15,pp.1725-9,2005.
    [154]N.Zhang and E.S.Yeung,"Genetic typing by capillary electrophoresis with the allelic ladder as an absolute standard," Anal Chem,vol.68,pp.2927-31,1996.
    [155]J.Wang,L.Q.Wang,Y.Shi,H.Zheng,and Z.K.Lu,"An analysis of signal intensity affect by the light spot with laser induced fluorescence detection," presented at IEEE,Hang zhou,China,2006.
    [156]X.Paez and L.Hernandez,"Biomedical applications of capillary electrophoresis with laser-induced fluorescence dejection," Biopharm Drug Dispos,vol.22,pp.273-89,2001.
    [157]J.Skeidsvoll and P.M.Ueland,"Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I," Anal Biochem,vol.231,pp.359-65,1995.
    [158]E.Velasco,M.Infante,M.Duran,L.Perez-Cabornero,D.J.Sanz,E.Esteban-Cardenosa, and C.Miner,"Heteroduplex analysis by capillary array electrophoresis for rapid mutation detection in large multiexon genes," Nat Protoc,vol.2,pp.237-46,2007.
    [159]J.J.Lu,Q.Pu,S.Wang,and S.Liu,"A cam-based laser-induced fluorescence scanner for capillary array electrophoresis," Anal Chim Acta,vol.590,pp.98-103,2007.
    [160]L.A.Larsen,C.Jespersgaard,and P.S.Andersen,"Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection,"Nat Protoc,vol.2,pp.1458-66,2007.
    [161]H.W.Sun,P.He,Y.K.Lv,and S.X.Liang,"Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector,"J Chromatogr B Analyt Technol Biomed Life Sci,vol.852,pp.145-51,2007.
    [162]J.Wang,Y.Zhang,L.Wang,and J.Bai,"Capillary array electrophoresis for the research of racemization reaction of L-amino acids," J Chromatogr A,vol.1144,pp.279-82,2007.
    [163]C.Jespersgaard,L.A.Larsen,S.Baba,Y.Kukita,T.Tahira,M.Christiansen,J.Vuust,K.Hayashi,and P.S.Andersen,"Optimization of capillary array electrophoresis single-strand conformation polymorphism analysis for routine molecular diagnostics," Electrophoresis,vol.27,pp.3816-22,2006.
    [164]J.Wang,K.Liu,G.Sun,J.Bai,and L.Wang,"High-throughput screening for the asymmetric transformation reaction of L-histidine to D-histidine by capillary array electrophoresis,"Anal Chem,vol.78,pp.901-4,2006.
    [165]L.Carey and L.Mitnik,"Trends in DNA forensic analysis," Electrophoresis,vol.23,pp.1386-1397,2002.
    [166]X.Lu and E.S.Yeung,"Optimization of Excitation and Detection Geometry for Multiplexed Capillary Array Electrophoresis of DNA Fragments," Applied Spectroscopy,vol.49,pp.605-609 1995.
    [167]H.Kambara and S.Takahashi,"Multiple-sheathflow capillary array DNA analyser," Nature,vol.361,pp.565-566,1993.
    [168]汪洁,王立强,石岩,郑华,陆祖康,“毛细管阵列电泳检测过程中的杂散光分析,”老子学报 in press.
    [169]石岩,倪旭翔,王立强,陆祖康,“双激光生物芯片分析仪扫描物镜设计,”浙江大学学报(工学版),vol.39,pp.1056-1059,2005.
    [170]D.Chen,M.D.Peterson,R.L.Brumley,M.C.Giddings,E.C.Buxton,M.Westphall,L.Smith,and L.M.Smith,"Side Excitation of Fluorescence in Ultrathin Slab Gel Electrophoresis,"Anal Chem.,vol.67,pp.3405-3411,1995.
    [171]J.Wang,L.Q.Wang,Y.Shi,H.Zheng,andZ.K.Lu,"Study of stray light and cross-talk of the capillary array electrophoresis," Key Engineering Materials,vol.366,pp.1128-1132,2007.
    [172]H.Jouin,W.Daher,J.Khalife,I.Ricard,O.M.Puijalon,M.Capron,and D.Dive,"Double staining of Plasmodium falciparum nucleic acids with hydroethidine and thiazole orange for cell cycle stage analysis by flow cytometry," Cytometry A,vol.57,pp.34-8,2004.
    [173]J.R.Carreon,K.P.Mahon,Jr.,and S.O.Kelley,"Thiazole orange-peptide conjugates:sensitivity of DNA binding to chemical structure," Org Lett,vol.6,pp.517-9,2004.
    [174]A.Skripchenko,S.J.Wagner,D.Thompson-Montgomery,and H.Awatefe,"Thiazole orange,a DNA-binding photosensitizer with flexible structure,can inactivate pathogens in red blood cell suspensions while maintaining red cell storage properties," Transfusion,vol.46,pp.213-9,2006.
    [175]F.Dang,W.Li,L.Zhang,M.Jabasini,T.Ishida,H.Kiwada,N.Kaji,M.Tokeshi,and Y.Baba,"Electrophoretic behavior of plasmid DNA in the presence of various intercalating dyes," J Chromatogr A,vol.1118,pp.218-25,2006.
    [176]F.Sang and J.Ren,"Capillary electrophoresis of double-stranded DNA fragments using a new fluorescence intercalating dye EvaGreen," J Sep Sci,vol.29,pp.1275-80,2006.
    [177]H.Takai,H.Yamakawa,O.Ohara,and J.Sakaguchi-Inoue,"Sequence-dependent separation of DNA fragments by capillary electrophoresis in the presence of SYBR Green I,"Biotechniques,vol.23,pp.58,60,1997.
    [178]V.Gareia-Canas,R.Gonzalez,and A.Cifuentes,"Ultrasensitive detection of genetically modified maize DNA by capillary gel electrophoresis with laser-induced fluorescence using different fluorescent intercalating dyes," J Agric Food Chem,vol.50,pp.4497-502,2002.
    [179]L.Song,T.Liu,D.Liang,D.Fang,and B.Chu,"Separation of double-stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone," Electrophoresis,vol.22,pp.3688-3698,2001.
    [180]徐国雄,黄震,倪旭翔,陆祖康,”生物芯片检测系统中荧光信号强度及系统灵敏度分析,”光子学报,vol.33,pp.1192-1195,2004.
    [181]王立强,陆祖康,”生物芯片扫描仪的探测灵敏度,”光电工程 vol.3,pp.47-50,2005.
    [182]Q.Li and E.S.Yeung,"Evaluation of the Potential of a Charge-Injection Device for DNA Sequencing by Multiplexed Capillary Electrophoresis," Applied Spectroscopy,vol.49,pp.825-833,1995.
    [183]E.Privat,T.Melvin,F.Me'rola,G.Schweizer,S.Prodhomme,U.Asseline,and P.Vigny,"Fluorescent Properties of Oligonucleotide-conjugated Thiazole Orange Probes," Photochemistry and Photobiology,vol.75,pp.201-210,2002.
    [184]王立强,陆祖康,倪旭翔,”共聚焦生物芯片扫描仪中PMT电流增益的自动控制,”光子学报,vol.33,pp.314-317,2004.
    [185]汪洁,王立强,石岩,郑华,陆祖康,”DNA分析仪的灵敏度分析”光子学报,in press.
    [186]K.Visscher,G.J.Brakenhoff,and T.D.Visser.,"Fluorescence saturation in confocal microscopy"J.Microsc.,vol.175,pp.162-165.,1994.
    [187]G.V.d.Engh and C.Farmer," Photo-Bleaching and Photon Saturation in Flow Cytometry,"Cytometry,,vol.13,pp.669-77.,1992.
    [188]D.J.Rachlin and I.SIVACOR,"Optimized approach for microarray scanning " presented at Functional Monitoring and Drug-Tissue Interaction,2002.
    [189]C.-W.Kan,C.P.Fredlake,E.A.S.Doherty,and A.E.Barron,"DNA sequencing and genotyping in miniaturized electrophoresis systems," Electrophoresis,vol.25,pp.3564-3588,2004.
    [190]B.B.Rosenblum,L.G.Lee,S.L.Spurgeon,S.H.Khan,S.M.Menchen,C.R.Heiner,and S.M.Chen,"New dye-labeled terminators for improved DNA sequencing patterns," Nucleic Acids Res,vol.25,pp.4500-4,1997.
    [191]A.G.mez-Hens and M.P.Aguilar-Caballos,"Long-wavelength fluorophores:new trends in their analytical use," Trends in Analytical Chemistry,vol.23,pp.127-136,2004.
    [192]P.-A.Auroux,Y.Koc,A.deMello,A.Manzb,and P.J.R.Day,"Miniaturised nucleic acid analysis," Lab Chip vol.4,pp.534-546,2004.
    [193]A.M.Powe,K.A.Fletcher,N.N.St.Luce,M.Lowry,S.Neal,M.E.McCarroll,P.B.Oldham,L.B.McGown,and I.M.Warner,"Molecular Fluorescence,Phosphorescence,and Chemiluminescence Spectrometry," Anal Chem.,vol.76,pp.4614-4634,2004.
    [194]R.S.Duthie,I.M.Kalve,S.B.Samols,S.Hamilton,I.Livshin,M.Khot,S.Nampalli,S.Kumar,and C.W.Fuller,"Novel cyanine dye-labeled dideoxynucleoside triphosphates for DNA sequencing," Bioconjug Chem,vol.13,pp.699-706,2002.
    [195]陈秀英,彭孝军,”DNA分子荧光探针,” 染料与染色 vol.41,pp.315-319,2004.
    [196]S.Laib and S.Seeger,"FRET studies of the interaction of dimeric cyanine dyes with DNA," J Fluoresc,vol.14,pp.187-91,2004.
    [197]Y.L.W.K.M.R.W.Ching-Hsuan Tung,"A Receptor-Targeted Near-Infrared Fluorescence Probe for In Vivo Tumor Imaging," ChemBioChem,vol.3,pp.784-786,2002.
    [198]B.M.Paegel,R.G.Blazej,and R.A.Mathies,"Microfluidic devices for DNA sequencing:sample preparation and electrophoretic analysis," Curr Opin Biotechnol,vol.14,pp.42-50,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700