基于环糊精的包结复合凝胶与疏水缔合凝胶的制备及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要合成了两种物理交联凝胶:其一是基于主体分子环糊精的包结作用所得到的包结复合凝胶;其二是通过疏水改性聚合物的缔合作用所获得的疏水缔合凝胶。
     论文的第一章主要综述了近年来化学交联凝胶与物理交联凝胶的各种形式,以及β-环糊精作为主体分子与表面活性剂的作用和在凝胶形成过程中的作用。
     第二章和第三章作为包结复合凝胶的研究基础,分别研究了环糊精与表面活性剂包结复合物的结晶行为及温度响应性。第四章中研究了基于环糊精与表面活性单体的包结复合凝胶。
     第五章和第六章中研究了高机械性能的疏水缔合凝胶的力学性质、交联过程以及溶胀行为。
     第七章为本论文的结论部分。
Hydrogel is a disquisitive hotspot in materials science at present. It was divided into physically crosslinked hydrogel and chemically crosslinked hydrogel according to different crosslinking ways. Physically crosslinked hydrogel is three-dimensional crosslinked network formed by noncovalent bond interaction, it includes van der Waals force,π-πinteraction, ionic interaction, hydrogen bonding action, hydrophobic action and entanglement action, and so on. These noncovalent bond interactions led physically crosslinked hydrogel marked difference from chemically crosslinked hydrogel in many properties, such as intelligent sol-gel transformation, special mechanical behavior and swelling behavior. Consequently, physically crosslinked hydrogel showed significance application prospect in bio-medicine and tissue engineering. Presently, just four kinds of hydrogels, topological hydrogels, double network hydrogels, nanocomposite hydrogels and macromolecular microsphere composite hydrogels, possess excellent mechanical property. In order to meet the needs of gels in mechanical property and tissue engineering, new hydrogels with high mechanical strength were hankered.
     In this thesis, preparation of physically crosslinked hydrogel is the major objectives. Physically crosslinked inclusion complex hydrogel (IC gels) and hydrophobically associating hydrogel (HA gels) were prepared. Study on IC gels were supported in theory and practice by investigating the interaction betweenβ-cyclodextrin (β-CD) and nonionic surfactant Octyl phenol polyethoxy ether (OP-n), such as crystallization behavior and temperature responsibility. IC gels were prepared by inclusion complex interaction betweenβ-CD polymer and surmonomer OP-10-AC. In addition, HA gels with high mechanical strength were prepared by micellar copolymerization, and the structure and formation of HA gels were discussed by swelling behavior and tensile mechanical properties.
     For the mixed dispersity system consisting ofβ-CD and OP-n, the inclusion complex of 2∶1 stoichiometry betweenβ-CD and OP-n was determined via the optical transparency method as well as the color method. The transparency of mixed dispersity system first increased and then decreased with increasingβ-CD contents, and crystallization was formed by hydrogen bonds action. The phase distribution behaviors ofβ-CD and OP-n were determined by UV-Visible spectrum and Gravimetric analysis, respectively. The roles ofβ-CD and OP-n (n = number of oxyethylene units) in phase distribution process were investigated. The results indicated thatβ-CD could promote the phase separation and whereas OP-n surfactants’hydrophilic part hinder the phase separation. The crystal morphologies of mixed systems were powders and branches, which were characterized by polarized light microscope. The crystalline structure was further characterized by X-ray Diffraction (XRD), and the results revealed that these inclusion complexes presented a channel-type structure by intermolecular hydrogen bonding.
     Furthermore, the temperature response of the mixed dispersity systems ofβ-CD and OP-n in water was investigated by UV-visible spectrum. Changes of four kinds of interaction, hydrogen bond interaction between pseudorotaxanes, association interaction of surfactants, inclusion-exclusion action and hydrogen bond interaction between oxyethylene group and H2O, were investigated through discussion in turbidity with varied temperature. The results revealed that hydrophilic polyoxyethylene part transformed into hydrophobic conformation at high temperature by the induction ofβ-CD, and the three hydrophobic parts, octyl, phenyl and oxyethylene groups, could be included into the cavity ofβ-CD, the mixed systems were in dynamic equilibrium state of inclusion-exclusion.
     β-CD polymeric particle was prepared by reactivity of hydroxyl group, and the particle size was determined by AFM and TEM. Surfactant OP-10 was modified into polymerizable monomer OP-10-AC. IC gels consisting of OP-10-AC,β-CD NP and AM were prepared with inclusion complexes ofβ-CD NP and OP-10-AC as multifunctional crosslinker. The effects ofβ-CD NP on structure and properties of IC gels were investigated by rheology and mechanical proerties tests. The results showed that the association structure converted into inclusion structure with increasingβ-CD NP contents, and viscosity first increased and then decreased in IC gels systems. The tensile strength basically unchanged and elongation at break increased with increasingβ-CD NP contents.
     Hydrophobic associating hydrogels (HA gels) with high mechanical strength were synthesized through micellar copolymerization of acrylic acid (AA) and a small amount of octadecyl methacrylate (OMA) in an aqueous solution containing sodium dodecyl sulfate (SDS). The three-dimensional network of HA gels can be constructed with the solubilization micelles that act as effective cross-linker. Therefore, the effects of SDS contents on various physical properties, such as optical transparency, mechanical property and swelling behavior were investigated. The mechanical properties and swelling ratios exhibited approximately the same inflection point with increasing SDS content, it was obviously differ from other hydrogels such as conventional chemically cross-linked hydrogels and nanocomposite hydrogels. The structural and elastic parameters were evaluated by the theory of rubber elasticity, Mooney-Rivlin theory and the theory of micellar copolymerization. The results showed that the number of solubilization micelles increase, but, the number of effective cross-linking points first increase and then decrease with increasing SDS contents. This is the reason why some properties of HA gels exhibit inflection points with the increasing of SDS contents. The formation process of HA gels could be divided into two processes: one was the micellar copolymerization process of mixed dispersed system, and the other was the associating process between different hydrophobic microblocks solubilized by surfactant SDS.
     The physically crosslinked hydrogel possess particular swelling behavior. The side was obviously differ from section in swelling ratio and rate, it due to the different structure. Therefore, the shape of IC gels changed from cylinder type to dumbbell type, and cylinder type again. The swelling behavior of HA gels in aqueous solutions at different pH values, salt concentration and temperature were investigated. The results showed that the swelling process could be divided into three stages: namely, the gels erosion stage, swelling equilibrium stage and gels disruption stage. Salt would restrained the swelling of HA gels, and inorganic salt is more stronger than organic salt. For HA gels, the increasing temperature can promote gels erosion.
     In summary, IC gels were prepared via host-guest interaction based on the study ofβ-CD and OP-n mixed dispersity system, and received significant results. The formation mechanism and swelling process of HA gels were investigated. These results gave a basis for study on physically crosslinked hydrogel.
引文
[1] Oh J K, Drumright R, Siegwart D J, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications [J]. Prog. Polym. Sci., 2008, 33: 448-477.
    [2] Chaterji S, Kwon I, Park K. Smart polymeric gels: Redefining the limits of biomedical devices [J]. Prog. Polym. Sci., 2007, 32: 1083-1122.
    [3] Chandra R, Rustgi R. Biodegradable polymers [J]. Prog. Polym. Sci., 1998, 23: 1273–1335.
    [4]苏雪峰.聚电解质纳米复合水凝胶的合成与性能研究[D].吉林:吉林大学化学学院, 2008.
    [5]翟茂林,哈鸿飞.水凝胶的合成、性质及应用[J].大学化学, 2001, 16: 22-27.
    [6] Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery [J]. Advanced Drug Delivery Reviews, 2008, 60: 1638-1649.
    [7] Hoffman A S. Hydrogels for biomedical applications [J]. Advanced Drug Delivery Reviews, 2002, 43: 3-12.
    [8] Matsukuma D, Yamamoto K, Aoyagi T. Stimuli-Responsive Properties of N-Isopropylacrylamide-Based Ultrathin Hydrogel Films Prepared by Photo-Cross-Linking [J]. Langmuir, 2006, 22: 5911-5915.
    [9] Peppas N A, Mikos A G, Preparation methods and structure of hydrogels [M]. Boca Raton: CRC Press, 1986.
    [10] Ulanski P, Pawlowska1W, Kadlubowski S, et al. Synthesis of hydrogels by radiation-induced cross-linking of Pluronic F127 in N2O-saturated aqueous solution [J]. Polym. Adv. Technol., 2006, 17: 804-813.
    [11]宫政,丁珊珊,尹玉姬,崔元璐,姚康德.组织工程用水凝胶制备方法研究进展[J].化工进展, 2008, 27: 1743-1749.
    [12] Schneider H J, Strongin R M. Supramolecular Interactions in Chemomechanical Polymers [J]. Acc. Chem. Res., 2009, 42: 1489-1500.
    [13] Gombotz W R, Wee S F. Protein release from alginate matrices [J]. Adv. Drug Deliv. Rev., 1998, 31: 267-285.
    [14] Winkleman A, Bracher P J, Gitlin I, et al. Fabrication and Manipulation of Ionotropic Hydrogels Cross-Linked by Paramagnetic Ions [J]. Chem. Mater., 2007, 19: 1362-1368.
    [15] Liu Q T, Wang Y L, Li W, et al. Structural Characterization and Chemical Response of a Ag-Coordinated Supramolecular Gel [J]. Langmuir, 2007, 23:8217-8223.
    [16] Kawano S, Fujita N, Shinkai S. A coordination gelator that shows a reversible chromatic change and sol gel phase-transition behavior upon oxidative/reductive stimuli [J]. J. Am. Chem. Soc., 2004, 126: 8592-8593.
    [17] Paulusse J M J, Van Beek D J M, Sijbesma R P. Reversible Switching of the Sol-Gel Transition with Ultrasound in Rhodium(I) and Iridium(I) Coordination Networks [J]. J. Am. Chem. Soc., 2007, 129: 2392-2397.
    [18] Peng F, Li G Z, Liu X X, et al. Redox-Responsive Gel-Sol/Sol-Gel Transition in Poly(acrylic acid) Aqueous Solution Containing Fe(III) Ions Switched by Light [J]. J. Am. Chem. Soc., 2008, 130: 16166-16167.
    [19] Yokoyama F, Masada I, Shimamura K, et al. Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting [J]. Colloid Polym. Sci., 1986, 264: 595-601.
    [20] Ricciardi R, Mangiapia G, Celso F L. Structural Organization of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques: A SANS Study [J]. Chem. Mater., 2005, 17: 1183-1189.
    [21] Chiu Y L, Chen M C, Chen C Y, et al. Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation [J]. Soft Matter, 2009, 5: 962-965.
    [22] Song F, Zhang L M, Li N N, et al. In Situ Crosslinkable Hydrogel Formed from a Polysaccharide-Based Hydrogelator [J]. Biomacromolecules, 2009, 10: 959-965.
    [23] Nagahama K, Imai Y, Nakayama T, et al. Thermo-sensitive sol–gel transition of poly(depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution [J]. Polymer, 2009, 50: 3547-3555.
    [24] Yu L, Ding J D. Injectable hydrogels as unique biomedical materials [J]. Chem. Soc. Rev., 2008, 37: 1473-1481.
    [25] Zhang H, Yu L, Ding J D. Roles of Hydrophilic Homopolymers on the Hydrophobic-Association-Induced Physical Gelling of Amphiphilic Block Copolymers in Water [J]. Macromolecules, 2008, 41: 6493-6499.
    [26] Yu L, Chang G T, Zhang H, Ding J D. Temperature-Induced Spontaneous Sol–Gel Transitions of Poly(D,L-lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L-lactic acid-co-glycolic acid) Triblock Copolymers and Their End-Capped Derivatives in Water [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45: 1122-1133.
    [27] Yang Z G, Ding J D. A Thermosensitive and Biodegradable Physical Gel with Chemically Crosslinked Nanogels as the Building Block [J]. Macromol. Rapid Commun., 2008, 29: 751-756.
    [28] Yu L, Zhang H, Ding J D. A Subtle End-Group Effect on Macroscopic Physical Gelation of Triblock Copolymer Aqueous Solutions [J]. Angew. Chem. Int. Ed., 2006, 45: 2232-2235.
    [29] Reinicke S, Schmelz J, Lapp A, et al. Smart hydrogels based on double responsive triblock terpolymers [J]. Soft Matter, 2009, 5: 2648–2657.
    [30] Bezemer J M, Grijpma D W, Dijkstra P J, et al. Control of protein delivery from amphiphilic poly(ether ester) multiblock copolymers by varying their water content using emulsification techniques [J]. J. Controlled Release, 2000, 66: 307-320.
    [31] Bezemer J M, Radersma R, Grijpma D W, et al. Zero-order release of lysozyme from poly(ethylene glycol) /poly(butylene terephthalate) matrices [J]. J. Controlled Release, 2000, 64: 179-192.
    [32] Rashkov I, Manolova N, Li S, et al. Synthesis, characterization and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains [J]. Macromolecules, 1996, 29: 50-56.
    [33] Molina I, Li S, Martinez M B, et al. Protein release from physically crosslinkedhydrogels of the PLA/PEO/PLA triblock copolymer-type [J]. Biomaterials, 2001, 22: 363-369.
    [34] Lin H H, Cheng Y L. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures [J], Macromolecules, 2001, 34: 3710-3715.
    [35] Mathur A M, Hammonds K F, Klier J, et al. Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels [J]. J. Controlled Release, 1998, 54: 177-184.
    [36] Dai H J, Chen Q, Qin H L, et al. A temperature-responsive copolymer hydrogel in controlled drug delivery [J]. Macromolecules, 2006, 39: 6584-6589.
    [37] Nagahara S, Matsuda T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers [J]. Polym. Gels Networks, 1996, 4: 111-127.
    [38] Rughani R V, Salick D A, Lamm M S, et al. Folding, Self-Assembly, and Bulk Material Properties of a De Novo Designed Three-Strandedγ-Sheet Hydrogel [J]. Biomacromolecules, 2009, 10: 1295-1304.
    [39] Yang X C, Lu R, Xu T H, et al. Novel carbazole-based organogels modulated by tert-butyl moieties [J]. Chem. Commun., 2008, 453-455.
    [40] Miyata T, Asami N, Uragami T. Preparation of an antigen-sensitive hydrogel using antigen–antibody bindings [J]. Macromolecules, 1999, 32: 2082-2084.
    [41] Miyata T, Asami N, Uragami T. A reversibly antigen responsive hydrogel [J]. Nature, 1999, 399: 766-769.
    [42] Villiers A C R. Acad. Sci., Paris, 1891, 112: 536-538.
    [43] Freudenberg K, Jacobi R, Ann. Chem., 1935, 518: 102-108.
    [44] Harada A, Hashidzume A, Yamaguchi H, et al. Polymeric Rotaxanes [J]. Chem. Rev., 2009, 109: 5974-6023.
    [45] Khan A R, Forgo P, Souza T D, et al. Methods for Selective Modifications of Cyclodextrins [J]. Chem. Rev., 1998, 98: 1977-1996.
    [46] Saenger W, Jacob J, Gessler K, et al. Structures of the Common Cyclodextrins and Their Larger Analogues Beyond the Doughnut [J]. Chem. Rev., 1998, 98: 1787-1802.
    [47] Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry [J]. Chem. Rev., 1998, 98: 1743-1754.
    [48] Xu Y Y, Bolisetty S, Ballauff M, Muller A H E. Switching the Morphologies of Cylindrical Polycation Brushes by Ionic and Supramolecular Inclusion Complexes [J]. J. Am. Chem. Soc., 2009, 131: 1640-1641.
    [49] Mehta S K, Bhasin K K, Dham S, Singla M L. Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence ofα-,β-, HPβ- andγ-cyclodextrins [J]. Journal of Colloid and Interface Science, 2008, 321: 442-451.
    [50] Jiang L X, Deng M L, Wang Y L, et al. Special Effect ofβ-Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems [J]. J. Phys. Chem. B, 2009, 113: 7498-7504.
    [51] Lu Q F, Chen D R, Jiao X L. Fabrication of Mesoporous Silica Microtubules through the Self-Assembly Behavior ofα-Cyclodextrin and Triton X-100 in Aqueous Solution [J]. Chem. Mater., 2005, 17: 4168-4173.
    [52] Wang Y, Wong J F, Teng X W, et al.“Pulling”Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions ofα-Cyclodextrin [J]. Nano Lett., 2003, 3: 1555-1559.
    [53] González-Pérez A, Dias R S, Nylander T, Lindman B. Cyclodextrin-Surfactant Complex: A New Route in DNA Decompaction [J]. Biomacromolecules, 2008, 9: 772-775.
    [54] Talwar S, Harding J, Oleson K R, Khan S A. Surfactant-Mediated Modulation of Hydrophobic Interactions in Associative Polymer Solutions Containing Cyclodextrin [J]. Langmuir, 2009, 25: 794-802.
    [55] Oertel U, Komber H, Tenkovtsev A V, et al. Ionic pseudopolyrotaxanes bearing a chromophore in the side chain - Aspectroscopic study in water [J]. Polymer, 2009, 50: 5876-5883.
    [56] Choi H S, Yui N. Design of rapidly assembling supramolecular systems responsive to synchronized stimuli [J]. Prog. Polym. Sci., 2006, 31: 121-144.
    [57] Choi H S, Ooya T, Huh K M, Yui N. pH-Triggered changes in assembling properties ofβ-cyclodextrin-conjugated poly(3-lysine) complexes [J]. Biomacromolecules, 2005, 6: 1200-1204.
    [58]童林荟,环糊精化学[M].北京:科学出版社, 2001, 259-378.
    [59] García-ZubiriíX, González-Gaitano G, Isasi J R. Isosteric heats of sorption of 1-naphthol and phenol from aqueous solutions byβ-cyclodextrin polymers [J]. Journal of Colloid and Interface Science, 2007, 307: 64-70.
    [60] Tomatsu I, Hashidzume A, Harada A. Photoresponsive Hydrogel System Using Molecular Recognition ofα-Cyclodextrin [J]. Macromolecules, 2005, 38: 5223-5227.
    [61] Tomatsu I, Hashidzume A, Harada A. Redox-Responsive Hydrogel System Using the Molecular Recognition ofβ-Cyclodextrin [J]. Macromol. Rapid Commun., 2006, 27, 238-241.
    [62] Hashidzume A, Tomatsu I, Harada A. Interaction of cyclodextrins with side chains of water soluble polymers: A simple model for biological molecular recognition and its utilization for stimuli-responsive systems [J]. Polymer, 2006, 47: 6011-6027.
    [63] Kretschmann O, Choi S W, Miyauchi M, et al. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymerswith Cyclodextrin Dimers [J]. Angew. Chem. Int. Ed., 2006, 45: 4361-4365.
    [64] Wang J, Pham D T, Guo X H, et al. Polymeric Networks Assembled by Adamantyl andα-Cyclodextrin Substituted Poly(acrylate)s: Host-Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution [J]. Ind. Eng. Chem. Res., 2010, 49: 609-612.
    [65] Deng W, Yamaguchi H, Takashima Y, Harada A. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins [J]. Chem. Asian J., 2008, 3: 687-695.
    [66] Jing B, Chen X, Wang X D, et al. Sol-Gel-Sol Transition of Gold Nanoparticle-Based Supramolecular Hydrogels Induced by Cyclodextrin Inclusion [J]. ChemPhysChem, 2008, 9: 249-252.
    [67] Guo M Y, Jiang M, Pispas S, et al. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG andα-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction [J]. Macromolecules, 2008, 41: 9744-9749.
    [68] Li J, Loh X J. Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery [J]. Advanced Drug Delivery Reviews, 2008, 60: 1000-1017.
    [69] Ren L X, He L H, Sun T C, et al. Dual-Responsive Supramolecular Hydrogels from Water-Soluble PEG-Grafted Copolymers and Cyclodextrin [J]. Macromol. Biosci., 2009, 9: 902-910.
    [70] Karino T, Okumura Y, Ito K, et al. SANS Studies on Spatial Inhomogeneities of Slide-Ring Gels [J]. Macromolecules, 2004, 37: 6177-6182.
    [71] Kato K, Inoue K, Kidowaki M, Ito K. Organic-Inorganic Hybrid Slide-Ring Gels: Polyrotaxanes Consisting of Poly(dimethylsiloxane) andγ-Cyclodextrin and Subsequent Topological Cross-Linking [J]. Macromolecules, 2009, 42: 7129-7136.
    [72] Mayumi K, Ito K. Structure and dynamics of polyrotaxane and slide-ring materials [J]. Polymer 2010, 51: 959-967.
    [73] Ito K. Slide-ring materials using topological supramolecular architecture [J]. Current Opinion in Solid State and Materials Science, 2010, 14: 28-34.
    [1] Harada A, Kamachi M. Complex formation between poly(ethylene glycol) and α-cyclodextrin [J]. Macromolecules, 1990, 23: 2821-2823.
    [2] Harada A, Osaki M, Takashima Y, Yamaguchi H. Ring-Opening Polymerization of Cyclic Esters by Cyclodextrins [J]. Acc. Chem. Res., 2008, 41: 1143-1152.
    [3] Harada A. Cyclodextrin-Based Molecular Machines [J]. Acc. Chem. Res. 2001, 34, 456-464.
    [4]蒋逸,薛洁,朱新远等,利用可逆共价键pH响应性制备聚轮烷[J].高等学校化学学报, 2008, 29: 2558-2562.
    [5] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric Rotaxanes [J]. Chem. Rev. 2009, 109, 5974-6023.
    [6] Gonzalez-Perez A, Dias R S, Nylander T, et al. Cyclodextrin?Surfactant Complex: A New Route in DNA Decompaction [J]. Biomacromolecules, 2008, 9: 772-775.
    [7] Mehta S K, Bhasin K K, Dham S, et al. Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence ofα-,β-, HPβ- andγ-cyclodextrins [J]. J. Colloid Interface Sci., 2008, 321: 442-451.
    [8]庞瑾瑜,徐桂英,白燕等,气/液界面上β-环糊精与十六烷基三甲基溴化铵包结物形成的分子动力学模拟[J].高等学校化学学报, 2009, 30(4):735-740.
    [9] Valente A J M, Nilsson M, Soderman O. Interactions between n-octyl and n-nonylβ-D-glucosides andα- andβ-cyclodextrins as seen by self-diffusion NMR [J]. J. Colloid Interface Sci., 2005, 281(1): 218-224.
    [10] Tardajos G, Montoro T, Vinas M H, et al. On the connection between the complexation and aggregation thermodynamics of oxyethylene nonionic surfactants [J]. J. Phys. Chem. B, 2008, 112: 15691-15700.
    [11]陈荣圻,表面活性剂化学与应用[M].纺织工业出版社, 1990: 76-77.
    [12]钟雷,丁悠丹,表面活性剂及其助剂分析[M].杭州:浙江科学技术出版社, 1986: 53-54.
    [13]杜新贞,王亚荣,吕卫华.聚氧乙烯辛基酚醚与β-环糊精的缔合作用[J].物理化学学报, 2004, 20(11): 1376-1379.
    [14]孙延春.β-CD与Triton X-100超分子包络物的研究[J].化学研究, 2008, 19: 95-97.
    [15] Guerrero-Martinez A, Montoro T, Vinas M H, et al. Study of the Interaction between a Nonyl Phenyl Ether andα-Cyclodextrin: Declouding Nonionic Surfactant Solutions by Complexation [J]. J. Phys. Chem. B, 2007, 111: 1368-1376.
    [16] Blom A, Warr G G, Wanless E J. Morphology Transitions in Nonionic Surfactant Adsorbed Layers near Their Cloud Points [J]. Langmuir, 2005, 21: 11850-11855.
    [17] Okumura H, Kawaguchi Y, Harada A. Preparation and Characterization of Inclusion Complexes of Poly(dimethylsiloxane)s with Cyclodextrins [J]. Macromolecules, 2001, 34: 6338-6343.
    [18] Jiao H, Goh S H, Valiyaveettil S, et al. Inclusion Complexes of Perfluorinated Oligomers with Cyclodextrins [J]. Macromolecules, 2003, 36: 4241-4243.
    [19] Gao Y A, Zhao X Y, Dong B, et al. Inclusion Complexes ofβ-Cyclodextrin with Ionic Liquid Surfactants [J]. J. Phys. Chem. B, 2006, 110: 8576-8581.
    [1] Harada A, Kamachi M. Complex formation between poly(ethylene glycol) andα-cyclodextrin [J]. Macromolecules, 1990, 23: 2821-2823.
    [2] Harada A, Li J, Kamachi M. The Molecular Necklace: a rotaxane containg many threadedα-cyclodextrins [J]. Nature(London), 1992, 356: 325-327.
    [3] Abderrazzak D, Ultrafast Guest Dynamics in Cyclodextrin Nanocavities [J]. Chem. Rev., 2004, 104: 1955-1976.
    [4] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric Rotaxanes [J]. Chem. Rev., 2009, 109, 5974-6023.
    [5] Tong L H. Cyclodextrin chemistry [M]. Beijing: Science Press, 2001: 109-121 [童林荟,环糊精化学.北京:科学出版社, 2001: 109-121.
    [6] Liu Y, Ke C F, Zhang H Y. Complexation-Induced Transition of Nanorod to Network Aggregates: Alternate Porphyrin and Cyclodextrin Arrays [J]. J. Am. Chem. Soc., 2008, 130: 600-605.
    [7] Okumura H, Kawaguchi Y, Harada A. Preparation and Characterization of Inclusion Complexes of Poly(dimethylsiloxane)s with Cyclodextrins [J]. Macromolecules, 2001, 34: 6338-6343.
    [8] Topchieva I N, Tonelli A E, Panova I G. Two-Phase Channel Structures Based onα-Cyclodextrin Polyethylene Glycol Inclusion Complexes [J]. Langmuir, 2004, 20: 9036-9043.
    [9] Jiao H, Goh S H, Valiyaveettil S. Inclusion Complexes of Poly(4-vinylpyridine)-Dodecylbenezenesulfonic Acid Complex and Cyclodextrins [J]. Macromolecules, 2002, 35: 3997-4002.
    [10] Harada A, Li J, Kamachi M. Preparation and Properties of Inclusion Complexesof Poly(ethylene glycol) withα-Cyclodextrin [J]. Macromolecules, 1993, 26: 5698-5703.
    [11] Harada A, Okada M, Li J, Kamachi M. Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins [J]. Macromolecules, 1995, 28: 8406-8411.
    [12] Harada A. Cyclodextrin-Based Molecular Machines [J]. Acc. Chem. Res., 2001, 34: 456-464.
    [13] Fujita H, Ooya T, Nobuhiko Y. Macromol. Chem. Phys., 1999, 200: 706-713.
    [14] Masatoshi K, Zhao C M, Toshiyuki K, Kohzo I. Thermoreversible sol–gel transition of an aqueous solution of polyrotaxane composed of highly methylatedα-cyclodextrin and polyethylene glycol [J]. Chem. Commun., 2006, 4102-4103.
    [15] Inoue Y, Kuad P, Okurmura Y, Harada A. Thermal and Photochemical Switching of Conformation of Poly(ethylene glycol)-Substituted Cyclodextrin with an Azobenzene Group at the Chain End [J]. J. Am. Chem. Soc., 2007, 129: 6396-6397.
    [16] Oshikiri T, Yamaguchi H, Takashima Y, Harada A. Face selective translation of a cyclodextrin ring along an axle [J]. Chem. Commun., 2009, 5515-5517.
    [17] Gonzalez-Gaitano G, Sanz-Garcia T, Tardajos G. Molar Partial Compressibilities and Volumes, 1H NMR, and Molecular Modeling Studies of the Ternary Systemsβ-Cyclodextrin + Sodium Octanoate/Sodium Decanoate + Water [J]. Langmuir, 1999, 15: 7963-7972.
    [18] Lu Q F, Chen D R, Jiao X L. Fabrication of Mesoporous Silica Microtubules through the Self-Assembly Behavior ofβ-Cyclodextrin and Triton X-100 in Aqueous Solution [J]. Chem. Mater., 2005, 17: 4168-4173.
    [19] Cabaleiro-Lago C, Garcia-Rio L, Herves P. In Search of Fully Uncomplexed Cyclodextrin in the Presence of Micellar Aggregates [J]. J. Phys. Chem. B, 2006,110: 15831-15838.
    [20] Valente A J M, Nilsson M, Soderman O. Interactions between n-octyl and n-nonylβ-D-glucosides andα-andβ-cyclodextrins as seen by self-diffusion NMR [J]. J. Colloid Interface Sci., 2005, 281: 218-224.
    [21] Tardajos G, Montoro T, Vinas M H, Palafox M A, Guerrero-Martinez A. On the connection between the complexation and aggregation thermodynamics of oxyethylene nonionic surfactants [J]. J. Phys. Chem. B, 2008, 112: 15691-15700.
    [22] Zhao W R, Zhang S Y, Zhang Y C, Wang Y M, Zhang H L. Surfactant Chemistry [M]. Hefei: Anhui University Press, 1997: 101-102 [赵维蓉,张胜义,章玉川,王一敏,张鸿烈,表面活性剂化学.合肥:安徽大学出版社, 1997: 101-102.
    [23] Blom A, Warr G G, Wanless E J. Morphology Transitions in Nonionic Surfactant Adsorbed Layers near Their Cloud Points [J]. Langmuir, 2005, 21: 11850-11855.
    [24] Huh K M, Ooya T, Nobuhiko Y. Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran andα-Cyclodextrin [J]. Macromolecules, 2001, 34: 8657-8662.
    [25] Liu J H, Sondjaja H R, Tam K C.α-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution [J]. Langmuir, 2007, 23: 5106-5109.
    [26] Guerrero-Martinez A, Montoro T, Tardajos G. Study of the Interaction between a Nonyl Phenyl Ether andα-Cyclodextrin: Declouding Nonionic Surfactant Solutions by Complexation [J]. J. Phys. Chem. B, 2007, 111: 1368-1376.
    [27] Travelet C, Schlatter G, Hadziioannou G. Multiblock copolymer behaviour ofα-CD/PEO-based polyrotaxanes: towards nano-cylinder self-organization ofα-CDs [J]. Soft Matter, 2008, 4: 1855-1860.
    [28] Inoue Y, Harada A. Self-Threading and Dethreading Dynamics of Poly(ethylene glycol)-Substituted Cyclodextrins with Different Chain Lengths [J]. Macromolecules, 2007, 40: 3256-3262.
    [29] Harada A, Adachi H, Kawaguchi Y, Okada M, Kamachi M. Complex Formation of Cyclodextrins with Cationic Polymers [J]. Polym. J., 1996, 28: 159-163.
    [1]刘勇,章道道,环糊精高聚物研究[J].功能高分子学报,1995,8:101-109.
    [2] Hennink W E, van Nostrum C F. Novel crosslinking methods to design hydrogels [J]. Advanced Drug Delivery Reviews, 2002, 54: 13-36.
    [3]宫政,丁珊珊,尹玉姬,崔元璐,姚康德.组织工程用水凝胶制备方法研究进展[M].化工进展, 2008, 27: 1743-1749.
    [4] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric Rotaxanes [J]. Chem. Rev., 2009, 109: 5974-6023.
    [5] García-ZubiriíX, González-Gaitano G, Isasi J R. Isosteric heats of sorption of 1-naphthol and phenol from aqueous solutions byβ-cyclodextrin polymers [J]. Journal of Colloid and Interface Science, 2007, 307: 64-70.
    [6] Hashidzume A, Tomatsu I, Harada A. Interaction of cyclodextrins with side chains of water soluble polymers: A simple model for biological molecular recognition and its utilization for stimuli-responsive systems [J]. Polymer, 2006,47: 6011-6027.
    [7] Guo M Y, Jiang M, Pispas S, Yu W, Zhou C X. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG andα-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction [J]. Macromolecules, 2008, 41: 9744-9749.
    [8] Ito K. Slide-ring materials using topological supramolecular architecture [J]. Current Opinion in Solid State and Materials Science, 2010, 14: 28-34.
    [9] Alvarez-Parrilla E, Cabrer P R, Al-Soufi W, et al. Dendritic Growth of a Supramolecular Complex [J]. Angewandte Chemie, 2000, 39: 2856-2858.
    [10] van de Manakker F, Vermonden T, Morabit N, et al. Rheological Behavior of Self-Assembling PEG-β-Cyclodextrin/PEG-Cholesterol Hydrogels [J]. Langmuir, 2008, 24: 12559-12567.
    [11] Zeng Q, Marthi R, McNally A, et al. Host-Guest Directed Assembly of Gold Nanoparticle Arrays [J]. Langmuir, 2010, 26: 1325-1333.
    [12] Sun L, Crooksa R M, Chechik V. Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles [J]. Chem. Commun., 2001, 359-360.
    [13] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay [J]. Macromolecules, 2003, 36, 5732-5741.
    [14] Haraguchi K, Li H J. Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content [J]. Macromolecules, 2006, 39, 1898-1905.
    [15] Romo A, Penas F J, Sevillano X, Isasi J R. Application of Factorial Experimental Design to the Study of the Suspension Polymerization ofβ-Cyclodextrin and Epichlorohydrin [J]. Journal of Applied Polymer Science, 2006, 100: 3393-3402.
    [1] Abdurrahmanoglu S, Can V, Okay O. Design of high-toughness polyacrylamide hydrogels by hydrophobic modification [J]. Polymer, 2009, 50: 5449-5455.
    [2] Okumura Y, Ito K. The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links [J]. Adv. Mater., 2001, 13: 485-487.
    [3] Kato K, Inoue K, Kidowaki M, Ito K. Organic-Inorganic Hybrid Slide-Ring Gels: Polyrotaxanes Consisting of Poly(dimethylsiloxane) andγ-Cyclodextrin and Subsequent Topological Cross-Linking [J]. Macromolecules, 2009, 42:7129-7136.
    [4] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength [J]. Adv. Mater., 2003, 15: 1155-1160.
    [5] Tanaka Y, Gong J P, Osada Y. Novel hydrogels with excellent mechanical performance [J]. Prog. Polym. Sci. 2005, 30: 1-9.
    [6] Haraguchi K, Takehisa T. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties [J]. Adv. Mater., 2002, 14: 1120-1124.
    [7] Haraguchi K. Nanocomposite hydrogels [J]. Curr. Opin. Sol. State Mater. Sci., 2007, 11: 47-54.
    [8] Huang T, Xu H G, Jiao K X, et al. A Novel Hydrogel with High Mechanical Strength:A Macromolecular Microsphere Composite Hydrogel [J]. Adv. Mater., 2007, 19: 1622-1626.
    [9] Kopecek J. Hydrogel biomaterials: A smart future, Biomaterials [J]. 2007, 28: 5185-5192.
    [10] Couillet I, Hughes T, Maitland G. Synergistic Effects in Aqueous Solutions of Mixed Wormlike Micelles and Hydrophobically Modified Polymers [J]. Macromolecules, 2005, 38: 5271-5282.
    [11] Obeid R, Maltseva E, Thunemann A F, et al. Macromolecules, 2009, 42: 2204-2214.
    [12] Biggs S, Selb J, Candau F. Effect of Surfactant on the Solution Properties of Hydrophobically Modified Polyacrylamide [J]. Langmuir, 1992, 8: 838-847.
    [13] Jimenez-Regalado E, Selb J, Candau F. Effect of Surfactant on the Viscoelastic Behavior of Semidilute Solutions of Multisticker Associating Polyacrylamides [J]. Langmuir, 2000, 16: 8611-8621.
    [14] Candau F, Selb J. Hydrophobically-modified polyacrylamides prepared bymicellar polymerization [J]. Adv. Colloid Interface Sci., 1999, 79: 149-172.
    [15] Zhu Z Y, Jian O Y, Paillet S, Desbrieres J. Hydrophobically modified associating polyacrylamide (HAPAM) synthesized by micellar copolymerization at high monomer concentration [J]. Eur. Polym. J., 2007, 43: 824-834.
    [16] Gao B J, Guo H P, Wang J, Zhang Y. Preparation of Hydrophobic Association Polyacrylamide in a New Micellar Copolymerization System and Its Hydrophobically Associative Property [J]. Macromolecules, 2008, 41: 2890-2897.
    [17] Jiang G Q, Liu C, Liu X L, et al. Construction and Properties of Hydrophobic Association Hydrogels with High Mechanical Strength and Reforming Capability [J]. Macromol. Mater. Eng., 2009, 294: 815-820.
    [18] Caputo M R, Selb J, Candau F. Polymer, 2004, 45: 231-240.
    [19] Kujawa P, Audibert-Hayet A, Selb J, Candau F. Macromolecules, 2006, 39: 384-392.
    [20] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay [J]. Macromolecules, 2003, 36: 5732-5741.
    [21] Haraguchi K, Li H J. Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content Macromolecules [J]. 2006, 39: 1898-1905.
    [22] Shibayama M. Spatial inhomogeneity and dynamic fluctuations of polymer gels [J]. Macromol. Chem. Phys. 1998, 199, 1-30.
    [23] Nakamoto C, Motonaga T, Shibayama M. Preparation Pressure Dependence of Structure Inhomogeneities and Dynamic Fluctuations in Poly(N-isopropylacrylamide) Gels [J]. Macromolecules, 2001, 34: 911-917.
    [24] Haraguchi K, Takehisa T, Fan S. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay [J]. Macromolecules 2002, 35: 10162-10171.
    [25] Lee J, Macosko C W, Urry D W. Elastomeric Polypentapeptides Cross-Linked into Matrixes and Fibers [J]. Biomacromolecules, 2001, 2: 170-179.
    [26] Zhang Z, Chao T, Jiang S Y. Physical, Chemical, and Chemical-Physical Double Network of Zwitterionic Hydrogels [J]. J. Phys. Chem. B, 2008, 112: 5327-5332.
    [27] Donati I, M?rch Y A, Strand B L, et al. Effect of Elongation of Alternating Sequences on Swelling Behavior and Large Deformation Properties of Natural Alginate Gels [J]. J. Phys. Chem. B, 2009, 113: 12916-12922.
    [28] (a)Wall, F. T. J. Chem. Phys. 1942, 10: 132–137. (b)Wall, F. T.; Flory, P. J. J. Chem. Phys. 1951, 19: 1435-1439.
    [29] Volpert E, Selb J, Candau F. Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide [J]. Polymer 1998, 39: 1025-1033.
    [30] Xue W, Hamley I W, Castelletto V, Olmsted P D. Synthesis and characterization of hydrophobically modified polyacrylamides and some observations on rheological properties [J]. Eur. Polym. J., 2004, 40: 47-56.
    [31] Hill A, Candau F, Selb J. Properties of Hydrophobically Associating Polyacrylamides: Influence of the Method of Synthesis [J]. Macromolecules, 1993, 26: 4521-4532.
    [32] (a)Mullins, L. J. Polym. Sci. 1956, 19: 225-236. (b)Moore, C. G.; Watson, W. F. J. Polym. Sci. 1956, 19: 237–254. (c)Meissner, B. J. Polym. Sci. Part C 1967, 16: 781-792. (d)Meissner, B.; Klier, I.; Kuchark, S. J. Polym. Sci. Part C 1967, 16: 793-804.
    [33] Xiong L J, Hu X B, Liu X X, Tong Z. Network chain density and relaxation ofin situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility [J]. Polymer, 2008, 49: 5064-5071.
    
    [1] Tanaka Y, Gong J P, Osada Y. Novel hydrogels with excellent mechanical performance [J]. Prog Polym Sci, 2005, 30: 1-9.
    [2] Ito K. Slide-ring materials using topological supramolecular architecture [J]. Current Opinion in Solid State and Materials Science, 2010, 14: 28-34.
    [3] Haraguchi K. Nanocomposite hydrogels [J]. Current Opinion in Solid State and Materials Science, 2007, 11: 47-54.
    [4] Huang T, Xu H G, Jiao K X, et al. A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel [J]. Adv Mater, 2007, 19: 1622-1626.
    [5] Han J, He Y, Xiao M, et al. Photopolymerization of alicyclic methacrylate hydrogels for controlled release [J]. Polym Adv Technol, 2009, 20: 607-612.
    [6] Li P, Kim N H, Siddaramaiah, Lee J H. Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property [J]. Composites: Part B, 2009, 40: 275-283.
    [7] Wu X Y, Huang S W, Zhang J T, Zhuo R X. Preparation and Characterization of Novel Physically Cross-linked Hydrogels Composed of Poly(vinyl alcohol) and Amine-terminated Polyamidoamine Dendrimer [J]. Macromol Biosci, 2004, 4: 71-75.
    [8] Harada T, Hirashima Y, Suzuki A, et al. Synthesis, swelling behavior andsurface microstructure of poly(sodium acrylate) gels cross-linked by aluminum ions [J]. European Polymer Journal, 2005, 41: 2189-2198.
    [9] Yan S F, Yin J B, Yu Y, et al. Thermo- and pH-sensitive poly(vinylmethyl ether)/carboxymethylchitosan hydrogels crosslinked using electron beamirradiation or using glutaraldehyde as a crosslinker [J]. Polym Int, 2009, 58: 1246-1251.
    [10] Caykara T, Bozkaya U, Kantoglu O. Network Structure and Swelling Behavior of Poly(acrylamide/crotonic acid) Hydrogels in Aqueous Salt Solutions [J]. J Polym Sci, Part B: Polym Phys, 2003, 41: 1656-1664.
    [11] Chunyu Chang, Bo Duan, Jie Cai, Lina Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery [J]. European Polymer Journal 2010, 46: 92-100.
    [12] Jiang G Q, Liu C, Liu X L, et al. Construction and Properties of Hydrophobic Association Hydrogels with High Mechanical Strength and Reforming Capability [J]. Macromol Mater Eng, 2009, 294: 815-820.
    [13] Abdurrahmanoglu S, Can V, Okay O. Design of high-toughness polyacrylamide hydrogels by hydrophobic modification [J]. Polymer, 2009, 50: 5449-5455.
    [14] Tian Q, Zhao X, Tang X Z, Zhang Y X. Hydrophobic Association and Temperature and pH Sensitivity of Hydrophobically Modified Poly(N-isopropylacrylamide/acrylic acid) Gels [J]. J Appl Polym Sci, 2003, 87: 2406-2413.
    [15] Robert Langer, Nicholas A. Peppas, Advances in Biomaterials, Drug Delivery, and Bionanotechnology, AIChE Journal, 2003, 49: 2990-3006.
    [16] Yuan Conghui(袁丛辉), Yu Na(余娜), Lin Songbai(林松柏), Ke Airu(柯爱茹), Quan Zhilong(全志龙). PVA2PAMPS2PAA三元互穿网络型水凝胶的合成及其性能研究[J]. Acta Polymerica Sinica (高分子学报), 2009, 3: 249-256.
    [17] Zheng Yunhua(郑云华), Liu Genqi(刘根起), Cheng Yongqing(程永清), Yang Shiwen(杨世文).聚乙烯醇磷酸酯水凝胶电刺激响应行为的研究[J]. Acta Polymerica Sinica (高分子学报), 2009, 9: 922-928.
    [18] Jimenez-Regalado E, Selb J, Candau F. Effect of Surfactant on the ViscoelasticBehavior of Semidilute Solutions of Multisticker Associating Polyacrylamides [J]. Langmuir, 2000, 16: 8611-8621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700