Fenton技术降解非水相有机污染物的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于对有机化合物尤其是四氯乙烯(PCE)和三氯乙烯(TCE)等含氯有机污染物的广泛使用和不适当的处理,导致有机物成为土壤和地下水的主要污染物之一。含氯有机污染物十分稳定并具有生物拮抗特性,在环境中不易被分解而受到关注。Fenton氧化法作为一种高级氧化技术,在废水处理领域已经得到深入的研究,而最近在土壤和地下水有机污染修复中也受到越来越多的重视。本论文针对目前仍备受争议的Fenton试剂对非水相有机污染物降解的反应机理,包括反应活性粒子(羟基自由基和超氧自由基)的贡献、反应的位点等关键问题进行了探讨,并系统地考察了温度、催化剂浓度和氧化剂浓度对降解反应的影响,及在Fenton试剂中添加非离子表面活性剂曲拉通TX100和阴离子表面活性剂十二烷基苯磺酸钠(SDBS),形成表面活性剂-Fenton系统,并初步研究了该系统对非水相有机污染物的降解。本论文采用硫酸铁和乙二胺四乙酸二钠(EDTA)配制的铁螯合剂(Fe(III)-EDTA)作催化剂,在对土壤和地下水中的微生态系统生长有利的中性环境条件下进行研究。研究的主要内容包括三部分:
     第一,在降解的反应机理方面,反应中是否产生还原性活性粒子超氧自由基;降解反应是以羟基自由基还是以超氧自由基起决定作用;反应发生在重非水相流体DNAPLs(dense non-aqueous phase liquids)的水溶液中,还是可以直接在DNAPLs的非水相降解等问题,目前还存在很大争议。本研究以四氯乙烯(PCE)和三氯乙烯(TCE)为目标有机污染物,采用异丙醇和氯仿分别作为羟基自由基和超氧自由基的俘获剂,来验证降解反应中是否产生超氧自由基以及何种活性粒子起决定作用。结果发现:在Fenton试剂降解PCE/TCE DNAPLs的反应中,不仅产生羟基自由基,还产生超氧自由基,并以羟基自由基的贡献为主,羟基自由基的产生与否与氧化剂量的多少没有必然联系;采用气相色谱法,分析比较反应30 min时降解反应与挥发溶解实验中PCE剩余量,计算得出,除催化剂与氧化剂浓度皆很低及与PCE的配比很小的情况外,Fenton试剂可以直接降解非水相的PCE。
     第二,研究了温度、催化剂浓度、氧化剂浓度对Fenton试剂降解PCE DNAPL的影响,优化了反应条件。实验表明:1、同一反应时间时,20、40和60℃的环境温度中,从降解效果和经济上考虑,40℃时为最佳反应温度。2、在有机物、氧化剂浓度一定时,0.5、5和10 mM催化剂浓度中,5mM催化剂浓度为最佳反应浓度;而在有机物、催化剂浓度一定时,50、100和200 mM氧化剂浓度中,100 mM氧化剂浓度为最佳反应浓度。浓度过高或过低都不利于降解反应的进行。
     第三,首次在反应体系中添加非离子表面活性剂曲拉通(TX100)或阴离子表面活性剂十二烷基苯磺酸钠(SDBS),构成表面活性剂-Fenton体系,对PCE DNAPL的降解进行了探讨。结果发现:1、添加TX100或SDBS,都能显著促进Fenton试剂对PCE DNAPL的降解效果,且TX100对降解反应的促进性要高于SDBS。2、表面活性剂的添加量及反应初始浓度与该体系的降解效果成反向关系,在表面活性剂少量且反应初始浓度较低时,该体系的降解效果更好。3、系统温度在0~60℃时,与非离子表面活性剂-Fenton体系的降解效果成反比关系;系统温度在4~38℃时,与阴离子表面活性剂-Fenton体系的降解效果成反比关系。4、表面活性剂-Fenton体系降解PCE DNAPL的反应中羟基自由基起主要作用,且在降解反应过程中有超氧自由基生成。
The widespread use and improper of disposal of organic chemicals, especially non-aqueous phase pollutants such as Trichloroethylene (TCE) and Perchloroethylene (PCE), has led to significant contaminant of soils and groundwater throughout much of the world. As one of the advanced oxidation technologies, Fenton oxidation has been deeply researched in wastewater treatment. Recently, the technology attracts more and more attention in organic polluted groundwater remediation. However, there are still open questions concerning on mechanicms of non-aqueous phase organic degradation by Fenton reagent, such as the contribution of active species and the site that the reaction takes place. In this paper, we had focused our attention on the concerning questions, systemically studied the factors on degradated reactions by modified Fenton’s reagent with iron(III)-ethylenediaminetetraacetic (Fe(III)-EDTA) chelator at neutral pH. The studies are such as follows:
     (1) There are different viewpoints of the degradation mechanism whether the organic phase can be directly degradated by modified Fenton’s reagent, and which active species plays a major role in the reactions. In this study, PCE and TCE are present as dense non-aqueous phase liquids (DNAPLs) in solution system at neutral pH. The experiments were carried out with isopropyl alcohol as hydroxyl radical scavenger and trichloromethane as superoxide radical scavenger. These results showed that both hydroxyl radicals and superoxide radicals were generated in degradation reactions, and hydroxyl radical played a major role. There were no necessary relation between the concentration of the oxidant and the generation of hydroxyl radicals, and the directly degradation of non-aqueous phase PCE by modified Fenton’s reagent.
     (2) Effect of operational parameters such as temperature, the concentration of chelator or oxidant, on PCE degradated reactions by Fenton’s reagent were systemically studied. The results showed that the optimal reaction temperature was 40 centigrade, the optimal concentration of chelator was 5 mM, and the optimal concentration of H2O2 was 100 mM.
     (3) Surfactant was added to Fenton’s reagent, and studied the DNAPL degradation by surfactant-Fenton system. Results were founded that the PCE DNAPL degradation by surfactant -Fenton was better than that only by Fenton reagent with the same conditions of reactions. There were inverse proportion between the concentration of surfactant and the effect of degradation.That is to say, the higher of the temperature when controlled in 20~60℃, the lower of the rate of degradation. And both hydroxyl radical and superoxide radical were possibly generated in reactions of PCE DNAPL degradated by surfactant -Fenton reagent.
     It’s important of the paper to improve the efficiency of organic degradation by Fenton’s reagent. And the paper can provide scientific gist for practical project of organic degradation by Fenton’s achnology at home and abroad.
引文
[1]纪录,张晖.原位化学氧化法在土壤和地下水修复中的研究进展.环境污染治理技术与设备,2003,4(6):37~42
    [2]朱雪强,韩宝平,尹儿秦.地下水DNAPLs污染的研究进展.四川环境,2005,24(2):65~70
    [3]朱利中.土壤及地下水有机污染的化学与生物修复.环境科学进展,1999,7(2):65~71
    [4]刘晓茹,冯惠华.我国水环境有机污染现状与对策.环境科学学报,1999,19(2):25~29
    [5]刘兆昌,张兰生,聂永锋等.地下水系统的污染与控制.北京:地质出版社,1999.
    [6]叶桂君,黄文滕,黄茂盛等.通气层土壤中含氯溶剂DNAPL之现地Fenton-like氧化探讨.第十六国废弃物处理技术研讨会论文集光碟.高雄,2001.
    [7] U. S. EPA. EPA-600-F-97-008. Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium Plumes in Ground Water. National Risk Management Research Laboratory, 1997
    [8] Lovelace K A, Evaluation the Technical Impracticability of Groundwater Cleanup. Proceedings of International Conference on Groundwater Quality Protection, Taipei, 1997, 165 ~ 179
    [9]洪源骏.电动力法-Fenton法-催化性铁粉墙组合技术现地模场整治受含氯有机物污染之场址:[硕士学位论文].台湾:国立中山大学,1991。
    [10]刘庆辉,徐艳青.四氯乙烯的发展现状和市场预测.化工开发与设计,2000,5:39~43
    [11] IPCS. Environment Criteria 31, Tetrachloroethylene, WHO Geneva,1985
    [12]米生权,魏涛.四氯乙烯污染现状及处理方法的研究进展.海峡预防医学杂志,2006,12(3):21~23
    [13]范春永.台湾环境状况与污染防治-赴台环境考察报告.世界环境,1997,2:47~48
    [14]孟庆芬,李德津.急性四氯乙烯中毒2例.中华劳动卫生职业病杂志,1996,4(6):368
    [15]赵堃,砊跤廊龋穆纫蚁┳饕倒と搜甯视腿ズ偷ü檀己康谋浠谢?预防医学杂志,1997,31(3):192
    [16] Aschengrau A, Rogers S, Ozonoff D. Perchloroethylene-Contaminated Drinking Water and the Risk of Breast Cancer; Additional Results from Cape Cod. Massachusetts, USA J. Environmental Health Perspectives, 2003, 111: 167 ~ 173
    [17] Edward A.Laws.水污染导论(余刚,张祖麟,译者).北京:科学出版社,2004.573~603
    [18]向夕品.三氯乙烯和四氯乙烯处理方法研究进展.渝州大学学报(自然科学报),2002,19(4):77~82
    [19]蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复.环境污染与防治,2006,28(3):210 ~ 214
    [20] Bardos P.Current Development in Contaminated Land Treatment Technology in the UK. J. Institution of Water and Environmental Management, 1994, 8(5): 402~408
    [21]陆小成,陈露洪,徐泉等.污染土壤电动修复增强方法研究进展.环境污染治理技术与设备,2005,6(1):14 ~ 24
    [22]于颖,周启星.污染土壤化学修复技术研究与进展.环境污染治理技术与设备,2005, 6(7):1 ~7
    [23]周启星.污染土壤修复的技术再造与展望.环境污染治理技术与设备,2002,3(8):36 ~ 40
    [24] U.S. Environmental Protection Agency. EPA-542-R-98-008. Field Applications of In Situ Remediation Technologies : Chemical Oxidation. Washington D C. EPA, 1998
    [25]张德莉,黄应平,罗光富等.Fenton及Photo-Fenton反应研究进展.环境化学,2006,25(2):121 ~ 127
    [26] Fenton H J H. Oxidation of Tartaric Acid in the Presence of Iron. Journal of Chemical Society, 1894, 65: 899 ~ 910
    [27] Watts R J, Udell M D, Rauch P A, et al. Treatment of Penta- Chlorophenol Contaminated Soils Using Fenton’s Reagent. Hazardous Waste and Hazardous Materials, 1990, 7(4): 335 ~345
    [28] Miller C M ,Valentine R L , Roehl M E, et al. Chemical and Microbiological Assessment of Pendimethal in Contaminated Soil after Treatment with Fenton’s Reagent. Water Resource, 1996, 30(11): 2579 ~ 2586
    [29] Li Z M , Shea P J , Comfort S D. Fenton Oxidation of 2, 4, 6-Trinitro- Toluene in Contaminated Soil Slurries. Environmental Engineering Science, 1997, 14(1): 55 ~ 66
    [30] Bier E L, Singh J, Li Z, et al. Remediating Hexahydro-1,3,5-Trinitro- 1,2,5-Trazine Contaminated Water and Soil by Fenton Oxidation. Environmental Toxicology and Chemistry, 1999, 18(6): 1078 ~ 1084
    [31] Kao C M, Wu M J. Enhanced TCDD Degradation by Fenton’s Reagent Preoxidation. Journal of Hazardous Materials, 2000, B74: 197 ~ 211
    [32] Arienzo M. Use of Abiotic Oxidative-Reductive Technologies for Remediation of Munition Contaminated Soil in a Bioslurry Reactor. Chemosphere, 2000, 40: 441 ~ 448
    [33]徐向荣,王文华,李华斌.Fenton试剂与染料溶液的反应.环境科学,1999,20(3):72 ~ 74
    [34] Kremer M L. Complex Virsus“Free Radical”Mechanism for the Catalytic Decomposition of H2O2 by Fe3+. International Journal of Chemical Kinetics, 1985, 17: 1299 ~ 1314
    [35] Watts R J, Haller D R, Alexander P J, et al. A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton’s Reactions. Journal of Hazardous Materials, 2000, B76: 73 ~ 89
    [36] Kong S H, Watts R J, Choi J H. Treatment of Petroleum-Contaminated Soils Ssing Iron Mineral Catalyzed Hydrogen Peroxide. Chemosphere, 1998, 37(8): 1473 ~ 1482
    [37] Teel A L, Warberg C R, Atkinson D A, et al. Comparison of Mineral and Soluble Iron Fenton’s Catalysts for the Treatment of Trichloroethylene. Water Resource, 2001, 35(4): 977 ~ 984
    [38] Chen C T, Tafuri A N, Rahman M, et al. Chemical Oxidation Treatment of Petroleum Contaminated Soil Using Fentonps Reagent. Jorunal of Environmental Science and Health, 1998, A33(6): 987 ~ 1008
    [39] Pignatello J J, Baehr K. Waste Management: Ferric Complexes as Catalysts for‘Fenton’Degradation of 2, 4-D and Metalochlor in Soil. Journal of Environmental Quality, 1994, 23: 365 ~ 369
    [40] Sun Y, Pignatello J J. Chemical Treatment of Pesticide Waste. Evaluation of Fe(III) Chelates for Catalytic Hydrogen Peroxide Oxidation of 2,4-D at Circumneutral pH. Journal of Agriculture and Food Chemistry, 1992, 40(2): 322 ~ 327
    [41] Nam K, Rodriguez W, Kudor J. Enhangce Degradation of Polycyclic Aromatic Hydrocarbons by Biodegradation Combined with a Modified Fenton Reaction. Chemosphere, 2001, 45: 11 ~ 20
    [42] Pignatello J J, Oliveros E, Mackay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 2006, 36: 1 ~ 84
    [43] Millioli V S, Freire D D C, Cammarota M C. Petroleum Oxidation Using Fenton’s Reagent over Beach Sand Following a Spill. Journal of Hazardous Materials, 2003, B103: 79 ~ 91
    [44] Watts R J, Bottenberg B C, Jensen M E, et al. Mechanism of the Enhanced Treatment of Chloroaliphatic Compounds by Fenton-like Reactions. Environmental Science and Technology, 1999, 33: 3432 ~ 3436
    [45] Sawyer D T, Valentine J S. How Super is Superoxide. Accounts of Chemical Research, 1981, 14: 393 ~ 400
    [46] Bielski B H J, Cabelli D E. Highlights of Current Research Involving Superoxide and Perhydroxyl Radicals in Aqueous Solutions. International Journal of Radiation Biology, 1991, 59: 291 ~ 319
    [47] Koppenol W H, Butler J, Van Leeuwen J W. The Haber-Weiss Cycle, Phorochemistry and Photobiology, 1978, 28: 655 ~ 600
    [48] Watts R J, Washington D, Howsawkeng J, et al. Comparative Toxicity of Hydrogen Peroxide, Hydroxyl Radicals, and Superoxide Anion to Escherichia Coli. Advances in Environmental Research, 2003, 7: 961 ~ 968
    [49] Teel A L, Watts R J. Degradation of Carbon Tetrachloride by Modified Fenton’s Reagent.Journal of Hazardous Materials, 2002, B94: 179 ~ 189
    [50] Kang N, Hua I, Suresh P, et al. Enhanced Fenton’s Destruction of non-Aqueous Phase Perchloroethylene in Soil Systems. Chemosphere, 2006, 63: 1685 ~ 1698
    [51] CorbinIII J F, Teel A L, Allen-King R M, et al. Reactive Oxygen Species Responsible for the Enhanced Desorption of Dodecane in Modified Fenton’s Systems. Water Environment Research, 2007, 79(1): 37 ~ 42
    [52]韩鹤友,何治柯,曾云鄂.钌(Ⅱ)-邻菲洛啉化学发光法测定Fenton反应产生的羟基自由基.分析化学,1999,27(8):890 ~ 893
    [53] Watts R J, Finn D D, Cutler L M, et al. Enhanced Stability of Hydrogen Peroxide in the Presence of Subsurface Solids. Journal of Contaminant Hydrology, 2006, 1 ~ 15
    [54] Environmental Security Technology Certification Program. EPA-542-R-98-00. Technology Status Review: in Situ Oxidation. EPA, Washington D.C. 1999, 8
    [55] In Situ Chemical Oxidation Team. Technical and Regulatory Gui- dance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. The Interstate Technology and Regulatory Council, 2005, D25 ~D28
    [56]万俊峰,李光明.Fenton试剂在污水处理上的发展与展望.江苏环境科技,2005,18(3):36 ~ 39
    [57] Walter Z.Tang. Physicochemical Treatment of azardous Wastes. LEWIS Publishers, 166 ~171
    [58]刘冬莲,黄艳宾. ?O H的形成机理及在水处理中的应用.环境科学与技术,2003,26(1):44~46
    [59] Okamoto K, Yamamoto Y, Tanaka H, et al. Heterogeneous Photocatalytic Decomposition of Phenol over Anatase Powder. Bulletin of the Chemical Society of Japan, 1985, 58: 2015 ~2022
    [60] Kaise M, Nagai H, Tokuhashi K, et al. Electron Spin Resonance Study of Photocatalytic Interface Rection of Suspended M/TiO2 (M=Pt, Pd, Ir, Rh, Os, or Ru) with Alcohol and Acetic Acid in Aqueous Medium, Langmuir, 1994,10: 1345~1347
    [61] U.S.EPA. EPA/540/2-90/011. Subsurface Contamination Reference Guide. Washington D. C.Office of Emergency and Remedial Response, 1991
    [62]杨世迎.TiO2光催化降解有机污染物的初始步骤机理研究:[博士学位论文].浙江:浙江大学,2005
    [63]罗晓岚,朱文鑫,李爱芹.新型浸出溶剂-异丙醇的优点及技术难题.技术·产业科技,2007,(9):66 ~ 69
    [64] Nosaka Y,Komori S,Yawata K, et al. Photocatalytic HO? Radical Formation in TiO2 Aqueous Suspension Studied by Several Detection Methods. Physical Chemistry Chemical Physics, 2003, 5(20): 4731~4735
    [65] Warner H P, Cohen J M, Ireland J C. EPA-600/D-87/229. Determination of Henry's Law Constants od Selected Priority Pollutants. Washington, D C: U.S.Environmental Protection Agency, 1987
    [66] Huling S G, Pivetz B E. EPA-600-R-06-072. In-Situ Chemical Oxidation. Washington D.C.: EPA, 2006
    [67] Watts R J, Bottenberg B C, Hess T F, et al. Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions. Environmental Science and Technology, 1999, 33: 3432~3437
    [68]杨金钟,赖文煌,龙玉文.利用Fenton法处理受4-氯酚污染土壤之探讨.第十二届废弃物处理技术研讨会论文集.台中,1997:329~334
    [69]杨英贤,卢明俊,廖志祥等.结合Fenton法与活性污泥法处理染整废水.第二十二届废水处理技术研讨会论文集.台中,1997:810~813
    [70] Barbeni M, Minero C, Pelizzetti E et al. Chemical Degradation of Chlorophenols with Fenton's Reagent. Chemosphere, 1987, 16(10-12): 2225~2237
    [71]刘奇岳.电动力-Fenton法现地处理受三氯乙烯及4-氯酚污染土壤之最佳操作条件探讨:[硕士学位论文].台湾:国立中山大学环境工程研究所,1999
    [72]刘元兰,杜艳芳,陆嘉星.电生羟基自由基降解有机染料的研究.上海环境科学,2003,22(12):888~-891
    [73]程丽华,黄君礼,倪福祥.Fenton试剂生成·OH的动力学研究.环境污染治理技术与设备,2003,4(5):12~14, 33
    [74] Huling S G, Arnold R G, Sierka R A, et al. Contaminant Adsorption and Oxidation via Fenton Reaction. Journal of Environmental Engineering, 2000, 126(7): 595~600
    [75]赵保卫,朱琨,陈学民.重非水相液体性质对非离子表面活性剂增溶作用的影响.环境化学,2007,26(4):452~456
    [76]肖进新,赵振国编著.表面活性剂应用原理.北京:化学工业出版社,2005:1~54, 155~159
    [77] West C C, Harwell J H. Surfactant and Subsurface Remediation. Environmental Science and Technology, 1992, 26(12): 2324~2330
    [78] Harwell J H, Sabatini D A, Knox R C. Surfactants for Ground Water Remediation.Colloids and Surface A: Physicochemical and Engineering Aspects, 1999, 51(1-2): 255~268
    [79]章卫华.污染土层中石油烃的强化生物降解研究:[工学硕士学位论文].北京:清华大学环境科学与工程系,2002
    [80]汤琳,袁俊峰,陈德辉.十二烷基苯磺酸钠对于几种藻类的毒性试验.上海师范大学学报(自然科学版),2000,29(2):70~74
    [81]姜霞,井欣,高学晟等.表面活性剂对土壤中多环芳烃生物有效性影响的研究进展.应用生态学报,2002,13(9):1179~1186
    [82]朱利中.土壤及地下水有机污染的化学与生物修复.环境科学进展,1999,7(2):65~71
    [83]王世荣,李祥高,刘东志等编.表面活性剂化学.北京:化学工业出版社,2005:1~32, 152~178
    [84]王学川,邱白玉.表面活性剂的毒性问题.日用化学品科学,2005,28(6):22~26
    [85]赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700