半导体金属硫化物、硒化物纳米材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以生物分子或有机分子辅助并提供硫源或硒源,溶剂热法制备得到了特殊形貌的硫化物和硒化物半导纳米材料:刺球状Bi2S3纳米结构、树枝状PbSe纳米结构以及碗状Ag2Se纳米结构。一系列表征手段对其物相、形貌进行了表征,探索了它们可能的形成机理,并对相关材料在荧光、超疏水性能或光学性能进行了研究。
     1.以乙二醇为溶剂,生物分子谷胱甘肽辅助并提供硫源,溶剂热法合成得到了刺球状的Bi2S3纳米材料。通过X-射线衍射、扫描电镜、场发射扫描电镜、透射电镜、高分辨透射电镜、拉曼、X-射线光电子能谱、红外以及光致发光测试对所合成材料进行了表征。探索了刺球状纳米结构可能的形成机理。所合成的Bi2S3复合纳米结构能够控制表面的拓扑结构,从而制备出超疏水表面,静态水接触角大于1500,在环保方面具有潜在应用。
     2.以苯胺为溶剂,五元环硒吩提供硒源,溶剂热法合成得到了PbSe树枝状纳米结构。通过X-射线衍射、拉曼光谱对材料的相结构进行了研究。通过扫描电镜、场发射扫描电镜、透射电镜以及高分辨透射电镜对材料形貌进行了表征。研究了其荧光性质,对材料复杂结构的形成机理进行了探讨。通过接触角测试研究了疏水性能,接触角大于1500以及滚动角小于1°,表明材料具有超疏水性能。
     3.以苯胺为溶剂,五元环硒吩提供硒源,溶剂热法合成得到了正交相的P-Ag2Se碗状结构。X-射线衍射、拉曼光谱对材料的相结构进行了研究。通过场发射扫描电镜及高分辨透射电镜对材料形貌进行了表征。荧光测试研究了材料光学性能。通过紫外光催化降解罗丹明研究其光催化活性;静态水接触角测试研究发现材料的超疏水性能:接触角大于150°且滚动角小于1°。
With the organic molecule or biological molecule assisting and providing the source of sulfur or selenylation, different morphology of sulfide and selenide: Bi2S3 urch-like nanostructure, PbSe nanodendrites and Ag2Se nanobowls, were prepared through a simple solvothermal route. The phase structures and the morphology of the as-synthesized samples were characterized by using a series of test. The possible formation mechanism is discussed. And also the photoluminescence(PL)、wetting behaviour or photocatalytic activiey were studied.
     1.Bi2S3 urch-like nanostructures were synthesized though a solvothermal route by using ethylene glycol as the solvent with biological molecule(GSH) assisting and providing the sulfure source. The as-synthesized sample was characterized by x-ray diffraction (XRD),Raman, scanning electron microscopy (SEM), field emission SEM (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FT-IR), Raman, X-ray photoelectron (XPS), and photoluminescence. The possible formation mechanism of the self-assembled urchin-like Bi2S3 complex nanostructures is discussed. The established complex nanostructure can control the surface topology of membrane to create superhydrophobic surface, The water contact angle (CA) of>150°can be obtained, which may find potential application in environmental chemistry.
     2.PbSe nanodendrites were synthesized though a solvothermal route by using aniline as the solvent with five-ring organic molecule selenophene assisting and providing the selenylation source. The phase structures of the as-synthesized samples were characterized by XRD and Raman spectroscopy. The morphology and structures were studied by SEM, FESEM, TEM, and HRTEM. The photoluminescence properties and growth mechanism are also studied. The wetting behaviour study of the as-synthesized samples was studied by measuring CA. The water CA of over 150°and low sliding angle of 1°of the complex PbSe nanostructures can be obtained.
     3. Orthorhombic phaseβ-Ag2Se nanobowls were synthesized though a solvothermal route by using aniline as the solvent with five-ring organic molecule selenophene assisting and providing the selenylation source. The phase structures of the as-synthesized samples were characterized by XRD and Raman spectroscopy. The morphology and structures were studied by FESEM, HRTEM.The photocatalytic activiey of the as-synthesizedβ-Ag2Se nanostructures was evaluated by photodegradation of rhodamine B(RhB) dye under ultraviolet (UV) light irradiation. The water CA of over 150°and low sliding angle of 1°of the complex PbSe nanostructures can be obtained.
引文
[1]朱红主编.纳米材料化学及其应用.北京:清华大学出版社,北京交通大学出版社,2009.
    [2]Siegel R W. Nanostructured materials-mind over matter. Nanostructured Materials,1993,3(1-6):1~18.
    [3]Hal Perin W P. Quantum size effects in metal particles. Rev of Modem Phys., 1986,58(3):532~606.
    [4]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社,2006,7.
    [5]李群主编.纳米材料的制备与应用技术.北京:化学工业出版社,2008.
    [6]Ball P, Garwin L. Science at the atomic scale, Nature,1992,355(27):761~766.
    [7]稽天浩,孙家跃,杜海燕.分散性无机纳米粒子制备、组装和应用.北京:科学出版社,2008,3~4.
    [8]Denton R, Muhlschlegel B, ScalaPino D. Electronic heat capacity and susceptibility of small metal Particles. Phys.Rev. Lett.,1971,26(12):707~711.
    [9]Kubo R,Kawabata A, Kobayashi S.Electronic properties of small particles. Annu. Rev. Meter. Sci.,1984,14(1):49~66.
    [10]Xu S M, Xue K H, Kong J L, et al. Template synthesis and UV-vis absorption spectra of the nanowire arrays of cadmium chalcogenides. Electrochemistry,2000, 6(2):151~156.
    [11]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    [12]Shingu P H, Huang B, Nishitani S R, et al. Nano-meter order cystalline structures Al-Fe alloys produced by mechanical alloyings. Suppl Trans Japan Inst Metals, 1988,29(3):3-10.
    [13]Yin L-W, Bando Y, Li M-S,et al.Unique single-crystalline beta carbon nitride nanorods. Adv mater,2003,15(21):1840~1844.
    [14]McCormick P G, Tsuzuki T, Robinson J S, et al. Nanopowders synthesized by mechanochemical processing. Adv mater,2001,13(12-13):1008~1010.
    [15]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2001,64.
    [16]Choi S J, Woo D H, MyUng N, et al.Eletrochemical preparation of cadmium selenide nanoparticles by the use of molecular templates. J.Electrochem. Soc., 2001,148(9):C569-C573.
    [17]Kamalakar M V, Raychaudhuri A K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Adv. Mater.,2008,20(1):149~154.
    [18]闫景辉,宋丽红,李中田等.微乳液法制备YF3:Er纳米材料.无机化学学报,2007,23(8):1432~1434.
    [19]石全珍.纳米微粒的微乳液制备方法.信阳师范学院学报(自然科学版),2000,13(4):474~478.
    [20]Wang H, Xu J, Zhu J, et al.Preparation of CuO nanoparticles by microwave irradiation. Journal of Crystal Growth,2002,244 (1):88~94.
    [21]Komarneni S, Rama R K, Karsuki H.Microwave-hydrothermal Processing of Titanium Dioxide. Mater. Chem. Phy.,1999,61(1):50~54.
    [22]Qian Y T, Su Y, Xie Y.Hydrothermal preparation and characterization of nanoccrystalline powder of sphalerite. Mater. Res. Bull.,1995,30(5):601~605.
    [23]Dias A, Buono V T L, Vilela J M C, et al.Particle size and morphology of hydrothermally processed MnZn ferrites observed by atomic force microscope. J. Mater. Sci.,1997,32(17):4715~4718.
    [24]Peng Q, Dong Y, Deng Z, et al.Low-temperature elemental-direct-reaction route to Ⅱ-Ⅵsemiconductor nanocrystalline ZnSe and CdSe. Inorg. Chem.,2001, 40(16):3840~3841.
    [25]Han Q, Chen J, Yang X, et al.Preparation of uniform Bi2S3 nanorods using xanthate complexes of Bismuth (Ⅲ). J. Phys. Chem. C,111(38):14072~14077.
    [26]Li Y D, Duan X F, Qian Y T, et al.Solvothermal Co-reduction route to the nanocrystalline Ⅲ-Ⅴ semiconductor InAs. J. Am. Chem. Soc.,1997,119(33): 7869~7870.
    [27]Tang K B, Hu J Q, Lu Q Y, et al. A Novel Low-temperature synthetic route to crystalline Si3N4. Adv. Mater.,1999, 11(8):653~655.
    [28]Dawood F, Schaak R E.ZnO-Templated Synthesis of Wurtzite-Type ZnS and ZnSe Nanoparticles. J.Am.Chem.Soc.,2008,131(2):424~425.
    [29]Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv. Mater., 2004,16(18):1661~1664.
    [30]Zheng J,Song X B,Chen N, et al. Highly symmetrical CdS tetrahedral nanocrystals prepared by low-temperature chemical vapor deposition using polysulfide as the sulfur source. Cryst. Growth Des.,2008,8 (5):1760~1765.
    [31]Liu J,Wang X, Peng Q,et al.Preparation and gas sensing properties of vanadium oxide nanobelts coated wit h semiconductor oxides.Sensors and Actuators B:Chem.,2006,115(1):481~487.
    [32]Zhang T, Liu L, Qi Q, et al.Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection. Sens. Actuators B:Chem.,2009, 139(2):287~291.
    [33]Choi K I, Kim H R, Lee J H. Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres. Sens.Actuators B:Chem.2009,138(2):497~503.
    [34]Wang J X, Sun X W, Huang H,et al.A two-step hydrothermally grown ZnO microtube array for CO gas sensing.Appl.Phys. A,2007,88(4):611~615.
    [35]Patil D, Patil P, Subramanian V, et al.Highly sensitive and fast responding CO sensor based on CO3O4 nanorods. Talanta,2010,81(1-2):37~43.
    [36]Yao K, Zhang Z Y, Liang X L, et al.Effect of H2 on theelectrical transport properties of single Bi2S3 nanowires. J.Phys. Chem. B,2006,110 (43):21408~21411.
    [37]Yano K, Ishii T, Sano T, et al.Status of Single-Electron Memories.1998 IEEE Intern Solid State Circuits Conference,1998:344.
    [38]Roth S,Burghard M, Krstic V, et al.Quantum transport in molecular nanowires transistors. Current Applied Physics,2001,1(1):56~60.
    [39]Agarwal R,Barrelet C J,Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities.Nano Lett,2005,5(5):917~920.
    [40]Postma H W C, Teepen T, Yao Z, et al.Carbon nanotube single-electron transistors at room temperature.Science,2001,293(5527):76~79.
    [41]Arakawa Y, Sakaki H.Multidimensional quantum well laser and temperature dependence of its threshold current. Appl phys lett,1982,40(11):939~941.
    [42]Favier F, Walter E C, Zach M P, et al.Hydrogen sensors and switches from electrodeposited palladium nanowires. Science,2001,293(5538):2227~2231.
    [43]Shchukin V A, Grundmann M, Kirstaedter N, et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys Rew. B,1996, 54(12):8743~8750.
    [44]张金中,王中林,刘俊等.自组装纳米结构.北京:化学工业出版社,2004,197.
    [45]Carter S A,Scott J C, Brock P J.Enhanced luminance in polymer composite light emitting devices. Appl. Phys. Lett.,71(9):1145~1147.
    [46]O'Regan B, Gratzel M B.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature,1991,353(24):737~740.
    [47]Keis K, Vayssieres L,Lindquist S-E,et al.Nanostructured ZnO electrodes for photovoltaic applications. Nanostructured Materials,1999,12(~-4):487~490.
    [48]Chou S Y, Krauss P R, Zhang W, et al.Sub-10 nm imprint lithography and applications.J. Wac. Sci.Technol B,1997,15(6):2897~2903.
    [49]左东华,张志煜,崔作林.纳米镍在硝基苯加氢中催化性能的研究.分子催化,1995,9(4):298~302.
    [50]Ma L-L,Sun H-Z,Zhang Y-G, et al.Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes.Nanotecbnology,2008,19(11):115709~115716.
    [51]Rodrigues S,Ranjit K T, Uma S,et al.Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: Acetaldehyde. Adv. Mater.,2005,17(20):2467~2471.
    [52]Jang E S,Won J H, Hwang S J, et al.Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater.,2006,18(24): 3309~3312.
    [53]K.J.克莱邦德主编.纳米材料化学.北京:化学工业出版社,2004,242.
    [54]Bruchez M, Moronne M, Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281(5385):2013~2016.
    [55]Chan W C W, Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science,1998,281(5385):2016~2018.
    [56]邓勇航.纳米材料在环境保护领域的应用研究.广西轻工业,2008,2:16~17
    [57]Xia Y. Nanomaterials at work in biomedical research. Nat. Mater,2008,7(10): 758~760.
    [58]Shevchenko E V, Talapin D V, Kotov N A, et al.Structural diversity in binary nanoparticle Superlattices. Nature,2006,439(5):55~59.
    [59]Murphy C J.Nanocubes and Nanoboxes. Science,2002,298(5601):2139~2141.
    [60]Berti L and Burley G A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol.,2008,3(2):81~87.
    [61]Crocker J C. Nanomaterials:Golden handshake. Nature,2008,451 (7178): 528~529.
    [62]Zhu J, Peng H L, Marshall A F, et al.Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol.,2008,3(8):477~481.
    [63]Sarikaya M, Tamerler C, Jen A K Y, et al.Molecular biomimetics: nanotechnology through biology. Nat. Mater.,2003,2(9):577~585.
    [64]Dick K A, Deppert K, LarssonMW, et al.Synthesis of branched'nanotrees'by controlled seeding of multiple branching events.Nat. Mater.,2004,3(6): 380~384.
    [65]Zhang B,Ye X, Hou W, et al.Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J.Phys. Chem. B,2006,110(18):8978~8985.
    [66]Goriunova N A, Kolomiets B T, Malokova A A, Properties and structure of ternary semiconductive systems.3.conductivity and photoconductivity in systems of sulfides of thallium, antimony and bismuth.Soviet Physics Technical Physics,1956,1(8):1583~1590.
    [67]Grigas J, Talik E, Lazauskas V. X-ray photoelectron spectra and electronic structure of Bi2S3 crystals. Physica status solidi (b),2002,232(2):220~230.
    [68]Li L, Sun N, Huang Y, et al.Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater.,2008, 18,1194-1201.
    [69]Rabin O, Perez J M, Grimm J, et al.An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Mater., 2006,5(2):118~122.
    [70]Xu J, Petkov N, Wu X, et al.Oriented growth of single-crystalline Bi2S3 nanowire arrays. ChemPhysChem,2007,8(2):235~240.
    [71]Chen R, So M H, Che C M, et al.Controlled synthesis of high crystalline bismuth sulfide nanorods:using bismuth citrate as a precursor. J. Mater. Chem.,2005, 15(42):4540~4545.
    [72]Liu Z, Liang J, Li S, et al.Synthesis and growth mechanism of Bi2S3 nanoribbons. Chem. Eur. J.,2004,10(3):634~640.
    [73]Lu Q, Gao F, Komarneni S.Biomolecule-assisted synthesis of highly ordered snowflakelike structures of Bismuth Sulfide nanorods.J. Am. Chem. Soc.,2004, 126(1):54~55.
    [74]Jiang J, Yu S-H, Yao W-T, et al.Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route:synthesis, formation mechanism, and properties. Chem. Mater.,2005,17(24):6094~6100.
    [75]朱永法主编.纳米材料的表征与测试技术.北京:化学工业出版社,2005.
    [76]Yang X, Wang X, Zhang Z. Facile solvothermal synthesis of single-crystalline Bi2S3 nanorods on a large scale. Mater. Chem. Phys.,2006,95(1):154~157.
    [77]Baranov A V, Rakovich Y P, Donegan J F, et al.Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B,2003,68(16): 165306-1-165306-7.
    [78]Zhang Q-X, Zhang Z-C, Wang B-P.Study on optical properties associated with intrinsic defects in GaP nanoparticles.J.Phys. D:Appl.Phys.,2008,41(18): 185403-1~185403-6.
    [79]Frohlich H. Theory of Dielectrics.Oxford:Clarendon,1949.
    [80]Ghosh A, Choudhary R N P.Phonon assisted photoluminescence and surface optical mode of Zn embedded ZnO nanostructure. J.Phys. D:Appl. Phys.,2009, 42(7):075416~075421.
    [81]Luo Y Y, Duan G T, Ye M, et al.Polyethylene glycol)-Mediated Synthesis of Hollow ZnS Microspheres. J.Phys.Chem. C,2008,112(7):2349~2352.
    [82]Prabhu R R and Khadar M A.Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy.Bull.Mater. Sci.,2008,31(3):511-515.
    [83]Dzhagan V, Valakh M Y, Kolny-Olesiak J, et al. Resonant Raman study of phonons in high-quality colloidal CdTe nanoparticles. Appl.Phys. Lett.,2009, 94(24):243101-1~243101-3.
    [84]Jeganathan K, Debnath R K, Meijers R, et al.Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires.J.Appl.Phys.,2009, 105(12):123707-1~123707-5.
    [85]Spirkoska D, Abstreiter G, Morral A F.Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy. Nanotechnology,2008,19(43):435704~435707.
    [86]Segura-Ruiz J, Garro N, Cantarero A, et al.Photoluminescence and Raman spectroscopy of MBE-grown InN nanocolumns.Phys. Status Solidi C,2008,5(6): 1678~1681.
    [87]Ursaki V V, Tiginyanu I M, Zalamai V V, et al.Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers. Phys. Rev. B,2004,70(15): 155204-1~155204-8.
    [88]Wang X J, Wang L L, Huang W Q, et al.A surface optical phonon assisted transition in a semi-infinite superlattice with a cap layer. Semicond. Sci. Technol., 2006,21(6):751-757.
    [89]Xiang J H, Cao H Q, Warner J H, et al.Crystallization and self-assembly of Calcium Carbonate architectures. Cryst. Growth Design.,2008,8(12):4583-4588.
    [90]Streitwieser A, Heathcock C H. Introduction to organic chemistry 3rd edn. New York:Macmillan,1985.
    [91]Koh Y W, Lai C S,Du A Y, et al.Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors. Chem. Mater.,2003, 15(24):4544~4554.
    [92]Wang H, Zhu J-J, Zhu J-M, et al.Sonochemical method for the preparation of bismuth sulfide nanorods. J. Phys. Chem. B,2002,106(15):3848~3854.
    [93]Wang Y, Huang J F, Cao L Y, et al.Preparation of Bi2S3 thin films with a nanoleaf structure by electrodeposition method. Appl.Surf. Sci.,2009, 255(17):7749~7752.
    [94]Sadler P J, Sun H Z, Li H Y. Bismuth(II1)complexes of the tripeptide glutathione (Y-L-G~-u L-Cys-Gly). Chem. Eur. J.,1996,2(6):701-708.
    [95]Sounart T L, Liu J, Voigt J A, et al.Secondary nucleation and growth of ZnO. J. Am. Chem. Soc.,2007,129(51):15786~15793.
    [96]Kanaras A G, Sonnichsen C, Liu H T,et al. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett.,2005,5(11):2164~2167.
    [97]Cao H Q, Wang G Z, Zhang S C, et al. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem.,2006,45(13):5103~5108.
    [98]Pacholski C, Kornowski A, Weller H.Self-assembly of ZnO:From nanodots, to nanorods. Angew. Chem. Int. Ed.,2002,41(7):1188~1191.
    [99]Dean J A. Lange's Handbook of Chemistry. New York:McGraw-Hill,1985.
    [100]Yuan J K, Li W N, Gomez S, et al.Shape-controlled synthesis of Manganese Oxide Octahedral molecular sieve three-dimensional nanostructures. J.Am. Chem. Soc.,2005,127(41):14184~14185.
    [101]Edwards H K, Salyer P A, Roe M J, et al. Metallic nanowires of Nb3Te4:a nanostructured chalcogenide.Angew. Chem. Int. Ed.,2005,44(23):3555~3558.
    [102]Feng X J, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew. Chem. Int. Ed.,2005,44(32):5115~5118.
    [103]Mo M, Yu J C, Zhang L Z, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres.Adv. Mater.2005, 17(6):756~760.
    [104]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271(5251):933~937.
    [105]Banin U, Cao Y W, Katz D, et al.Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature,1999,400(6744):542~ 544.
    [106]Lahann J. Environmental nanotechnology-Nanomaterials clean up. Nat. Nanotechnol.,2008,3(6):320~321.
    [107]Scheringer M. Nanoecotoxicology-Environmental risks of nanomaterials.Nat. Nanotechnol.,2008,3(6):322~323.
    [108]Blossey R. Self-cleaning surfaces-virtual realities.Nat. Mater.,2003,2(5): 301~306.
    [109]Jones R. Can nanotechnology ever prove that it is green? Nat. Nanotechnol., 2007,2(2):71~72.
    [110]Erbil H Y. Surface chemistry of solid and liquid interfaces. Oxford:Blackwell), 2006.
    [111]Hornyak G L, Dutta J, Tibbals H F, et al.Introduction to nanoscience. Boca Raton, FL:CRC Press,2008.
    [112]Jokinen V, Sainiemi L, Franssila S.Complex droplets on chemically modified silicon nanograss. Adv. Mater.,2008,20(18):3453~3456.
    [113]Liu Y, Tan T, Wang B, et al.Fabrication of CdS films with superhydrophobicity by the microwave assisted chemical bath deposition. J.Colloid Interface Sci., 2008,320(2):540~547.
    [114]Wang S T, Feng L, Jiang L. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Adv. Mater.,2006, 18(6):767-777.
    [115]Moreels I, Fritzinger B, Martins J C, et al.Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc.,2008,130(45):15081~15086.
    [116]Burda C, Chen X,Narayanan R, et al.Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105(4):1025~1102.
    [117]Kondas P A. Report ARFSD-TD-92024, US:Gov. Rep. Announce-ment Index, 1993.
    [118]Liu Y F, Cao J B, Zeng J H, et al. A complex-based soft template route to PbSe nanowires. Eur. J.Inorg. Chem.,2003,2003(4):644~647.
    [119]Wang W,Geng Y, Qian Y, et al. A novel pathway to PbSe nanowire at room temperature. Adv. Mater.,1998,10(17):1479~1481.
    [120]Mukherjee N, Ahmed S F, Mukherjee D, et al.Deposition of nano-crystalline lead chalcogenide thin films using a simple electrochemical technique.phys. stat. sol.(c),2008,5(11):3458~3462.
    [121]Law M, Luther J M, Song Q, et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.J.Am. Chem. Soc.,2008,130(18):5974~5985.
    [122]Houtepen A J, Koole R, Vanmaekelbergh D, et al.The hidden role of acetate in the PbSe nanocrystal synthesis. J. Am. Chem. Soc.,2006,128(21):6792~6793.
    [123]Cao H Q, Wang G Z, Zhang S C, et al.Growth and photoluminescence properties of PbS nanocubes. Nanotechnology,2006,17(13):3280~3287.
    [124]Bao S J,Li C M,Guo C X,et al. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. Journal of Power Sources, 2008,180(1):676~681.
    [125]Kigel A, Brumer M, Maikov G I, et al.Thermally activated photoluminescence in lead selenide colloidal quantum dots. Small,2009,5(14):1675~1681.
    [126]Li K W, Meng X T, Liang X, et al.Electrodeposition and characterization of PbSe films on indium tin oxide glass substrates. J. Solid State Electrochem., 2006,10(1):48~53.
    [127]Wu Q, Cao H, Zhang S,et al.Generation and optical properties of monodisperse wurtzite-type ZnS microspheres. Inorg. Chem.,2006,45(18):7316~7322.
    [128]Qin A, Zhou X, Qiu Y, et al.Periodically twinned nanotowers and nanodendrites of mercury selenide synthesized via a solution-liquid-solid route. Adv. Mater., 2008,20(4):768~773.
    [129]Purkayastha A, Yan Q, Raghuveer M S,et al.Adv. Mater. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods.2008, 20(14):2679~2683.
    [130]Zhao N, Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic-anionic surfactants. Adv. Mater.,2006, 18(3):359~362.
    [131]He G,Eckert J, LoserW, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nature Mater.,2003,2(1):33~37.
    [132]Liu B, Zeng H-C. Mesoscale organization of CuO nanoribbons:formation of "dandelions". J. Am.Chem. Soc.,2004,126(26):8124~8125.
    [133]Shen X-F, Yan X-P. Facile shape-controlled synthesis of well-aligned nanowire architectures in binary aqueous solution. Angew. Chem. Int. Ed.,2007, 46(40):7659~7663.
    [134]Sun S, Yang D, Villers D, et al. Template-and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater.,2008,20(3):571~574.
    [135]Lee Y S.Self-assembly and nanotechnology:a force balance approach. Hoboken, NJ:Wiley,2008,42.
    [136]Penn R L, Banfield J F. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals. Science,1998,281(5379):969~971.
    [137]Goodwin J.Colloids and interfaces with surfactants and polymers-An introduction. England:John Wiley & Sons, Ltd.,West Susex PO19 8SQ,2004.
    [138]Luo Z, Zhang Z, Hu L, et al.Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Adv. Mater.,2008,20(5):970~974.
    [139]Ma M, Gupta M, Li Z, et al.Decorated electrospun fibers exhibiting superhydrophobicity. Adv. Mater.,2007,19(2):255~259.
    [140]Lee Y,Park S-H,Kim K-B,et al.Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces. Adv. Mater.,2007, 19(17):2330~2335.
    [141]Schoen D T, Xie C, Cui Y.Electrical switching and phase transformation in silver selenide nanowires. J. Am.Chem. Soc.,2007,129(14):4116~4117.
    [142]Cui Y, Chen G,Ren J, et al. Solvothermal syntheses of beta-Ag2Se crystals with novel morphologies. J. Solid State Chem.,2003,172(1):17~21.
    [143]Khanna P K, Singh N, Charan S.Synthesis of β-Ag2Se from organo-selenium precursor and silver nitrate in DMF via simultaneous reduction of selenium and silver salt. Materials Letters,2006,60(17-18):2080~2085.
    [144]Yao Q, Arachchige I U, Brock S L. Expanding the repertoire of chalcogenide nanocrystal networks:Ag2Se gels and aerogels by cation exchange reactions. J. Am. Chem. Soc.,2009,131(8):2800~2801.
    [145]Ng C H B, Tan H, Fan W Y. S.Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution. Langmuir,2006, 22(23):9712~9717.
    [146]Gates B,Mayers B, Wu Y, et al.Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature. Adv. Funct. Mater.,2002,12(10):679~686.
    [147]Li K, Liu X, Wang H, et al.Rapid synthesis of Ag2Se nanocrystals by sonochemical reaction. Materials Letters,2006,60(25-26):3038~3040.
    [148]Ge J P, Xu S, Liu L P, et al.A Positive Microemulsion Method to Uniform Ag2Se Nanoparticles at Low Temperature. Chem. Eur. J.,2006, 12(13):3672~3677.
    [149]Wang H, Qi L. Controlled synthesis of Ag2S, Ag2Se and Ag nanofibers using a general sacrificial template and their application in electronic device fabrication. Adv. Funct. Mater.,2008,18(8):1249~1256.
    [150]Kozicki M N, Mitkova M, Zhu J, et al.Nanoscale phase separation in Ag-Ge-Se glasses.Microelectron. Eng.,2002,63(1-3):155~159.
    [151]Ogusu K, Kumagai T, Fujimori Y, et al. Thermal analysis and Raman scattering study on crystallization and structure of Ag-x(As0.4Se0.6)(100-x) glasses.J. Non-Cryst. Solids.,2003,324(1-2):118~126.
    [152]Krishna K S,Mansoori U, Selvi N R, et al.Form Emerges from Formless Entities:Temperature-Induced Self-Assembly and Growth of ZnO Nanoparticles into Zeptoliter Bowls and Troughs. Angew. Chem. Int. Ed.,2007, 46(31):5962~5965.
    [153]Cao H, Qiu X, Luo B, et al.Synthesis and room-temperature photoluminescence properties of zirconia nanowires. Adv. Funct. Mater.,2004,14(3):243~246.
    [154]Zhang S Y, Fang C X, Wei W, et al. Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes. J.Phys. Chem. C.2007,111(11):4168~4174.
    [155]Lee M K, Shih T H. High photocatalytic activityof heterojunction of zinc selenide grown on nanoscaled titanium oxide. Journal of The Electrochemical Society,2008,155(4):K63~K65.
    [156]Kawahara T, Konishi Y, Tada H, et al. A patterned TiO2(anatase)/TiO2 (rutile) Bilayer-type photocatalyst:effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed.,2002,41(15):2811-2813.
    [157]Xiong S L, Xi B J, Wang C M, et al.Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts:A general route to 1D semiconductor nanostructured materials. Chem. Eur. J.,2007, 13(28):7926~7932.
    [158]Cao F, Shi W, Zhao L, et al.Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures. J. Phys. Chem. C, 2008,112(44):17095~17101.
    [159]Zhang L, Yang H, Xie X, et al.Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. Journal of Alloys and Compounds, 2009,473(1-2):65~70.
    [160]Li X, Kikugawa N, Ye J.A comparison study of Rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-lLight irradiation. Chem. Eur. J.,2009,15(14):3538~3545.
    [161]Hidaka H, Zhao J,Pelizzetti E, et al.Photodegradation of surfactants.8. Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface. J.Phys. Chem.,1992,96(5):2226~2230.
    [162]Zhang L, Wang W, Zhou L, et al.Bi2WO6 nano-and microstructures:Shape control and associated visible-light-driven photocatalytic activities. Small,2007, 3(9):1618~1625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700