稀土掺杂低维纳米材料的合成及其发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维纳米结构材料特有的光、电、磁和机械性能,在纳米器件和功能材料等诸多领域具有潜在的应用前景。众所周知,它们的这些性质与其结构、尺度、形貌和尺寸的依赖性非常大。因此,研究纳米结构材料形貌对其物理性质的影响是本论文的宗旨。由于稀土离子光谱学能够给出材料中微环境的改变对发光中心性质影响的信息,因此光谱学方法已经成为探索研究基质材料物理性质的一种重要手段。本论文成功地合成Yb~(~(3+))/Er~(~(3+))共掺杂的Y_2O_3纳米结构和六角形氟化镧纳米晶,Yb~(3+)/Tm~(3+)共掺杂的氟化钇和氟化镧纳米片,Eu~(3+)掺杂的氟化钡微纳米棒等材料。此外,我们用光谱学方法研究了其结构和性质,如上转换荧光、选择激发、傅立叶红外光谱等等。下面更详细地介绍我们的工作:
     1.我们用水热法合成了Yb~(3+)/Er~(3+)共掺杂的立方Y_2O_3纳米管、纳米球和纳米片。此三种纳米结构具有很强的上转换发光特性。我们通过红外光谱和荧光光谱分别观察了荧光性质和荧光衰减特性。随着纳米管、纳米球和纳米片的变化OH~-基团对其发光性质是影响非常大。研究表明具有高振动频率的OH~-基团对它们的发光具有淬灭作用。
     2.我们用简单的水热法合成了尺寸比较小,分散性和结晶性较好的六变形LaF3:Yb~(3+),Er~(3+)纳米颗粒。利用XRD测定样品的结构,TEM观察确定样品的尺寸和形貌,荧光光谱分析得知此样品为发纯绿光的理想材料,有望在生物识别上获得应用。
     3.我们合成了Yb~(3+)/Tm~(3+)掺杂浓度相同的不同基质氟化物材料。经上转换发光的研究发现小尺寸的片状结构氟化物材料为比较理想的紫外上转换发光材料。
     4.我们用微乳法调节的溶剂热法合成了掺铕的BaF_2:Eu微米棒和纳米棒。通过激光选择激发实验来确定了Eu~(3+)离子在微米棒中只仅占一个格位。
Low-dimensional nanostructured materials have sparked a worldwide interest due to their unique electronic, optical, and mechanical properties and their potential applications in nanodevices and functional materials. It is known that structure, dimension, shape and size have important effect on the properties of low-dimensional nanomaterials. However, how the morphology of a nanostructure to determine its physical properties has been unknown until present days.
     As a micro structural probe a lanthanide ion can give us plentiful information about the local structure by spectroscopy. Therefore, the main aim in my thesis’job is to synthesize some RE ions doped nanostructures with special morphologies and to investigate their physical properties by RE spectra. In order to achieve this goal, we synthesized Yb~(3+)/Er~(3+) co-doped cubic Y2O3 nanostructures and hexagonal lanthanum fluoride nanocrystals, Yb~(3+)/Tm~(3+) co-doped yttrium fluoride and lanthanum fluoride nanoshees, Eu~(3+) doped barium fluorides and so on. Furthermore, their structural properties were investigated by using spectral methods, such as upconversion fluorescence, selective excitation, infra-red spectrum, and etc. More detailed items of the thesis work were list as below.
     1. Yb~(3+)/Er~(3+) co-doped cubic Y_2O_3 nano-tubes, nano-particles and nano-flakes were synthesized by using a hydrothermal method. All the three nanostructures showed good ability in up-conversion emitting. The dependence of their fluorescence properties on morphologies was found in the FTIR and fluorescent decay measurements. The spectral changes from nanotubes to nanoflakes indicate that the OH~- group in them plays an important role in the effect on their spectral properties. OH~- ions with high vibration
引文
[1] Feynman. R. P, There is a plenty of room at the bottom, Lecture at the annual meeting of the American Physical Society at the California Institute of Technology, 1959.
    [2] Kubo. R, Electronic Properties of Fine Metallic Particles, J. Phys. Soc. Jpn, 17 (1962) 975–986.
    [3] Esaki. L, Tsu. R, Superlattice and negative differential conductivity in Semiconductors, IBM J. Res. Development, (1970) 61.
    [4] Tsu. R, and Esaki. L, Tunneling in a finite superlattice, Appl. Phys. Lett, 22 (1973) 562-564.
    [5] Esaki. L, Chang. L. L, New transport phenomenon in a semiconductor superlattice, Phys. Rev. Lett, 33 (1974) 495-498.
    [6] Zhang. L. D, Mo. J. M, Nanomaterials and Nanostructure, Science Press, 2001.
    [7] Hu. J, Ouyang. M, Yang. P, Lieber. C. M, Growth and electrical properties of nanotube/nanowire heterojunctions, Nature, 399 (1999) 48-51.
    [8] Goldberger. J, He. R, Lee. S, Zhang. Y, Yan. H, Choi. H, and Yang. P, Single Crystal Gallium Nitride Nanotubes, Nature, 422 (2003) 599-602.
    [9] Hu. J. T, Li. L. S, Manna. W. D. L, Wang. L. W, and Alivisatos. A. P, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 292 (2001) 2060-2063.
    [10] Alivisatos. A. P, Naturally aligned nanocrystals, Science, 289 (2000) 736-737.
    [11] Iijima. S, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56-58.
    [12] Yi. G, Lu. H, Zhao. S, Ge. Y, Yang. W, Chen. D, Guo. L, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors, Nano. Lett, 4 (2004) 2191-2196.
    [13] Heer. S, K?mpe. K, Güdel. H-U, Haase. M, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide doped NaYF4 nanocrystals, Adv. Mater, 16 (2004) 2102-2104.
    [14] 丁秉钧,纳米材料,机械工业出版社(2004, 6)。
    [15] 陈敬中,纳米科技与纳米物质结构,高等教育出版社(2001)。
    [16] 赵于文, 现代化工, 5 (1991) 52。
    [17] Wang. Y, Mahler W,Opt. Commun, 61 (1987) 233-237.
    [18] Barbara. B, Wernsdorfer W, Quantum Tunneling Effect in Magnetic Particles, Curr. Opin. Solid. State. Mater. Sci, 2 (1997) 220-225.
    [19] 梁国宪, 王尔德, 王晓林. 高能球磨制备非晶态合金研究的进展. 材料科学与工程, 12 (1994) 47。
    [20] Uenura. T, Ohba. M, Kitagawa. S, Size and Surface Effects of Prussian Blue Nanoparticles Protected by Organic Polymers, Inorg. Chem, 43 (2004) 7339-7345.
    [21] 刘建军, 王爱民, 张海峰等,高压原位合成块体纳米Mg-Zn合金. 材料研究学报, 15 (2001) 299-302。
    [22] Kobayashi. M, Saraie. J, Matsunami. H, Hydrogenated amorphous silicon films prepared by an ion-beam-sputtering technique, Appl. Phys. Lett, 38 (1981) 696-697.
    [23] Anders. A, Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review, Sur. Coat. Techn, 121 (1999) 319-330.
    [24] Yang. Y. H, Wu. S. J, Chiu H S, et al. Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation, J. Phys. Chem. B, 108 (2004) 846-852.
    [25] El-Shall, M S, Abdelsayed. V, Pithawalla. Y. B, et al. Vapor Phase Growth and Assembly of Metallic, Intermetallic, Carbon, and Silicon Nanoparticle Filaments, J. Phys. Chem. B, 107 (2003) 2882-2886.
    [26] Wang. Q, Yang. H. B, Shi J L, et al. One-step synthesis of the nanometer particles of γ-Fe2O3 by wire electrical explosion method, Mater. Res. Bull, 36 (2001) 503-509.
    [27] Sen. D, Deb. P, Mazumder. S, et al. Microstructural investigations of ferrite nanoparticles prepared bynonaqueous precipitation route, Mater. Res. Bull, 35 (2000) 1243-1250.
    [28] Yu. D, Yam. V. W. W, Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction, J. Phys. Chem. B, 109 (2005) 5497-5503.
    [29] Kim. J. H, Germer. T. A, Mulholland. G. W, et al. Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis, Adv. Mater, 14 (2002) 518-521.
    [30] 李文翠, 郭树才. 溶胶-凝胶技术在新型纳米气凝胶合成中的应用, 化工进展, 2 (2001) 34-36。
    [31] 褚道葆. 电合成法制备纳米材料及纳米材料电极上的电催化合成, 精细化工, S1 (2000) 10-12。
    [32] Yin. J. L, Qian. X. F, Yin. J, et al, Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells, Inorg. Chem. Commun, 6 (2003) 942-945.
    [33] Kawahashi. N, Shiho. H, Copper and copper compounds as coatings on polystyrene particles and as hollow spheres, J. Mater. Chem, 10 (2000) 2294-2297.
    [34] Hentze. H. P, Raghavan. S. R, Silica Hollow Spheres by Templating of Catanionic Vesicles, Langmuir, 19 (2003) 1069-1074.
    [35] Andrew K. Kercher and Dennis C. Nagle, AC electrical measurements support microstructure model for carbonization: a comment on ‘Dielectric relaxation due to interfacial polarization for heat-treated wood, Carbon, 42 (2004) 219-221.
    [36] Bao. J, Liang Y, Xu. Z, et al. Facile synthesis of hollow nickel submicrometer spheres, Adv. Mater, 15 (2003) 1832-1835.
    [37] Wang. C. R, Tang. K. B, Yang. Q, et al. Fabrication of BiTeI submicrometer hollow spheres, J. Mater. Chem, 12 (2002) 2426-2429.
    [38] Peng. Q, Dong Y, Li. Y. D, et al. ZnSe semiconductor hollow microspheres, Angew. Chem. Int. Ed, 42 (2003): 3027-3030.
    [39] Wang. X. J, Xie. Y, Guo. Q. X, Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route, Chem. Commun, (2003) 2688-2689.
    [40] Liu. B, Zeng. H C, Mesoscale organization of CuO nanoribbons: formation of “dandelions”, J. Am. Chem. Soc, 126 (2004) 8124-8125.
    [41] Zhu. H. W, Jiang. B, Xu. C. L, et al, Synthesis of High Quality Single-Walled Carbon Nanotube Silks by the Arc Discharge Technique, J. Phys. Chem. B, 107(2003) 6514-6518.
    [42] Sugai. T, Yoshida. H, Shimada. T, et al, New Synthesis of High-Quality Double-Walled Carbon Nanotubes by High-Temperature Pulsed Arc Discharge, Nano. Lett, 3 (2003) 769-773.
    [43] Yacaman. M. J, Yoshida. M. M, Rendon. L, Catalytic Growth of Carbon Microtubules with Fullerenestructure, Appl. Phys. Lett, 62 (1993) 202-204.
    [44] Lourie. O. R, Jones. C. R, Bartlett. B. M, et al, CVD Growth of Boron Nitride Nanotubes, Chem. Mater, 12 (2000) 1808-1810.
    [45] Yu. J, Zhang. Q, Ahn. J, et al, Growth and structure of aligned B–C–N nanotubes, J. Vacuum. Sci. Techn. A, 19 (2001) 671-6174.
    [46] Chen. H, Lin. J, Yi. J, et al, Novel silicon nanotubes, Chin. Chem. Lett, 12 (2001) 1139-1140.
    [47] Thess. A, Lee. R, Nikolaev. P, et al, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273 (1996) 483-487.
    [48] Golberg. D, Bando. Y, Eremets. M, et al, Nanotubes in boron nitride laser heated at high pressure, Appl. Phys. Lett, 69 (1996) 2045-2047.
    [49] Hu. W. C, Gong. D. W, Chen. Z, et al, Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate, Appl. Phys. Lett, 79 (2001) 3083-3085.
    [50] Bao. J. C, Tie. C. Y, Xu. Z, et al, Template synthesis of an array of nickel nanotubules and its magnetic behavior, Adv Mater, 13 (2001) 1631-1633.
    [51] Tang. Z. K, Sun. H. D, Wang. J, et al, Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal, Appl. Phys. Lett, 73 (1998) 2287-2289.
    [52] Hu. J. Q, Bando Y, Liu Z W, et al. Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates, Angew. Chem. Int. Ed, 43 (2004) 63-66.
    [53] Fan. R, Wu. Y, Li. D, et al, Fabrication of silica nanotube arrays from vertical silicon nanowire templates, J. Am. Chem. Soc, 125 (2003) 5254-5255.
    [54] Lakshmi. B. B, Dorhout. P. K, Martin. C. R, Sol-Gel template synthesis ofsemiconductor nanostructures, Chem. Mater, 9 (1997) 857.
    [55] Zhang. M, Ciocan. E, Bando. Y, et al, Bright visible photoluminescence from silica nanotube flakes prepared by the sol–gel template method, Appl. Phys. Lett, 80 (2002) 491-493.
    [56] Steinhart. M, Wendorff. J. H, Greiner. A, et al, Polymer nanotubes by wetting of ordered porous templates, Science, 296 (2002) 1997.
    [57] Wu. Q, Hu. Z, Wang. X, et al, Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes, J. Am. Chem. Soc, 125 (2004) 10176-10177.
    [58] Nath. M, Govindaraj. A, Rao. C. N. R, et al, Simple synthesis of MoS2 and WS2 nanotubes, Adv. Mater, 13 (2001) 283-286.
    [59] Nath. M, Rao. C. N. R, MoSe_2 and WSe_2 nanotubes and related structures, Chem. Commun, (2001) 2236-2237.
    [60] Li. Y. D, Li. X. L, He. R. R, et al, Artificial lamellar mesostructures to WS2 nanotubes, J. Am. Chem. Soc, 124 (2002) 1411-1416.
    [61] Wang. J. W, Li. Y. D, Rational synthesis of metal nanotubes and nanowires from lamellar structures, Adv. Mater, 15 (2003) 445-447.
    [62] Bakkers. Erik. P. A. M, Verheijen. M. A, Synthesis of InP nanotubes, J. Am. Chem. Soc, 125 (2003) 3440-3441.
    [63] Wagner. R. S, Ellis. W. C, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett, 4 (1964) 89-92.
    [64] Wu. Y. Y, Yang. P. D, Direct observation of vapor-liquid-solid nanowire growth, J. Am, Chem. Soc, 123 (2001) 3165-3166.
    [65] Westwater. J, Gosain. D. P, Tomiya S, et al, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction, J. Vac. Sci. Technol. B, 15 (1997) 554.
    [66] Wu Y Y, Yang P D. Germanium nanowire growth via simple vapor transport, Chem. Mater, 2 (2000) 605-607.
    [67] Chen. C. C, Yeh. C. C, Chen. C. H, et al, Catalytic growth and characterization of gallium nitride nanowires, J. Am. Chem. Soc, 123 (2001) 2791-2798.
    [68] Wang. Y, Meng. G, Zhang. L, et al, Catalytic growth of large-scale single-crystalCdS nanowires by physical evaporation and their photoluminescence, Chem. Mater, 14 (2002) 171-175.
    [69] Tang. C, Fan. S, Chapelle. M, et al, Silica-assisted catalytic growth of oxide and nitride nanowires, Chem. Phys. Lett, 333 (2001) 12-15.
    [70] Morales. A. M, Lieber. C. M, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 279 (1998) 208-211.
    [71] Zhou. G. W, Zhang. Z, Bai. Z. G, et al, Transmission electron microscopy study of Si nanowires, Appl. Phys. Lett, 73 (1998) 677-680.
    [72] Gudiksen. M. S, Wang. J. F, Lieiber. C. M, et al, Synthetic control of the diameter and length of single crystal semiconductor nanowires, J. Phys. Chem. B, 105 (2001) 4062-4064.
    [73] Hoche. T, Bohme. R, Gerlach. J. W, et al, Semiconductor Nanowires Prepared by Diffraction-Mask-Projection Excimer-Laser Patterning, Nano. Lett, 4 (2004) 895-897.
    [74] Duan. X. F, Wang. J. F, Lieber. C. M, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett, 76 (2000) 1116-1118.
    [75] Yu. D. P, Hang. Q. L, Ding. Y, et al, Amorphous silica nanowires: Intensive blue light emitters, Appl. Phys. Lett, 73 (1998) 3076-3078.
    [76] Li. C, Zhang. D. H, Han. S, et al, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater, 15 (2003) 143-146.
    [77] Wang. N, Zhang. Y, Tang. Y, et al, SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett, 73 (1998) 3902-3094.
    [78] Shi. W. S, Zheng. Y. F, Wang. N, et al, A general synthetic route to III-V compound semiconductor nanowires, Adv. Mater, 13 (2001) 591-594.
    [79] Yang. Y. H, Wu. S. J, Chiu. H. S, et al, Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation, J. Phys. Chem. B, 108 (2004) 846-852.
    [80] Shi. W, Zheng. Y, Wang. N, et al, Microstructures of gallium nitride nanowires synthesized by oxide-assisted method, Chem. Phys. Lett, 345 (2001) 377-380.
    [81] Shi. W. S, Zheng. Y. F, Wang. N, et al, Oxide-assisted growth and opticalcharacterization of gallium-arsenide nanowires, Appl. Phys. Lett, 78 (2001) 3304-3306.
    [82] Niu. H, Zhang. L, Gao. M, et al, Amphiphilic ABC Triblock Copolymer-Assisted Synthesis of Core/Shell Structured CdTe Nanowires, Langmuir, 21 (2005) 4205-4210.
    [83] Xu. D, Xu. Y, Chen. D, et al, Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Adv. Mater, 12 (2000) 520-522.
    [84] Xu. D, Shi. X, Guo. G, et al, Electrochemical preparation of CdSe nanowire arrays, J. Phys. Chem. B, 104 (2000) 5061-5063.
    [85] Dai. H, Wong. E. W, Lu. Y. Z, et al, Synthesis and characterization of carbide nanorods, Nature, 375 (1995) 769-772.
    [86] Han. W. Q, Fan. S. S, Li. Q. Q, et al, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 277 (1997) 1287-1289.
    [87] Han. W. Q,Redlich. P, Ernst. F, et al, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates, Appl. Phys. Lett, 75 (1999) 1875-1877.
    [88] Han. W, Fan. S, Li. Q, et al, Synthesis of silicon nitride nanorods using carbon nanotube as a template, Appl. Phys. Lett, 71 (1997) 2271-2273.
    [89] Fullam. S, Cottell. D, Rensmo. H, et al, Carbon nanotube templated self-assembly and thermal processing of gold nanowires, Adv. Mater, 12 (2000) 1430-1432.
    [90] Matsui. K, Pradhan. B. K, Kyotani. T, et al, Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes, J. Phys. Chem. B, 105 (2001) 5682-5688.
    [91] Satishkumar B C, Govindaraj A, Nath M, et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates, J. Mater. Chem, 10 (2000) 2115-2119.
    [92] Zhang. Y. J, Zhu. J, Zhang. Q, et al, Synthesis of GeO2 nanorods by carbon nanotubes template, Chem. Phys. Lett, 317 (2000) 504-509.
    [93] Schonenberger. C, VanderZande. B M I, Fokkink. L G J, et al, Templatesynthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology, J. Phys. Chem. B, 101 (1997) 5497-5505.
    [94] Deng. Z, Mao. C, DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays, Nano. Lett, 3 (2003) 1545-1548.
    [95] Braun. E, Elchen. Y, Sivan. U,et al, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391 (1998) 775-778.
    [96] Richter. J, Seidel. R, Kirsch. R, et al, Nanoscale Palladium Metallization of DNA, Adv. Mater, 12 (2000) 507-510.
    [97] Sastry. M, Kumar. A, Datar. S,et al, DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure, Appl. Phys. Lett, 78 (2001) 2943-2945.
    [98] Mao. C, Solis. D. J, Reiss. B. D, et al, Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires, Science, 303 (2004) 213-217.
    [99] Jiang. X, Xie. Y, Lu. J,et al, Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by –irradiation, Chem. Mater, 13 (2001) 1213-1218.
    [100] Huang. L, Wang. H, Wang. Z, et al, Nanowire arrays electrodeposited from liquid crystalline phases, Adv. Mater, 14 (2002) 61-64.
    [101] Cao. M. H, Hu. C. W, Peng. G, et al, Selected-control synthesis of PbO_2 and Pb_3O_4 single-crystalline nanorods,J. Am. Chem. Soc, 125 (2003) 4982-4983.
    [102] Wu. Y, Livneh. T, Zhang. Y. X, et al, Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays, Nano. Lett, 4 (2004) 2337-2342.
    [103] Valdes-Solis. T, Marba.n G, Fuertes. A. B, Preparation of Nanosized Perovskites and Spinels through a Silica Xerogel Template Route, Chem. Mater, 17 (2005) 1919-1922.
    [104] Li. Y. D, Liao. H. W, Ding. Y, et al, Nonaqueous synthesis of CdS nanorod semiconductor, Chem. Mater, 10 (1998) 2301-2303.
    [105] Li. B, Xie. Y, Huang. J. X, et al, Synthesis by a solvothermal route and characterization of CuInSe_2 nanowhiskers and nanoparticles, Adv. Mater, 11(1999) 1456-1459.
    [106] Li. Y, Liao. H, Ding. Y, et al, Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod, Inorg. Chem, 38 (1999) 1382-1387.
    [107] Cao. M. H, Hu. C. W, Wang. E. B, The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers, J. Am. Chem. Soc, 125 (2003) 11196-11197.
    [108] Wang. X, Li. Y. D, Synthesis and formation mechanism of manganese dioxide nanowires/nanorods, Chem. Eur. J, 9 (2003) 300-306.
    [109] Wang. X, Li. Y. D, Synthesis and characterization of lanthanide hydroxide single-crystal nanowires, Angew. Chem. Int. Ed, 41 (2002) 4790-4793.
    [110] Trentler. T. J, Goel. S. C, Hickman. K. M, et al, Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway, J. Am. Chem. Soc, 119 (1997) 2172-2181.
    [111] Markowitz. P. D, Zach. M. P, Gibbons. P. C, et al, Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution-Liquid-Solid Mechanism, J. Am. Chem. Soc, 123 (2001) 4502-4511.
    [112] Omi. H, Ogino. T, Self-assembled Ge nanowires grown on Si (113), Appl. Phys. Lett, 71 (1997) 2163-2165.
    [113] Li. H. X , Wu. J, Wang. Z. G, et al, High-density InAs nanowires realized in situ on (100) InP, Appl. Phys. Lett, 75 (1999) 1173-1175.
    [114] Lee. H. G, Jeon. H. C, Kang. T. W, et al, Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy, Appl. Phys. Lett, 78 (2001) 3319-3321.
    [115] Xing. Y. J, Hang. Q. L, Yan. H. F, et al, Solid–liquid–solid (SLS) growth of coaxial nanocables: siliconcarbide sheathed with silicon oxide, Chem. Phys. Lett, 345 (2001) 29-32.
    [1] 郭用猷,物质结构基本原理,高等教育出版社,1987。
    [2] 张思远,毕宪章,稀土光谱理论,吉林科学技术出版社,1991。
    [3] 徐叙瑢,苏勉曾,发光学与发光材料,化学工业出版社,2004。
    [4] B. R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev, 127 (1962) 750-761。
    [5] G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys, 37 (1962) 511-520。
    [6] 黄世华,激光光谱学原理和方法,吉林大学出版社,2001。
    [1] Peng. X, Manna. L, Yang. W, Wickham. J, Scher. E, Kadavanich. A. P, Alivisatos, A. Shape control of CdSe nanocrystals,Nature, 404 (2000) 59-61.
    [2] Xia. Y, Yang. P, Sun Y, Wu. Y, Mayers. B, Gates. B, Yin. Y, Kim. F, Yan. H, One-dimensional nanostructures: Synthesis characterization, and applications , Adv. Mater, 15 (2003) 353-389.
    [3] Song. Q, Zhang. Z, Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals,J. Am. Chem. Soc, 126 (2004) 6164-6168.
    [4] Qin. G, Qin. W, Wu. C, Huang. S, Zhao. D, Zhang. J, Lu. S, Intense ultraviolet upconversion luminescence from Yb~(3+) and Tm~(3+) codoped amorphous fluoride particles synthesized by pulsed laser ablation,Opt. Commun, 242 (2004) 215-219.
    [5] Matsuura. D, Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals,Appl. Phys. Lett, 81 (2002) 4526-4528.
    [6] Downing. E, Hesselink. L, Ralston. J, Macfarlane. R, A Three-Color, Solid-State, Three-Dimensional Display,Science, 273 (1996) 1185-1189.
    [7] Shalav. A, Richards. B. S, Trupke. T, Kramer. K. W, Güdel. H. U, Application of NaYF_4:Er~(3+) up-converting phosphors for enhanced near-infrared silicon solar cell response,Appl. Phys. Lett, 86 (2005) 013505 (1-3).
    [8] Yi. G, Lu. H, Zhao. S, Ge. Y, Yang. W, Chen. D, Guo. L, Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors,Nano. Lett, 4 (2004) 2191-2196.
    [9] Wakefield. G, Holland. E, Dobson. P. J, Hutchison. J. L, Luminescence Properties of Nanocrystalline Y2O3:Eu,Adv. Mater, 13 (2001) 1557-1560.
    [10] Kumar. D, Sankar. J, Cho. K. Craciun, G. V, Singh. R. K, Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,Appl. Phys. Lett, 77 (2002) 2518-2520.
    [11] Qin. G, Qin. W, Huang. S, Wu. C, Zhao. D, Chen. B, Lu. S, E. S, Infrared-to-violet upconversion from Yb~(3+) and Er~(3+) codoped amorphous fluoride film prepared by pulsed laser deposition,J. Appl. Phys, 92 (2002) 6936-6938.
    [12] Qin. G, Qin. W, Wu. C, Huang. S, Zhang. J, Lu. S, Zhao. D, Liu. H, Enhancement of ultraviolet upconversion in Yb~(3+) and Tm~(3+)codoped amorphous fluoride film prepared by pulsed laser deposition,J. Appl. Phys, 93 (2003) 4328-4330.
    [13] Fiorenzo. V, Boyer. J. C, Capobianco. J. A, Adolfo. Speghini, Bettinelli. M, Effect of Yb~(3+) Codoping on the Upconversion Emission in Nanocrystalline Y2O3:Er~(3+),J. Phys. Chem. B, 107 (2003) 1107-1112.
    [14] Wu. C, Qin. W, Qin. G, Zhao. D, Zhang. J, Huang. S, Lü. S, Liu. H, Lin. H, Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes,Appl. Phys. Lett, 82 (2003) 520-522.
    [15] Wang. X, Y. Li, Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires,Angew. Chem. Int. Ed, 41 (2002) 4790-4793.
    [16] Wang. X, Sun. X, Yu. D, Zou. B, Li. Y, Rare Earth Compound Nanotubes,Adv. Mater, 15 (2003) 1442-1445.
    [17] Auzel. F, Upconversion and Anti-Stokes Processes with f and d Ions in Solids,Chem. Reν, 104 (2004) 139-173.
    [18] Wang. Y. H, Junichi Ohwaki, New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion, Appl. Phys. Lett, 63 (1993) 3268-3270.
    [19] Yang. J, Zhang. L, Wen. L, Dai. S, Hu. L, Jiang. Z, Optical transitions and upconversion luminescence of Er~(3+)/Yb~(3+)-codoped halide modified tellurite glasses,J. Appl. Phys, 95 (2004) 3020-3026.
    [20] Vetrone. F, Boyer. J, Capobianco. J. A, Speghini. A, Bettinel. M, Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er~(3+),Chem. Mater, 15 (2003) 2737-2743.
    [21] Pollnau. M, Gamelin. D. R, Lüthi. S. R, Güdel. H. U, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B, 61 (2000) 3337-3346.
    [22] Meltzer. R. S, Yen. W. M, Zheng. H, Feofilov. S. P, Ioffe. A. F, Dejneka. M. J, Relaxation between closely spaced electronic levels of rare-earth ions doped in nanocrystals embedded in glass,Phys. Reν. B, 66 (2002) 224202-224207.
    [23] Capobianco. J. A, Fiorenzo. V, Boyer. J. C, Enhancement of Red Emission (~4F_(9/2) → ~4I_(15/2)) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er~(3+),J. Phys. Chem. B, 106 (2002) 1181-1187.
    [24] Capobianco. J. A, Vetrone. F, D(?)Alesio. T, Tessari. G, Speghini. A, Bettinelli. M, Optical spectroscopy of nanocrystalline cubic Y_2O_3:Er~(3+) obtained by combustion synthesis,Phys. Chem. Chem. Phys, 2 (2000) 3203-3207.
    [25] Miyakawa. T, Dexter. D. L, Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids,Phys. Reν. B, 1 (1970) 2961-2969.
    [1] Reisfeld. R, Jorgensen. C. K, Lasers and excited states of rare earths, Speringer: Berlin, 1977.
    [2] Becker. P. C, Olsson. N. A, Simpson. J. R, Erbium doped amplifiers: fundamentals and technology; Academic Press: San Diego, 1999.
    [3] Blasse. G, B. Grabmaier. C, Luminescent materials, Springer: Berlin, 1994.
    [4] Bender. C. M, Burlitch. J. M, Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles, Chem. Mater, 12 (2000) 1969-1976.
    [5] Zhou. J, Wu. Z, Liu. W, Dang. H, Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin, Wear, 249 (2001) 333-3337.
    [6] Stouwdam. J. W, Van Veggel. F. C. J. M, Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF3 nanoparticles, Nano. Lett, 2 (2002) 733-737.
    [7] Stouwdam. J. W, Hebbink. G. A, Huskens. J, Van Veggel. F. C. J. M, Lanthanide doped nanoparticles with excellent luminescent properties in organic media, Chem. Mater, 15 (2003) 4604-4616.
    [8] M. H. Cao, C. W. Hu, E. B. Wang, The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers, J. Am. Chem. Soc, 125 (2003) 11196-11197.
    [9] Boyer. D, Mahiou. R, Powders and coatings of LiYF4:Eu~(3+) obtained via an original way based on the sol-gel process, Chem. Mater, 16 (2003) 2518-2521.
    [10] Yi. G, Lu. H, Zhao. S, De. Y, Yang. W, Chen. D, Guo. L. H, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors, Nano. Lett, 4 (2004) 2191-2196.
    [11] Heer. S, K?mpe. K, Güdel. H. U, Haase. M, Highly Efficient Multicolour Upconversin Emissin in Transparent Colloids of Lanthanide doped NaYF4 Nanoparticles, Adv. Mater, 16 (2004) 2102-2105.
    [12] Shalav. A, Richards. A. S, Trupke. T, Kr? mer. K. W, Güdel. H. U, Application ofNaYF_4:Er~(3+) up-converting phosphors for enhanced near-infrared silicon solar cell response, Appl. Phys. Lett, 86 (2005) 013505 (1-3).
    [13] Gejihu. De, Weiping. Qin, Jisen. Zhagn, Dan. Zhao, Bright Green Upconversion Emission of Hexagonal LaF3:Yb~(3+),Er~(3+) Nanocrystals, Chem. Lett, 34 (2005) 914-915.
    [14] Zhang. Y. W, Sun. X, Si. R, You. L. P, and Yan. C. H, Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor, J. Am. Chem. Soc, 127 (2005) 3260-3261.
    [14] Pollnau. M, Gamelin. D. R, Lüthi. S. R, and Güdel. H. U, Power dependence of upconverson luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B, 61 (2000) 3337-3345
    [15] Wang. Y, Ohwaki. J, New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion, Appl. Phys. Lett, 63 (1993) 3268-3270.
    [16] Qin. G. S, Qin. W. P, Huang. Sh. H, Wu. C. F, Chen. B. J, Lü. S. Z, E. S. L, Upconverting Yb~(3+)-Er~(3+) codeped amorphous fluoride thin films prepared by pulsed-laser deposition for visible light souce, Solid. State. Commun, 120 (2001) 211-214.
    [17] Qin. G, Qin. W, Huang. S, Wu. C, Zhao. D, Chen. B, Lü. S, E. S, Infrared-to-violet upconversion from Yb~(3+) and Er~(3+) codoped amorphous fluoride film prepared by pulsed laser deposition, J. Appl. Phys, 92 (2002) 693636-6938.
    [18] Auzel. F, Upconversion and anti-stokes processes with f and d lons in solids, Chem. Reν, 104 (2004) 139-173.
    [1] Booth I J, Mackechnie C J, Ventrudo B F, Operation of diode laser pumped Tm~(3+): ZBLAN upconversion fiber laser at 482nm, IEEE J. Quantum. Electron, 32 (1996) 118-122.
    [2] Xu Wu, Denis J P, Ozen G, et al, Red-to-blue upconversion emission of Tm~(3+) ions in Yb~(3+)-doped glass ceramic, J. Appl. Phys, 75 (1994) 4180-4188.
    [3] Gouveia-Neto A S, Da Costa E B, Dos Santos P V, Sensitized thulium blue upconversion emission in Nd~(3+)/Tm~(3+)/Yb~(3+) triply doped lead and cadmium germanate glass excited around 800 nm, J. Appl. Phys, 94 (2003) 5678-5681.
    [4] Qiu Jianbei, Kawamoto Yoji, Blue up-conversion luminescence and energy transfer process in Nd~(3+)-Yb~(3+)-Tm~(3+) co-doped ZrF4-based glasses, J. Appl. Phys, 91 (2002) 954-959.
    [5] Becker. P. C, Olsson. N. A, Simpson. J. R, Erbium doped amplifiers: fundamentals and technology, Academic Press: San Diego, 1999.
    [6] Blasse. G, Grabmaier. B. C, Luminescence materials, Springer: Berlin, 1994.
    [7] Auzel. F, Up conversion and Anti-Stokes Processes with ? and d Ions in Solids, Chem. Reν, 104 (2004) 139-173.
    [8] Wang Y H, Junichi Ohwaki, New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion, Appl. Phys. Lett, 63 (1993) 32683270.
    [9] Dejneka. M. J, The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids, 239 (1998) 149-155.
    [10] Quimby. R. S, Quantum efficiency of Pr~(3+) doped transparent glass ceramics, J. Appl. Phys, 83 (1998), 1649-1653.
    [11] Tick. P. A, Borrelli N. F, Cornelius L. K, Transparent glass ceramics for 1300 nm amplifier applications, J. Appl. Phys, 78 (1995), 6367-6374.
    [12] Xu. Wu, Denis. J. P, Ozen. G, Red-to-blue upconversion emission of Tm~(3+) ions in Yb~(3+)-doped glass ceramic, J. Appl. Phys, 75 (1994), 4180-4188.
    [13] Hideaki Hayashi, Tanabe, S, Hanada T, 1.4 μm band emission properties of Tm~(3+) ions in transparent glass ceramics containing PbF2 nanocrystals for S-bandamplifier, J. Appl. Phys, 89 (2001) 1041-1045.
    [14] Chen. X. B, Sawanobori. N, Nie. Y. X, Initial study about cross-energy-transfer and fluorescence guard-against-forge in oxyfluoride glass ceramics, Acta Physica Sinica, 49 (2000), 2488.
    [15] Huang. S, Lai. Sh. T, Lou. L, Jia. W, Yen. W. M, Upconversion in LaF3: Tm~(3+), Phys. Rev, B, 24 (1981) 59-62.
    [16] Qin. G, Qin. W, Wu. C, Huang. S, Zhang. J, Lu. S, Zhao. D, Liu. H, Enhancement of ultraviolet upconversion in Yb~(3+) and Tm~(3+)codoped amorphous fluoride film prepared by pulsed laser deposition,J. Appl. Phys, 93 (2003) 4328-4330.
    [17] a) Bender. C. M, Burkitch. J. M, Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles, Chem. Mater, 12 (2000) 1969-1976. b) Stuwdam. J, van Veggel. F. C. J. M, Near-infrared Emission of Redispersible Er~(3+), Nd~(3+), and Ho~(3+) Doped LaF3 Nanoparticles, Nano. Lett, 2 (2002) 733-737.
    [18] Pollnau. M, Gamelin D. R, Lüthi S. R, and Güdel. H. U, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B, 61 (2000) 3337-3346.
    [19] Willmott. P. R, Huber. J. R, Pulsed laser vaporization and deposition, Rev. Mod. Phys, 72 (2000) 315-328.
    [20] Ostermayer. F. W, Van. De. Ziel. J. P, Marcos. H. M, Frequency upconversion in YF3: Yb~(3+), Tm~(3+), Phys. Rev. B, 3 (1971) 2698-2705.
    [21] Zou X L, Toratani H, Dynamics and mechanisms of upconversion processes in Yb~(3+) sensitized Tm~(3+) and Ho~(3+) doped fluorozircoaluminate glasses, J. Non-Cryst. Solids, 181 (1995) 87-99.
    [22] Mita Y, Lde T, Togashi M, et al, Energy transfer processes in Yb~(3+) and Tm~(3+) ion-doped fluoride crystals, J. Appl. Phys, 85 (1999) 4160-4164.
    [23] Walsh. Brian. M, Bsarnes. Nprman. P, Bartolo. Baldassare. Di, Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm~(3+) and Ho~(3+) ions in LiYF4, J. Appl. Phys, 83 (1998) 2772-2787.
    [24] Tanabe. Setsuhisa, Tamai. Kiyoshi, Hirao. Kazuyuki, and Soga. Naohiro,Branching ratio of uv and blue upconversions of Tm~(3+) ions in glasses, Phys. Reν. B, 53 (1996) 8358-8362.
    [25] Thrashi. R. J, Johnoson. L. F, Upconversion laser emission from Yb~(3+)-sensitized Tm~(3+) in BaY2F8, J. Opt. Soc. Am. B, 11 (1994 ) 881-885.
    [1] Pecoraro E , De Sousa D F , Lebullenger R , et al. Evaluation of the energy transfer rate for the Yb~(3+):Pr~(3+) system in lead fluoroin-dogallate glasses, J. Appl. Phys, 86(6) (19991) 3144-3146.
    [2] Akao F. Attenuation of elastic surface waves in thin film superconducting Pb and In at 316 MHz, Phys. Lett. A, 1969, 30(7) (1969) 409-410.
    [3] Rowell N L, Lockwood D L. Luminescence spectrum of the vibronic laser KZn1-xCoxF3:Ni, J. Lumin, 40-41 (1988) 629-630.
    [4] Park. S. K, Mho. S .I, Observation of Eu2+ in Y2O2S:Eu~(3+) and Y2O2S:Eu~(3+), Tb~(3+), Solid. State. Commun, 88(1) (1992) 47-52.
    [5] Tan Y W, Shi C S. Optical spectroscopy properties and charge compensation of BaLiF3 doped with Ce~(3+), J. Solid. State. Chem, 150 (1) (2000) 178-182.
    [6] Wojtowicz. A. J, Rare-earth-activated wide bandgap materials for scintillators, Nucl. Instrum. Meth. A, 486 (1-2) (2002) 201-207.
    [7] Hu. J, Ouyang. M, Lieber. C. M, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires, Nature, 399 (1999) 48-51.
    [8] Xia. Y, Yang. P, Sun. Y, Wu. Y, Mayer. B, Gates. B, Yin. Y, Kim. F, Yan. H, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater, 15 (2003) 353-389.
    [9] Pan. Z. W, Dai. Z. R, Wang. Z. L, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-1949.
    [10] Wang. Z. L, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides from materials to nanodevices, Adv. Mater, 15 (2003) 432-436.
    [11] Reisfeld. R, Jorgensen. C. K, Lasers and excited states of rare earths, Speringer: Berlin, 1997.
    [12] Becker. P. C, Olsson. N. A, Simpson. J. R, Erbium doped amplifiers: fundamentals and technology; Academic Press: San Diego, 1999.
    [13] Blasse. G, B. Grabmaier. C, Luminescent materials, Springer: Berlin, 1994.
    [14] Wojtowicz. A. J, Rare-earth-activated wide bandgap materials for scintillators,Nucl. Instrum. Methods. A, 486 (2002) 201-207.
    [15] Zhou. J, Wu. Z, Liu. W, Dang. H, Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin, Wear, 249 (2001) 333-337.
    [16] Bender. C. M, Burlitch. J. M, Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles, Chem. Mater, 12 (2000) 1969-1976.
    [17] Stouwdam. J. W, Van Veggel. F. C. J. M, Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF3 nanoparticles, Nano. Lett, 2 (2002) 733-737.
    [18] Sun. X, Li. Y. D, Size-cintrollable luminescent single crytal CaF2 nanocubes, Chem. Commun, (2003) 1768-1769.
    [19] Hua. R, Zang. C, Chen. C, Xie. D, Shi. C, Synthesis of Barium Fluoride Nanoparticles from Microemulsion, Nanotechnology, 14 (2003) 588-591.
    [20] Wang. X, Li. Y. D, Fullerene-like rare-erath nanoparticles, Angew. Chem. Int. Ed, 42 (2003) 3497-3500.
    [21] Heer. S, K?mpe. K, Güdel. H-U, Haase. M, Highly Efficient Multicolour Upconversin Emissin in Transparent Colloids of Lanthanide doped NaYF4 Nanoparticles, Adv. Mater, 16 (2004) 2102-2105.
    [22] Yi. G, Lu. H, Zhao. S, De. Y, Yang. W, Chen. D, Guo. L-H, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors, Nano. Lett, 4 (2004) 2191-2196.
    [23] Dekker. R, Klunder. D. J. W, Borreman. A, Diemeer. M. B. J, W?rhoff. K, Driessen. A, Stouwdam. J. W, van Veggel. F. C. J. M, Stimulated emission and optical gain in LaF3:Nd nanoparticle-deped polymer-based waveguides, Appl. Phys. Lett, 85 (2005) 6104-6106.
    [24] Shalav. A, Richards. A. S, Trupke. T, Kr? mer. K. W, Güdel. H. U, Application of NaYF4:Er~(3+) up-converting phosphors for enhanced near-infrared silicon solar cell response, Appl. Phys. Lett, 85 (2005) 86, 013502 (1-3).
    [25] Yan. R, Li. Y. D, Down/upconversion in Ln~(3+)-doped YF3 nanocrystals, Adv. Fucnt. Mater, 15 (2005) 763-770.
    [26] Sivakumar. S, van Veggel. F. C. J. M, Raudsepp. M, Bright white light through upconversion of a single NIR source from sol-gel-derived thin film made with Ln~(3+)-doped LaF3 nanoparticles, J. Am. Chem. Soc, 127 (2005) 12464-12465.
    [27] Cao. M. H, Hu. C. W, Wang. E. B, The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers, J. Am. Chem. Soc, 125 (2003) 11196-11197.
    [28] Liang. L, Xu. H, Su. Q, Konishi. H, Jiang. Y, Wu. M, Wang. Y, Xia. D, Hydrothermal Synthesis of Prismatic NaHoF4 Microtubes and NaSmF4 Nanotubes, Inorg. Chem, 43 (2004) 1594-1596.
    [29] Wu. C, Qin. W, Qin. G, Zhao. D, Zhang. J, Huang. S, Lu. S, Liu. H, Lin. H, Photoluminescence from surfactant-assembled Y2O3:Eu nanotubes, Appl. Phys. Lett, 82 (2003) 520-522.
    [30] Zhang. Y. W, Sun. X, Si. R, You. Li. P, and Yan. C. H, Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor, J. Am. Chem. Soc, 127 (2005) 3260-3261.
    [31] Gao. P. X, Wang. Z. L, Nanopropeller arrays of zinc oxide, Appl. Phys. Lett, 84 (2004) 2883-2885.
    [32] Clark. C, Fletcher. D. I, Xi. L. Y, Interdroplet exchange rates of water-in-oil and oil-in-water microemulsion droplets stabilized by pentaoxyethylene monododecyl ether. Langmuir, 6 (7) (1990) 1301-1309.
    [33] Kityk. I. V, Circularly photostimulated electrogyration in europium-and terbiu-doped GaN nanocrystals embedded in a silica xwrogel matrix, J. Phys. Condens Matter, 17 (2005) 5235-5245.
    [34] Judd. B. R, Optical absorption intensities of rare-earth ions, Phys. Rev, 127 (1962) 750-761.
    [35] G. S. Ofelt, Intensities of crystal spectra and cooperative optical transitions in rare-earth doped inorganic materials, J. Chem. Phys, 37 (1962) 511-520.
    [36] Yu. L. X, Song. H. W, et al, Luminescent properties of LaPO4:Eu nanoparticles and nanowires, J. Phys. Chem. B, 108 (2004) 16697-16702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700