基于新型仿生材料作为固载界面构建的生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生材料是基于自然界中生物的特点或特性制备的具有特殊形貌或功能的材料。在很多方面都有着重要的应用。因其具备良好的生物相容性,能使固定的生物活性分子保持良好的活性,在生物化学方面也有着重要的应用。
     基于直接电子传递的第三代电化学生物传感器是一种先进检验技术,它有很多的优点,如体积小、灵敏度高、响应速度快、不需要对样品进行预处理、成本低廉等。因此,在医学、军事、环境监测及食品安全等方面都有着重要的应用。而生物传感器制备的关键就是电极表面生物活性分子活性的保持,因此,本文中利用了新制备的仿生材料优异的生物相容性制备了一系列的性能优良的生物传感器,本文所做的具体工作如下:
     1.手性膦酸锆/血红蛋白/金电极的安培型过氧化氢传感器的研究
     共电沉积手性膦酸锆Zr(PO4)(H2PO4)0.50·(HO3PCH2NCH2SC2H3COOH)0.5091.6J2O (ZrPMT)、血红蛋白(Hb)于金电极表面,制备了安培型过氧化氢生物传感器。制备的生物传感器对于过氧化氢(H2O2)有着良好的响应,检出限为1.6×10-7mol L-1,线性范围为5×10-7 molL-1~1.2×10-4 mol L-1,相关系数0.99(S/N=3),且该传感器有良好的稳定性和较强的抗干扰能力。
     2.基于肠状二氧化锡纳米簇固载血红蛋白的酶型生物传感器
     成功制备了一种全新形貌的二氧化锡-肠状二氧化锡纳米簇并将其应用于过氧化氢生物传感器的制备。制备的二氧化锡展现出优异的生物相容性和对血红蛋白的吸附性能。以共电沉积法,将二氧化锡和血红蛋白沉积到金电极上制成了性能优良的过氧化氢生物传感器。该传感器对过氧化氢的还原有着灵敏的响应,响应线性范围为1×10-5 mol L-1到1.6×10-2 molL-1,最低检出限为3.5×10-6mol L-1 (S/N=3),相关系数为0.99(n=23)。传感器的选择性和重现性同样令人满意。
     3.基于石墨烯/壳聚糖复合膜的新型电流型甲胎蛋白免疫传感器
     制备了一种新型的无标记型免疫传感器来检测甲胎蛋白。制备过程是首先将壳聚糖/石墨烯复合膜滴涂于玻碳电极表面,接着吸附纳米金,最后吸附甲胎蛋白抗体。这种方法简单快捷,制备的传感器有很好的响应、选择性及重现性,检测范围为0.01到20ng mL-1,最低检测出限为3 pg mL-1(3σ).线性回归方程为△I(μA)=0.569+0.984 CAFP(ng mL-1),相关系数为0.998,有一定的实际应用价值。
Bionic materials are a kind of materials based on the imitation of characteristics of natural creatures, which possess special morphologies or properties and many applications. Bionic materials can keep the bioactivity of biological molecules due to the good compatibility, and consequently be widely used in biochemistry.
     The third generation biosensor based on direct electron transfer is an advanced technology, it possesses many advantages, such as small size, high sensitivity, short response time, no need for pretreatment of samples, and low cost. Therefore, biosensor has wide application in many fields, such as medical science, military, environmental monitoring and food security. The key to the construction of biosensor is the preservation of the bioactivity of the biological molecules. Therefore, several kinds of biosensors were fabricated using novel bionic materials. Details are summarized as follows:
     Part 1 Amperometric hydrogen peroxide biosensor based on electro-codeposition of chiral zirconium phosphonate/Hemoglobin on gold electrode
     A new kind of material-chiral zirconium phosphonate (Zr(P04)(H2PO4)0.50·(H03PCH2NCH2SC2H3COOH)o.5o-1.6H20) (abbreviated as ZrPMT), was employed for the construction of hydrogen peroxide biosensor. UV-Vis absorption spectra displayed that hemoglobin (Hb) retained its native structure after interaction with ZrPMT, showing that ZrPMT provided good compatibility. Cyclic voltammetry experiment showed that ZrPMT could greatly improve the electron transformation between the modified electrode and electrolyte. The biosensor was prepared by electro-codepositing of ZrPMT and Hb onto gold electrode (Au), this method was simple and easy, and the biosensor exhibited good response to the reduction of hydrogen peroxide with linear range from 5×10-7 mol L-1 to 1.2×10-4 mol L-1, and detection limit of 1.6×10-7 mol L-1, coefficient constant of 0.99 (S/N=3), the stability and selectivity were also good.
     Part 2 Enzyme biosensor based on Hemoglobin entrapped in intestine-like SnO2 nano-cluster
     A new morphology of SnO2, intestine-like nano-cluster was employed for the fabrication of hydrogen peroxide biosensor. The prepared SnO2 exhibited excellent biocompatibility and adsorption of hemoglobin, and the biosensor constructed by electro-codepositing of SnO2 and hemoglobin on gold electrode exhibited sensitive response to the reduction of hydrogen peroxide, and the linear range was from 1×10-5 mol L-1 to 1.6×10-2 mol L-1 with coefficient constant of 0.99 (n=23), and the detect limit was estimated to be 3.5×10-6 mol L-1 (S/N=3). The selectivity, reproducibility and stability were also good.
     Part 3 A novel label-free electrochemical immunosensor for the detection of a-fetoprotein based on graphene/chitosan composite
     A novel label-free immunosensor was fabricated for the detection of a-fetoprotein. The construction process of the immunosensor was firstly cast chitosan/graphene composite on the electrode, and then adsorbed nanogold particles on the composite, and finally adsorbed a-fetoprotein antibody. This method is very simple and the proposed immunosensor possessed high sensitivity, good selectivity and reproducibility, the detect range was from 0.01 to 20 ng mL-1 with a detect limit of 3 pg mL-1 (3σ), and the regrssion equation was△I (μA)=0.569+0.984 CAFP (ng mL-1) with a coefficient of 0.998, showing potential application in clinical diagnosis.
引文
[1]张先恩1生物传感技术原理与应用[M].长春:吉林科学技术出版社,1991
    [2]Turner A P F,Karube I,wilson G S,Biosensors,Oxford University Press,1987
    [3]Updike S J,Hicks G P.The enzyme electrodek [J].Nature,1967,214:986-988
    [4]Ricci F, Amine A, Moscone D, et al. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications [J].Biosens. Bioelectron.2007 22:854-862
    [5]Cass A E C,Davis G, Francis G D, et al.Ferrocene-mediated enzyme electrode for amperometric determination of glucose [J] Anal. Chem.1984,56(4):667-671
    [6]Sen S, Gulce A, Gulce H, Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes [J].Biosens. Bioelectron.2004,19: 1261-1268
    [7]Rezaei B, Majidi N, Rahmani H, et al. Electrochemical impedimetric immunosensor for insulin like growth factor-1 using specific monoclonal antibody-nanogold modified electrode [J]. Biosens. Bioelectron.2011,26:2130-2134
    [8]Wu Y L, Hu P Y, Lin, J J, Polysilicon wire glucose sensor highly immune to interference [J].Biosens. Bioelectron.2011,26:2281-2286
    [9]Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor [J].Bioelectrochem,2007,70:342-347
    [10]Dhand, C, Das, M, Datta, M, et al. Recent advances in polyaniline based biosensors [J].Biosens. Bioelectron.2011,26:2811-2821
    [11]You C P, Xu X, Tian B Z, et al. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions [J].Talanta,2009,78: 705-710
    [12]Choi H N, Kim M A, Lee W Y, Amperometric glucose biosensor based on sol-gel-derived metal oxide/Nafion composite films [J].Anal. Chim. Acta.2005,537:179-187
    [13]Yuge L,Chunliang L, Wenhua H.et al. Direct electron transfer of hemoglobin in layered a-zirconium phosphate with a high thermal stability [J].Anal. Biochem.2008,375:27-34
    [14]Okuma H, Watanabe E. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes [J].Biosens. Bioelectron.2002,17:367-372
    [15]Petrou P S, Kakabakos S E, Christofidis I, et al. Multi-analyte capillary immunosensor for the determination of hormones in human serum samples [J].Biosens. Bioelectron.2002,17: 261-268
    [16]Chen J H, Zhang J, Yang H H, et al. A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease [J].Biosens. Bioelectron.2010,26:144-148
    [17]Su L A, Jia W Z, Hou C J, et al. Microbial biosensors:A review [J].Biosens. Bioelectron.2011,26:1788-1799
    [18]Sezginturk M K, Goktug T, Dinckaya E, Detection of benzoic acid by an amperometric inhibitor biosensor based on mushroom tissue homogenate [J].Food. Technol. Biotech.2005,43: 329-334
    [19]Tencaliec A M, Laschi S, Magearu V, et al. A comparison study between a disposable electrochemical DNA biosensor and a Vibrio fischeri-based luminescent sensor for the detection of toxicants in water samples [J].Talanta.2006,69:365-369
    [20]Nakamura H, Karube I. Current research activity in biosensors [J].Anal. Bioanal. Chem. 2003,377:446-468
    [21]Gomes S A S, Nogueira J M F, Rebelo, M J F, An amperometric biosensor for polyphenolic compounds in red wine, Biosens. Bioelectron.2004,20:1211-1216
    [22]Zheng Y H, Hua T C, Xu F. A novel thermal biosensor based on enzyme reaction for pesticides measurement [J].Environ. Sci-China.2005,17:615-619
    [23]Guo M L, Chen J H, Li J, Nie L H, Yao SZ. Carbon Nanotubes-Based Amperometric Cholesterol Biosensor Fabricated Through Layer-by-Layer Technique [J].Electroanal.2004,16: 1992-1998
    [24]Pena-Vazquez E, Maneiro E, Perez-Conde C, et al. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology [J].Biosens. Bioelectron.2009,24:3538-3543
    [25]Abhijith K S, Kumar P V S, Kumar M A, et al. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols [J].Anal. Bioanal. Chem.2007,389:2227-2234
    [26]Tong Z Q, Yuan R, Chai Y Q, et al. A novel and simple biomolecules immobilization method: Electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor [J]. Biochem.2007,128:567-575.
    [27]Louloudi M, Deligiannakis Y, Hadjiliadis N, Design and synthesis of new biomimetic materials [J].Inorg. Biochem.2000,79:93-96
    [28]Zhang L J, Thomas J. Webster. Nanotechnology and nanomaterials:Promises for improved tissue regeneration [J].Nano. Today.2009,4:66-80
    [29]Lei C X, Hu S Q, Gao N, Shen G L, Yu R Q. An amperometric hydrogen peroxide biosenson based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode [J].Bioelectrochem.2004,65:33-39
    [30]Armstrong F A, Wilson G S. Recent developments in faradaic bioelectrochemistry [J].Electrochim. Acta 2000,45:2623-2645.
    [31]Rusling J F. Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films [J].Acc. Chem. Res.1998,31:363-369.
    [32]Ghindilis A L, Atanasov P, Wilkins E. Enzyme-catalyzed direct electron transfer:Fundamentals and analytical applications [J].Electroanal.1997,9:661-674.
    [33]Gorton L, Lindgren A, Larsson T, Munteanu F D, Ruzgas T, Gazaryan I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors [J].Anal. Chim. Acta.1999,400:91-108.
    [34]Tian F M, Xu B, Zhu L D, Zhu G Y. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode [J].Anal. Chim. Acta.2001,443:9-16.
    [35]Chen S H, Yuan R, Chai Y Q,Yin B, Li WJ, Min LG. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica@chitosan nanospheres and multiwall carbon nanotubes composite [J].Electrochim. Acta 2009,54:3039-3046.
    [36]Zong S Z,Cao Y, Zhou Y M, Jin H X. Hydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix [J].Anal. Chim. Acta 2007,582:361-366.
    [37]Wang G, Xu J J, Chen H Y, Lu Z H, Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix [J].Biosens. Bioelectron. 2003,18:335-343.
    [38]Xiang C L, Zou Y J, Sun L X, Xu F, Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film [J]. Electrochem.. Commun.2008,10:38-41.
    [39]Wang Z, Xu Q, Wang H Q, Yang Q, Yu J H, Zhao Y D. Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidase with vapor deposited quantum dots [J].Sens. Actuators B.2009,138:278-282.
    [40]Xiao X L, Luan Q F, Yao X., Zhou K B. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase [J].Biosens. Bioelectron.2009, 24:2447-2451.
    [41]Lu X B, Zhang Q, Zhang L, Li J H. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J].Electrochem. Commun. 2006,8:874-878.
    [42]Dai Z H, Bai H Y, Hong M, Zhu Y Y, Bao J C, Shen J. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres [J].Biosens. Bioelectron.2008,23:1869-1873.
    [43]Zheng N, Zhou X, Yang W Y, Li X J, Yuan Z B. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film [J].Talanta 2009,79:780-786
    [44]阳明辉,沈国励,俞汝勤,等.基于静电吸附多层膜固定酶的过氧化氢生物传感器的研[J].化学学报,2004,62(5):502-507
    [45]朱俊杰,姚慧,李楠,等.一种基于壳聚糖固定葡萄糖氧化酶的葡萄糖生物传感器的研[J].中国化学,2005,23(3):275-279
    [46]谢铁,袁若,柴雅琴,等.聚L-半胱氨酸/DNA-HRP混合自组装膜修饰的过氧化物传感器的研究[J].西南大学学报(自然科学版),2007,29(5):44-48
    [47]石银涛,袁若,柴雅琴,等.基于聚硫堇和纳米金固定辣根过氧化物酶的生物传感器[J]西南师范大学学报(自然科学版),2006,35(5):1021-06
    [48]Liu C H, Guo X L, Cui H T, Yuan R. An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase [J].Mol. Catal B-Enzym. 2009,60:151-156
    [49]Ansell R J. Molecularly imprinted polymers for the enantioseparation of chiral drugs [J].Adv Drug Deliver Rev 2005,57:1809-1835
    [50]Ariga K, Michinobu T, Nakanishi T, Hill J P. Chiral recognition at the air-water interface [J].Curr Opin Colloid In 2008,13:23-30
    [51]Matsuoka Y, Kanda N, Lee Y M, Higuchi A. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes [J].Membrane Sci 2006,280:116-123
    [52]Nie F, Lu J R, He Y H, Du J X. Determination of indomethacin in urine using molecule imprinting-chemiluminescence method [J].Talanta 2005,66:728-733
    [53]Ma X B, Fu X K. Synthesis of the novel layered amorphous and crystalline zirconium phosphate-phosphonates Zr(HPO4)[O3PCH2N(CH2CH2)2O]-nH2O, Zr(HPO4)[O3PCH2N(CH2CO2H)2]nH2O, zirconium phosphonates Zr[(O3PCH2)NCH2CO2H]-nH2O and the catalytic activities of their palladium complexes in hydrogenation [J].Mol. Catal. A:Chem.2004,208:129-133.
    [54]Yang C Y, Clearfield A. The preparation and ion-exchange properties of zirconium sulphophosphonates React. Polym. Ion Exchange and Sorbents 1987,5:13-21.
    [55]Zeng R Q, Fu X K, Gong C B, Sui Y, Ma X B, Yang X B. Preparation and catalytic property of the solid base supported on the mixed zirconium phosphate phosphonate for Knoevenagel condensation [J].Mol. Catal. A:Chem.2005,229:1-5.
    [56]Fu X K, Wen S Y. Preparation of Zirconium (Benzyldiethylammonio-Methylphosphonate Chloride) and Ptc Reactions [J].Synth. Commun.1995,25:2435-2442.
    [57]Huang K L Yu J H, Wang G M, Li Y, Xu R R. Covalent Bonding of Phosphonates of L-Proline and L-Cysteine to y-Zirconium Phosphate [J].Eur. Inorg. Chem.2004,2004:2956-2960
    [58]Ganong W F. Review of Medical Physiology, Prentice-Hall [J].Englewood Cliffs, NJ,1997.
    [59]Chen S, Yuan R, Chai Y Q, Xu L, Wang N, Li X, Zhang L. Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase (HRP) on the Layer-by-Layer Assembly Films of Gold Colloidal Nanoparticles and Toluidine Blue [J].Electroanal.2006,18:471-477.
    [60]Kafi A K M, Yin F, Shin H K, Kwon Y S. Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode [J].Thin Solid Films.2006,499:420-424
    [61]Lai G S, Zhang H L, Han D Y. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode [J].Sens. Actuators, B. 2008,129:497-503
    [62]Zhou K F, Zhua Y H, Yang X L, Luo J, Li C Z, Luan S R. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites [J].Electrochim. Acta. 2010,55:3055-3060
    [63]Ding S F, Xu M Q, Zhao G C, Wei X W. Direct electrochemical response of Myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte [J].Electrochem. Commun.2007,9:216-220.
    [64]Liu Y G, Lu C L, Hou W H, Zhu J J. Direct electron transfer of hemoglobin in layered a-zirconium phosphate with a high thermal stability [J].Anal. Biochem.2008,375:27-34.
    [65]Lai G S, Zhang H L, Han D Y. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode [J].Sens. Actuators, B. 2008,129:497
    [66]Zeng X. D, Li X F, Liu X Y, Liu Y, Luo S L, Kong B, Yang S L, Wei W Z. A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes [J].Biosens. Bioelectron.2009,25:896-900
    [67]Chen S H, Yuan R, Chai Y Q, Zhang L Y, Wang N, Li X L. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles [J].Biosens. Bioelectron.2007,22,1268-1274
    [68]Li F, Chen W, Tang C F, Zhang S S. A novel strategy for immobilization of thionine based on calcium carbonate-gold nanoparticles inorganic hybrid composite and its application in hydrogen peroxide sensor [J].Talanta. 2009,77:1304
    [69]Dai Z H, Bai H Y, Hong M, Zhu Y Y, Bao J C, Shen J. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres [J].Biosens. Bioelectron.2008,23:1869-1873
    [70]Yin LC, Hua J M. Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF4 Ionic-Liquid Mixture [J].Biosens.Bioelectron. 2009,24:2149-2154
    [71]Chen X H, Hua J Q, Chen Z W, Feng X. M, Li A Q. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry [J].Biosens. Bioelectron.2009,24:3448-3454
    [72]Zong S Z, Cao Y, Zhou Y M, Ju H X. Direct Electrochemistry and Electrocatalysis of Hemoglobin at PAMAM Dendrimer-MWNTs-Au Nanoparticles Composite Film Modified Glassy Carbon Electrode [J].Anal. Chim. Acta.2007,582:361
    [73]Ding Y, Wang Y,, Li B K, Lei Y. Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite [J].Biosens. Bioelectron. 2010,25:1548-1552
    [74]Zhao H Y, Zheng W, Meng Z X, Zhou H M, Xu X X, Li Z, Zheng Y F. Amperometric Hydrogen Peroxide Biosensor Based on Multiwall Carbon Nanotubes and Cadmium Sulfide Quantum Dots [J].Biosens. Bioelectron.2009,24:2352
    [75]Hong J M, Da Z H. Direct Electrochemistry of Hemoglobin Immobilized on Hydrophilic Ionic Liquid-chitosan-ZrO2 Nanoparticles Composite Film with Carbon Ionic Liquid Electrode as the Platform [J].Sens. Actuators, B.2009,140:222-226
    [76]Tong Z Q, Yuan R, Chai Y Q, Chen S H, Xie Y. A hydrogen peroxide sensor based on myoglobin immobilized in DNA films on a gold electrode [J].Thin Solid Films. 2007,515:8054-8065
    [77]Liu Y G,LuCL, Hou W H, Zhu J J. Highly Sensitive and Selective Uric Acid Biosensor Based on Direct Electron Transfer of Hemoglobin-encapsulated Chitosan-modified Glassy Carbon Electrode [J].Anal. Biochem.2008,375:27
    [78]Zhao S, Zhang K, Sun Y Y, Sun C Q. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode:Direct electrochemistry and electrocatalysis [J].Bioelectrochem.2006,69:10-15
    [79]Jia N Q, Lian Q, Wang Z Y, Shen H B. A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in PEO-PPO-PEO triblock copolymer film [J].Sens. Actuators.2009,137:230-235
    [80]Liu X J, Xu Y, Ma X, Li G X. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and triton X-100 [J].Sens. Actuators.2005,106:284-288
    [81]Zheng N, Zhou X, Yang W Y, Li X J, Yuan Z B. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film [J].Talanta. 2009,79:780-786
    [82]Liu C H, Guo X. L, Cui H T, Yuan R. An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase [J].Mol Catal B-Enzym. 2009,60:151-156
    [83]Liu S Q, Li Y X, Xie M J, Guo X F, Ji W J, Ding W P. One-pot synthesis of intestine-like SnO2/TiO2 hollow nanostructures [J].Mater. Lett.2010,64:402-404
    [84]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J. Electroanal. Chem.,1979,101(1):19-28.
    [85]Li L M, Huang J, Wang T H, Zhang H, Liu Y, Li J H. An excellent enzyme biosensor based on Sb-doped SnO2 nanowires [J].Biosens. Bioelectron.2010,25:2436
    [86]Yamagata Y, Katoh H, Nakamura K, Tanaka T, Satomura S, Matsuura S. Determination of a-fetoprotein concentration based on liquid-phase bind ingassay using anion exchange chromatography and sulfated peptide introduced antibody [J].Immu nol. Meth ods. 1998,212:161-168.
    [87]Bader D, Riskin A, Vafsi O, Tamir A, Peskin B, Israel N, Merksamer R, Dar H, David M. a-Fetoprotein in the early neonatal period:A large study and review of the literature [J].Clin. Chim. Acta.2004,349:15-23.
    [88]Lin J H, He C Y, Zhang L J, Zhang S S. Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan flm [J].Anal.Biochem 2009,384:130-135
    [89]Irony-Tur-Sinai M, Grigoriadis N, Lourbopoulos A, et al. Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein [J]. Exp. Neurol.,2006, 198(1):136-144.
    [90]Bader D, Riskin A, Vafsi O, et al. Alpha-fetoprotein in the early neonatal period-a large study and review of the literature [J]. Clin. Chim. Acta,2004,349(1-2):15-23.
    [91]Chena H, Jianga J H, Yang H G, Denga T, Lia J S, Shena G Li, Yu R Q. An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex [J].Sens. Actuators B:Chem.2006,117:211-218.
    [92]Jia C P, Zhong X Q, Hua B, Liu M Y, Jing F X, Lou X H, Yao S H, Xiang J Q, Jin Q H, Zhao J L. Nano-ELISA for highly sensitive protein detection [J].Biosens. Bioelectron. 2009,24:2836-2841.
    [93]Chaker T, Lakshmi C, Nosang M, Vivek S, Ashok M. Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers [J].Analyst. 2010,10:2637-2642
    [94]Wei Q, Mao K X, Wu D, Dai Y X, Yang J, Du B, Yang M L, Li H. A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite [J].Sens. Actuators, B.2010,149:314-318
    [95]Zhang Y Y, Yuan R, Chai YQ, Xiang Y, Qian XQ, Zhang H X. Sensitive label-free immunoassay of carcinoembryonic antigen based on Au-TiO2 hybrid nanoconaposite film [J].Colloid Interface Sci.2010,348:108-113
    [96]Qureshil A, Niazil J H, Kallempudia S, Gurbuz Y. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays [J].Biosens. Bioelectron.2010,25:2318-2323
    [97]Loyprasert S, Hedstrom M, Thavarungkul P, Kanatharana P, Mattiasson B. Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor [J].Biosens. Bioelectron. 2010,25:1977-1983
    [98]Sundaram, Cristina G N, David O, Marko B, Julio G H, Zamora F, Kern K. Graphene Monolayers:Chemical Vapor Deposition Repair of Graphene Oxide:A Route to Highly-Conductive Graphene Monolayers [J].Adv. Mater.21 (2009) n/a
    [99]Wei D C, Liu YQ. Graphene Synthesis:Controllable Synthesis of Graphene and Its Applications [J]. Adv. Mater.2010,22:n/a
    [100]Punckt C, Pope M A, Liu J, Lin Y H, Aksay I A. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization [J].Adv. Mater.2010,22:1-8
    [101]Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Jeffrey R P, Ruoff R S. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J].Adv. Mater.2010,22:3906-3924
    [102]Wang L, Zhang X H, Xiong H Y, Wang S F. A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix [J].Biosens. Bioelectron.2010,26:991-995
    [103]Kang X H, Wang J, Wu H, Aksay I A, Liu J, Lin Y H. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J].Biosens. Bioelectron. 2009,25:901-905
    [104]Hummers W S, Offeman R E. Preparation of graphitic oxide [J].Am Chem Soc 1958,80:1339
    [105]Wang L, Gan X X.. Antibody-functionalizedmagnetic nanoparticles for electrochemical immunoassay of a-1-fetoprotein in human serum [J].Microchim. Acta.2009,164:231-237.
    [106]Sun S J, Yao Y Z, Wang T, Li Y C, Ma X L, Zhang L Y. DNA-functionalized immunosensing probes for electrochemical immunoassay of alpha-fetoprotein [J].Microchim. Acta. 2009,166:83-88
    [107]Su H L, Yuan R, Chai Y Q, Zhuo Y, Hong C L, Liu Z Y, Yang X. Multi-layer structured amperometric immunosensor built by self-assembly of a redox multi-wall carbon nanotube composite [J].Electrochim. Acta.2009,54:4149-4154.
    [108]Jie G F, Zhang J J, Wang D C, Cheng C, Chen H Y, Zhu J J. Electrochemiluminescence immunosensor based on CdSe nanocomposites [J].Anal. Chem.2008,80:4033-4039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700