过渡金属催化的有机合成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机合成的核心任务是寻找有效的碳-碳键、碳-杂键生成方法和官能团相互间转换手段。相对于Pd和Ni来说,Cu是一种低毒并且廉价的过渡金属,如何使用Cu催化来实现碳-碳键、碳-杂键的偶联反应,不仅仅是过渡金属催化领域中的新趋势,也是化学工业绿色化进程中的一个挑战性课题。迄今为止,Cu催化的偶联反应已涉及碳-碳键、碳-氮键、碳-氧键、碳-卤键、碳-硫键、碳-硒键和碳-磷键的成键。三卤化铟作为温和的路易斯酸可在水、醇等绿色溶剂中实现高化学选择性、高区域选择性和高立体选择性的化学转化。三卤化铟在羟醛反应和类羟醛-曼尼希反应、付克反应、环氧化合物的重排反应、α-氨基膦酸的合成、喹啉环系的构建、酯交换反应、狄尔斯-阿德尔反应、手型呋喃二醇的合成、水相中的叠氮水解反应和二硫缩醛的制备中的应用,三卤化铟在有机合成中潜在的优势将推动“绿色化学”的发展。
     在本文中,主要研究以下内容:
     1.研究以硅胶负载的N-杂环卡宾铜配合物SiO_2-NHC-Cu(Ⅰ)为催化剂,苯硼酸和咪唑的偶联反应。此催化剂催化效率高,底物选择广谱性好,对芳基苯硼酸,脂肪苯硼酸,咪唑及其同系物都有良好的催化效果。该反应条件温和,反应操作简单,并且催化剂通过简单过滤回收,可循环6次使用而不失活,符合绿色化学的要求。
     2.研究以硅胶负载的N-杂环卡宾铜配合物SiO_2-NHC-Cu(Ⅱ)为催化剂,催化端基炔烃和亚磷酸酯的的偶联反应。此催化剂催化效率高,底物选择广谱性好,对芳基炔,脂肪炔都有良好的催化效果。该反应在空气中室温条件下进行,反应温和,操作简单,且催化剂可以循环6次使用不失活,符合绿色化学的要求。
     3.研究以三溴化铟催化的吲哚和α,β-不饱和酸酯的迈克尔加成反应,该反应具有反应条件温和,广泛的底物选择性,操作简单等优点。
Transition metal-catalyzed coupling reactions represent an extremely versatile tool in organic synthesis. Due to their low price and toxicity, Cu salts have recently emerged as novel catalysts in coupling reactions of unsaturated carbons, whose replacement of toxic and expensive Pd and Ni catalysts will greatly improve the chemical industry in both the economic and environmental aspects. To date now, the development of the Cu catalysts in coupling reactions was summarized C–C, C–N, C–O, C–S, C–Se, C–P, as well as C–X coupling reactions. Indium tirhalide is a mild green catalyst for organic synthesis in a highly chemo-, region-, and stero-selectively fashion in green solvent such as aqueous and alcoholic media. In this paper, some applications of indium tirhalide in organic synthesis are rexiewed including aldol reaction, Friedel-Crafts reaction, the rearrangement of epoxides, the synthesis ofα-aminophosphonates, the synthesis of quinolines, the transesterification, the hetero Diels-Alder reaction, the synthesis of chiral furan diols, the azidolysis in aqueous media and the dithioacetalization. At the same time, our works on the application of indium trihalide in Biginelli reaction and reductive deoxygenation reaction area are also dicussed. The potential superiority of indium trihalide in organic synthesis will promote the development of“Green Chemistry”.
     In this thesis, The main works were summarized as follows:
     1. We have developed a new novel, practical and environmentally friendly method for the synthesis of N-arylazoles through a C-N coupling of azoles and arylboronic acids by using Silica–NHC–Cu(Ⅰ) as catalyst under air reaction conditions. The reactions generated the corresponding N-arylazoles in high yields and were applicable to Arylboronic acids. In addition, this methodology offers the competitiveness of recyclability of the catalyst without significant loss of catalytic activity, and the catalyst could be readily recovered and reused for six cycles, thus making this procedure environmentally more acceptable, whilst no catalyst leaching was observed.
     2. We have developed a new novel, practical and environmentally friendly method for the synthesis of alkynylphosphonates through a C-P coupling of terminal alkynes and H-phosphonates by using Silica–NHC–Cu(Ⅱ) as catalyst at room temperature under air reaction conditions. The reactions generated the corresponding alkynylphosphonates in high yields and were applicable to aromatic and aliphatic alkynes. In addition, this methodology offers the competitiveness of recyclability of the catalyst without significant loss of catalytic activity, and the catalyst could be readily recovered and reused for six cycles, thus making this procedure environmentally more acceptable, whilst no catalyst leaching was observed.
     3. A highly efficient synthetic strategy toward Michael addition of indoles toα,β-unsaturated esters has been developed using Lewis acid InBr3 as catalyst. The reactions generated 3-substituted indoles in high yields with excellent regio-selectivity in the presence of catalytic amount of InBr3 under mild reaction conditions. The method is simple, efficient and practical.
引文
[1] Little, L. H. Infrared Spectra of Adsorbed Species, Academic Press, London–N.Y., 1966.
    [2] Kiselev, A. V.; Lyghin, V. I. Infrared Spectra of Surface Compounds (in Russian), Moscow, Nauka, 1977.
    [3] Xnozinger, H. and Ratnssamy, P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. Catal. Rev. Sci. Eng. 1978, 17, 31–70.
    [4] Seki, M. Recent Advances in Pd/C–catalyzed Coupling Reactions. Synthesis 2006, 2975-2992.
    [5] (a) Frieman, B. A.; Taft, B. R.; Lee, C. T.; Butler, T.; Lipshutz, B. H. Nickel–in–Charcoal (Ni/C): An Efficient Heterogeneous Catalyst for the Construction of C–C, C–N, and C–H Bonds. Synthesis 2005, 2989–2993. (b) Lipshutz, B. H.; Frieman, B. A.; Butler, T.; Kogan, V. Heterogeneous Catalysis with Nickel–on–Graphite (Ni/C): Reduction of Aryl Tosylates and Mesylates. Angew. Chem. Int. Ed. 2006, 45, 800-803.
    [6] Lipshutz, B. H.; Frieman, B. A.; Tomaso, A. E. Copper–in–Charcoal (Cu/C):Heterogeneous, Copper–Catalyzed Asymmetric Hydrosilylations. Angew. Chem. Int. Ed. 2006, 45, 1259-1264.
    [7] Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions. Nature 2005, 437, 1132-1135.
    [8] (a) Guzman, J.; Carrettin S.; Fierro–Gonzalez, J. C.; Hao, Y. L.; Gates, B. C.; Corma, A. CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare–Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angew. Chem. Int. Ed. 2005, 44, 4778-4781. (b) Guzman J.; Carrettin S.; Corma, A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286-3287; (c) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona–Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent–Free Oxidation of Primary Alcohols to Aldehydes Using Au–Pd/TiO2 Catalysts. Science 2006, 311, 362-365.
    [9] Kinting, A.; Krause, H.; Capka, M. Silica Supported Chiral Rhodium Complexes for Asymmetric Hydrogenation. J. Mol. Catal. 1985, 33, 215-223.
    [10] (a) Heckel, A.; Seebach, D. Immobilization of TADDOL with a High Degree of Loading on Porous Silica Gel and First Applications in Enantioselective Catalysis. Angew. Chem. Int. Ed. 2000, 39, 163-165. (b) Selke, R.; Capka, M. Carbohydrate Phosphinites as Chiral Ligands for Asymmetric Syntheses Catalyzed by Complexes: Part VIII: Immobilization of Cationic Rhodium(I) Chelates of Phenyl 4,6–O–(R)–Benzylidene–2,3–bis(O–diphenylphosphino)–β–D–glucopyranoside on Silica. J. Mol. Catal. 1990, 63, 319-334.
    [11] SiO2-NHC-Cu(I): An Efficient and Reusable Catalyst for [3+2] Cycloaddition of Organic Azides and Terminal Alkynes under Solvent-Free Reaction Conditions at Room Temperature. Li, P. H.; Zhang, Y. C. Wang, L. Tetrahedron 2008, 64, 10825–10830.
    [12] Wang, Z. L.; Wang, L.; Yan, J. C. Palladium Immobilized on Silica Gal: A New and Reuseable Catalyst for Heck Reaction. Chin. J. Chem. 2008, 26, 1721–1726.
    [13] Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V. Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels ofSBA–15 in Stabilizing Palladium Nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 4776-4779.
    [14] Sayah, R.; Glego-a, K.; Framery, E.; Dufaud, V. Suzuki–Miyaura Reactions of Aryl Chloride Derivatives with Arylboronic Acids Using Mesoporous Silica–Supported Aryldicyclohexylphosphine. Adv. Synth. Catal. 2007, 349, 373-381.
    [15] Brown, R. A.; Pollet, P.; McKoon, E.; Eckert, C. A.; Liotta, C. L.; Philip, G. J. Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide. J. Am. Chem. Soc. 2001, 123, 1254-1255.
    [16] Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J. C. An Ionic Liquid–Supported Ruthenium Carbene Complex: A Robust and Recyclable Catalyst for Ring–Closing Olefin Metathesis in Ionic Liquids. J. Am. Chem. Soc. 2003, 125, 9248-9249.
    [17] Lee, S.; Zhang, Y. J.; Piao, J. Y.; Yoon, H.; Song, C. E.; Choi, J. H.; Hong, J. Catalytic Asymmetric Hydrogenation in a Room Temperature Ionic Liquid Using Chiral Rh–Complex of Ionic Liquid Grafted 1,4–Bisphosphine Ligand. Chem. Commun. 2003, 2624-2625.
    [18] Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A. Homochiral Metal- Organic Porous Material for Enantioselective Separation and Catalysis. Nature 2000, 404, 982-986.
    [19] Arai, T.; Sekiguti, T.; Otsuki, K.; Takizawa, S.; Sasai, H. Metal–Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol: An Approach for the Immobilization of Catalysts without Using any Support. Angew. Chem. Int. Ed. 2003, 42, 5711-5714.
    [1]. Jourdan, F. Chem. Ber. 1885, 18, 1444.
    [2]. Ullmann, F. Chem. Ber. 1903, 36, 2382.
    [3]. Goldberg, I. Chem. Ber. 1906, 39, 1691.
    [4]. Kosugi, M.; Kameyama, M.; Migita, T. Mechanism and Scope of Palladium-Catalysed C-N and C-O Bond Formation. Chem. Lett. 1983, 927.
    [5]. (a) Guram, A. S.; Buchwald, S. L. Palladium-Catalyzed Aromatic Aminations within situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. (b) Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. Expedited Palladium-Catalyzed Amination of Aryl Nonaflates through the Use of Microwave-Irradiation and Soluble Organic Amine Bases. J. Org. Chem. 2006, 71, 430–433.
    [6]. (a) Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. (b) Shen, Q.; Hartwig, J. F. Palladium-Catalyzed Coupling of Ammonia and Lithium Amide with Aryl Halides. J. Am. Chem. Soc. 2006, 128, 10028–10029.
    [7]. Ma, D. W.; Zhang, Y. D.; Yao, J. C.; Wu, S. H.; Tao, F. G. Accelerating Effect Induced by the Structure ofα-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides withα-Amino Acids. Synthesis of Benzolactam-V8. J. Am. Chem. Soc. 1998, 120, 12459–12467.
    [8]. Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. An Efficient Copper-Catalyzed Coupling of Aryl halides with Imidazoles. Tetrahedron Lett. 1999, 40, 2657–2660.
    [9]. (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles. J.Am. Chem. Soc. 2001, 123, 7727–7729.
    [10]. Anitilla, J. C.; Klapars, A.; Buchwald, S. L. The Copper-Catalyzed N-Arylation of Indoles. J. Am. Chem. Soc. 2002, 124, 11684–11688.
    [11]. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. Copper-Diamine-Catalyzed N-Arylation of Pyrroles, Pyrazoles, Indazoles, Imidazoles, and Triazoles. J. Org. Chem. 2004, 69, 5578–5587.
    [12]. Kelkar, A.; Patil, N. M.; Chaudharl,Raghunath V. Copper Catalyzed Amination of Aryl Halides: Single-Step Aynthesis of Triarylamines. Tetrahedron Lett. 2002, 43, 7143–7146.
    [13]. Alcalde, E.; Dinarès, I.; Rodríguez, S.; Miguel, C. G. Synthetic Approaches to Sterically Hindered N-Arylimidazoles through Copper-Catalyzed Coupling Reactions. Eur. J. Org. Chem. 2005, 1637–1643.
    [14]. Altman, R. A.; Buchwald, S. L. Cu-Catalyzed N- and O-Arylation of 2-,3-,and 4-Hydroxypyridines and Hydroxyquinolines. Org. Lett. 2007, 9, 643–646.
    [15]. (a) Altman, R. A.; Koval, E. D.; Buchwald, S. L. Copper-Catalyzed N-Arylation of Imidazoles and Benzimidazoles. J. Org. Chem. 2007, 72, 6190–6199. (b) Altman, R. A.; Buchwald, S. L. 4,7-Dimethoxy-1,10-phenanthroline: An Excellent Ligand for the Cu-Catalyzed N-Arylation of Imidazoles. Org. Lett. 2006, 8, 2779–2782.
    [16]. Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.; You, J. Highly Efficient Copper-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl and Heteroaryl Halides. J. Org. Chem. 2007, 72, 2737–2743.
    [17]. Yuan, Q.; Ma, D. A One-Pot Coupling/Hydrolysis/Condensation Process to Pyrrolo[1,2-a]quinoxaline. J. Org. Chem. 2008, 73, 5159–5162.
    [18]. Lv, X.; Wang, Z.; Bao, W. CuI-Catalyzed C-N Bond Forming Reactions Between Aryl/Heteroaryl Bromides and Imidazoles in [Bmim]BF4. Tetrahedron 2006, 62, 4756.
    [19]. Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Mild Conditions for Copper-Catalysed N-Arylation of Pyrazoles. Eur. J. Org. Chem. 2004, 695–709.
    [20]. Liu, L.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. A Soluble Base for the Copper-Catalyzed Imidazole N-Arylations with Aryl Halides. J. Org. Chem. 2005, 70, 10135–10138.
    [21]. Chouhan, G.; Wang, D.; Alper, H. Magnetic Nanoparticle-Supported Carbine as a Recyclable and Recoverable Ligand for the CuI Catalyzed Arylation of Nitrogen Nucleophiles. Chem. Commun. 2007, 4809–4811.
    [22]. Xi, Z.; Liu, F.; Zhou, Y.; Chen, W. CuI/L (L: Pyridine-Functionalized 1,3-Diketones) Catalyzed C-N Coupling Reactions of Aryl Halides with NH-Containing Heterocycles. Tetrahedron 2008, 64, 4254–4259.
    [23]. Shen, G.; Lü, X.; Qian, W.; Bao, W. Cu2O-catalyzed Ullmann-type Reaction of Vinyl Bromides with Imidazole and Benzimidazole. Tetrahedron Lett. 2008, 49, 4556–4559.
    [24]. Laroche, C.; Freyer, M. W.; Kerwin, S. M. Coupling Reactions of Bromoalkynes with Imidazoles Mediated by Copper Salts: Synthesis of Novel N-Alkynylimidazoles. J. Org. Chem. 2008, 73, 6462.
    [25]. (a) Collman, J. P.; Zhong, M.; Zeng, L.; Costanzo, S. The [Cu(OH)·TMEDA]2Cl2-Catalyzed Coupling of Arylboronic Acids with Imidazoles in Water. J. Org. Chem. 2001, 66, 1528–1531. (b) Collman, J. P.; Zhong, M. An Efficient Diamine Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles.Org. Lett. 2000, 2, 1233–1236.
    [26]. (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113, 361–363. (b) Arduengo, A. J. Looking for Stable Carbene: The Difficulty in Starting. Anew. Acc. Chem. Rev. 1999, 32, 913–921.(c) Bourissou, D.; Guerret, O.; Gabba, F. P. Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–91. (d) Herrmann, W. A. N-Heterocyclic Carbene: A New Concept in Organomentallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. (e) Garrison, J. C.; Youngs, W. J. Ag(I) N-heterocycli Carbene Complexes: Synthesis, Structure, and Application. Chem. Rev. 2005, 105, 3978–4008. (f) Gonzalez, D. S.; Nolan S. P. N-heterocycli carbine-copper(I) Complexes in Homogeneous Catalysis. Synlett 2007, 2158–2167.
    [27]. (a) Nolan, S. P. N-Heterocyclic Carbene in Synthesis; Wiley-VCH: Weinheim, Germany, 2006. (b) Doyle, M. P.; Forbes, D. C. Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chem. Rev. 1998, 98, 911–936. (c) Garrison, J. C.; Youngs, W. J. Ag(I) N-heterocyclic Carbine Complexes: Synthesis, Structure, and Application. Chem. Rev. 2005, 105, 3978–4008. (d) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. N-heterocyclic Carbine as Organocatalysts. Angew. Chem. Int. Ed. 2007, 46, 2988–3000. (e) Herrmann, W. A. N-Heterocyclic Carbene: A New Concept in Organomentallic Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. (f) Li, L. T.; Ma, S. M. Organic Transformations Catalyzed by N-Heterocyclic Carbene-Metal Complexes. Youjihuaxue 2001, 21, 75–81.
    [28]. Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Complexes. VCH, Weinheim, 1996.
    [29]. Sreedhar, B.; Venkanna, G. T.; K. Kumar, B. S.; Balasubrahmanyam, V. Copper(I) Oxide Catalyzed N-arylation of Azoles and Amines with Arylboronic Acid at Room Temperature under Base-free Conditions. Synthesis 2008, 5, 795–799.
    [30]. Altman, R. A.; Koval, E. D.; Buchwald. S. L. Copper-Catalyzed N-Arylation of Imidazoles and Benzimidazoles. J. Org. Chem. 2007, 72, 6190–6199.
    [31]. Likhar, P. R.; Roy, S.; Roy, M.; Kantam, M. L.; Lal De, R. Silica Immobilized Copper Complexes: Efficient and Reusable Catalysts for N-arylation of N(H)-heterocycles and Benzyl Amines with Aryl Halides and Arylboronic Acids. J. Mol. Catal. A: Chem. 2007, 271, 57–62.
    [32]. Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.; Choudary, B. M. An Efficient Base-Free N-Arylation of Imidazoles and Amines with Arylboronic Acids Using Copper-Exchanged Fluorapatite. J. Org. Chem. 2006, 71, 9522–9524.
    [33]. Chow, W. S.; Chan, T. H. ChemInform Abstract: Microwave-Assisted Solvent-Free N-Arylation of Imidazole and Pyrazole. Tetrahedron Lett. 2009, 50, 1286–1289.
    [34]. Liu, J.;Chen, J.; Zhao J.; Zhao, Y.; Li, L.; Zhang, H. A Modified Procedure for the Synthesis of 1-Arylimidazoles. Synthesis 2003, 2661–2666.
    [35]. Ma, H.-C.; Jiang, X.-Z. N-Hydroxyimides as Efficient Ligands for the Copper-Catalyzed N-Arylation of Pyrrole, Imidazole and Indole. J. Org. Chem. 2007, 72, 8943–8946.
    [36]. Suresh, P.; Pitchumani, Kasi. Per-6-amino-β-cyclodextrin as an Efficient Supramolecular Ligand and Host for Cu(I)-Catalyzed N-Arylation of Imidazole with Aryl Bromides. J. Org. Chem. 2008, 73, 9121–9124.
    [37]. Sreedhar, B.; Arundhathi, R.; Reddy, P. L.; Kantam, M. L. CuI Nanoparticles for C?N and C?O Cross Coupling of Heterocyclic Amines and Phenols with Chlorobenzenes. J. Org. Chem. 2009, 74, 7951–7954.
    1. Han, M. S.; Kim, D. H. Nake Eye Detection of Phosphate Ions in Water at Physiological Ph: Aremarkably Selective and Ease-To-Assemble Colorimetric Phosphate-Sensing Probe. Angew. Chem., Int. Ed. 2002, 41, 3809.
    2.沈萍,《微生物学》,北京,高等教育出版社,1999,214–225.
    3. Zhang, B.; Clearfiled, A. Crown Ether Pillared and Functionalized Layered Zirconium Phosphonates: A New Strategy to Synthesize Novel Ion Selective Materials. J. Am. Chem. Soc. 1997, 119, 2751–2752.
    4. Alberti, G.; Constantino, U.; Casciola, M. Layered and Pillared Metal(IV) Phosphates and Phosphonates. Adv. Mater. 1996, 8, 291–303.
    5. Snover, J. L.; Byrd, H.; Suponeva, E. P. Growth and Characterization of Photoactive and Electroactive Zirconium Bisphosphonate Multilayer Films. Chem. Mater. 1996, 8, 1490–1499.
    6. Cao, G.; Hong, H.; Mallouk, T. E. Layered Metal Phosphates and Phosonates: From Crystals to Monolayers. Acc. Chem. Res. 1992, 25, 420–427.
    7. Lohse, D. L.; Sevov, S. C. A Novel Microporous Diphosphonate with an Inorganin Framework and Hydrocarbon-Lined Hydrophobic Channels. Angew. Chem., Int. Ed. 1997, 36, 1619–1621.
    8. Clearfield, A. Current Option in Solid State and Material Science. 2002, 6, 495.
    9. Sobkowska, A.; Sobkowski, M.; Cie?lak, J.; Kraszewski, A. Aryl H-Phosphonates. 6. Synthetic Studies on the Preparation of Nucleoside N-Alkyl-H-phosphonamidates. J. Org. Chem. 1997, 62, 4791–4794.
    10. Davis, F. A.; Lee, S.; Yan, H-X.; Titus, D. D. Asymmetric Synthesis of Quaternaryα-Amino Phosphonates using Sulfinimines. Org. Lett. 2001, 3, 1757–1760
    11. Stadler, A; Kappe, C. O. Rapid Formation of Triarylphosphines by Microwave-Assisted Transition Metal-Catalyzed C?P Cross-Coupling Reactions. Org. Lett. 2002, 4, 3541–3543.
    12. Gelman, D; Jiang, L; Buchwald, S. L. Copper-Catalyzed C?P Bond Construction via Direct Coupling of Secondary Phosphines and Phosphites with Aryl and Vinyl Halides. Org. Lett. 2003, 5, 2315–2318.
    13. Lecerclé, D; Sawicki, M; Taran, F. Phosphine-Catalyzedα-P-Addition on Activated Alkynes: A New Route to P-C-P Backbones. Org. Lett. 2006, 8 , 4283–4285.
    14. Kalek, M; Stawinski, J. Palladium-Catalyzed C-P Bond Formation: Mechanistic Studies on the Ligand Substitution and the Reductive Elimination. An Intramolecular Catalysis by the Acetate Group in PdII Complexes. Organometallics 2008, 27 , 5876–5888.
    15. Noronha, R. G.; Costa,P. J.; Romo, C. C.; Calhorda, M. J.; Fernandes, A. C. MoO2Cl2 as a Novel Catalyst for C-P Bond Formation and for Hydrophosphonylation of Aldehydes. Organometallics 2009, 28, 6206–6212.
    16. Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B. Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with H-Phosphonates Leading to Alkynylphosphonates. J. Am. Chem. Soc. 2009, 131, 7956.
    17. Zhou, Y-B.; Yin, S-F.; Gao,Y-X.; Zhao,Y-F.; Goto, M.; Han, L-B. Selective P-P and P-O-P Bond Formations through Copper-Catalyzed Aerobic Oxidative Dehydrogenative Couplings of H-Phosphonates. Angew. Chem. Int. Ed. 2010, 46, 6852–5855.
    18. Zhuang, R-Q.; Xu, J.; Cai, Z-S.; Tang, G.; Fang, M-J.; Zhao, Y-F. Copper-Catalyzed C-P Bond Construction via Direct Coupling of Phenylboronic Acids with H-Phosphonate Diesters. Org. Lett. 2011, 13, 2110–2113.
    19. Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B. Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with H-Phosphonates Leading to Alkynylphosphonates. J. Am. Chem. Soc. 2009, 131, 7956.
    20. Neil, C.; Elham, K.; William, T. Ruthenium-Catalyzed [2+2] Cycloadditions of Bicyclic Alkenes with Alkynyl Phosphonates. J. Org. Chem. 2009, 74, 5762–5765.
    21. Diziere, R.; Savignac, P. N. 5(N-Methylbenzoylamino)-2,2,6,6-tetram- ethylheptan-3-ol as a New Class of Recoverable Chiral Auxiliary. Tetrahedron Lett. 1996, 37, 1863–1866.
    22. Hong, J. E.; Lee, C.-W.; Kwon, Y.; Oh, D. Y. Facile Synthesis of 1-Alkynylphosphonates. Synth. Commun. 1996, 26, 1563–1567.
    23. Delphine, L.; Marcin, S.; Frédéric, T. Phosphine-Catalyzedα-P-Addition on Activated Alkynes: A New Route to P-C-P Backbones. Org. Lett. 2006, 8, 4283–4285.
    24. Jun, M-G.; Jin, W-S.; Chan, P-P.; Oh, D. Y. One-Pot Synthesis of 1-Alkynylphosphonates. Synth. Commun. 1997, 27, 3171–3174.
    25. Dutremez, S. G.; Guerin, C.; Henner, B. J. L.; Tomberli, V. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 160, 251-269.
    26. Hind, L.;Sylvie, R.; Gérard, R. Halodephosphorylation ofα,β-Unsaturated Phosphonic Acid Monoesters. Tetrahedron Lett. 2005, 46, 1635–1637.
    27. Roger, G. H.; Stuart, T. The Preparation and Diels-Alder Reactivity of Ethyl (Diethoxyphosphinyl)propynoate. Tetrahedron Lett. 1982, 25, 2603–2604;
    [1]刑其毅.基础有机化学(第三版) .北京:高等教育出版社, 2005, 528.
    [2] Carl, F. N.; Brase, S. T. The Oxa- M ichael Reaction: from Recent Developments to Applications in Natural Product Synthesis. Chem. Soc. Rev. 2008, 37, 1218–1228.
    [3] Michael, E. J.; David, G. H. Stepwise Acid-Promoted Double-Michael Process: AnAlternative to Diels-Alder Cycloadditions for Hindered Silyloxydiene- Dienophile Pairs. Org. Lett. 2007, 9, 375–378.
    [4]孙剑飞,封禄田,关瑾等.微波加热法合成氯乙酸正丁酯.沈阳化工学院学报, 2003, 17, 161–164.
    [5] Baruah, B.; Boruah. A.; Prajapati, D. BiCl3 or Cdl2 Catalyzed Michael Addition of 1,3- Dicarbonyl Compounds under Microwave Irradiations. Tetrahedron Lett. 1997, 38, 1449–1450.
    [6] Soriente, A.; Spinella, A.; De, R. M. Solvent Free Reaction Under Microwave Irradiation: A New Procedure For Eu+3 Catalyzed Michael Addition of 1,3-Dicarbonyl Compounds. Tetrahedron Lett. 1997, 38, 289–290.
    [7] Patonay, T.; Varma, R. S.; Vass, A. Highly Diastereoselective Michael Reaction under Solvent-Free Conditions using Microwaves: Conjugate Addition of Flavanone to its Chalcone Precursor. Tetrahedron Lett. 2001, 42, 1403–1406.
    [8] Diaz, O. A.; Victoria, G. M.; Antonio, M. J. Preparation ofα- andβ-Substituted Alanine Derivatives byα-amidoalkylation or Michael Addition Reactions under Heterogeneous Catalysis Assisted by Microwave Irraditation. Tetrahedron 2001, 57, 5421–5428.
    [9] Sharma, U.; Bora, U.; Boruah, R. C. Alumina-Promoted Fast Solid-Phase Michael Addition of Enamines with Conjugated Enones under Microwave Irradiation. Tetrahedron Lett. 2002, 43, 143–145.
    [10] Ratoarinoro, N.; Wilhelm, A. M.; Berlan, J. Effects of Ultrasound Emmiter Type and Power on a Heterogeneous Reaction. Chem. Eng. J. 1992, 50, 6172–6177.
    [11]陈国锋.超声辐射在迈克尔反应中的应用研究. 2003.
    [12] Shi, L.; Wang, X-P.; Cai, T-X. Recent Developments in the Synthetic Methods of Indole Ring Compounds. Org. Chem. 2001, 21, 200–204.
    [13] Takatoshi, S.; Katsufumi, K.; Maloto, I.; The Catalytic Life of CdBr2-KBr and Its Affect on the Rate of Indole Formation from Aniline and Ethylene Glycol. Bull. Chem. Soc. Jpn. 1995, 68, 3665–3670.
    [14] Yutaka, A.; Toshihiko, M.; Akihiro, O. Facile and Efficient Synthesis of Pyrroles and Indoles via Palladium-Catalyzed Oxidation of Hydroxy-Enamines and Amines. Tetrahedron. Lett. 1996, 37, 9203–9206.
    [15] Barritault, D.; Tournaire, M. C.; Troupel, M. PCT Int. Appl. 1998, 869.
    [16] Dow, R. L.; Lundy, K. M.; Eur. Pat. Appl. 1998, 185.
    [17] Telang, N. T.; Katdare, M.; Bradlow, H. L. Proc. Soc. Exp. Biol. Med. 1997, 216, 246–249.
    [18] Larock, R. C.; Babu, S. Synthesis of Nitrogen Heterocycles via Palladium-Catalyzed Intramolecular Cyclization. Tetrahedron. Lett. 1987, 28, 5291–5294.
    [19] Akazome, M.; Londo, T.; Watanabe, Y. Palladium Complex-Catalyzed Reductive N-Heterocyclization of Nitroarenes: Novel Synthesis of Indole and 2H-Indazole Derivatives. J. Org. Chem. 1994, 59, 3375–3380.
    [20] Etkin, N.; Babu, S. D.; Fooks, C. J. Preparation of 3-Acetyl-2-Hydroxyindoles via Rhodium Carbenoid Aromatic Carbon-Hydrogen Insertion. J. Org. Chem. 1990, 55, 1093–1096.
    [21] Tidwell, J. H.; Senn, D. R.; Buchwald, S. J. Synthesis of 3,4-Disubstituted Indoles via A Sequential Olefin-Insertion/Ene Route. J. Am. Chem. Soc. 1991, 113, 4685–4686.
    [22] Tricia, L. S.; Bj?rn, C. G. S. Novel Palladium-Catalyzed Synthesis of 1,2-Dihydro-4(3H)-Carbazolones. Tetrahedron Lett. 2002, 43, 1621–1624.
    [23] I Yadav, J. S.; Abraham, S. B.; Reddy, V. S.; Sabitha, G. InCl3-Catalysed Conjugate Addition of Indoles with Electron-Deficient Olefins. Synthesis 2001, 14, 2165–2169.
    [24] Reddy, A. V.; Ravinder, K.; Goud, T. V.; Krishnaiah, P.; Raju, T. V.; Venkateswarlu, Y. Bismuth Triflate Catalyzed Conjugate Addition of Indoles toα,β-enones. Tetrahedron Lett. 2003, 44, 6257–6260.
    [25] Yadav, J. S.; Reddy, B. V. S.; Baishya, G.; Reddy, K. V.; Narsaiah, A. V. Conjugate Addition of Indoles toα,β-Unsaturated Ketones using Cu(OTf)2 Immobilized in Ionic Liquids. Tetrahedron 2005, 61, 9541–9544.
    [26] Zhan, Z-P.; Yang, R-F.; Lang, K. Samarium Triiodide-Catalyzed Conjugate Addition of iIndoles with Electron-Deficient Olefins. Tetrahedron Lett. 2005, 46, 3859–3862.
    [27] Lopez-Alvarado, P.; Steinhoff, J.; Miranda, S.; Avendano, C.; Menendez, J. C. Efficient, One-pot Transformation of Indoles into Functionalized Oxindole and Spirooxindole Systems under Swern Conditions. Tetrahedron 2009, 65, 1660–1672.
    [28] Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. N-Heterocyclic Carbene-Catalyzed Oxidations. Tetrahedron 2009, 65, 3102–3109.
    [29] González, A.; Pérez, D.; Puig, C.; Ryder, H.; Sanahuja, J.; Solé, L.; Bach, J. ChemInform Abstract: Efficient Three-Step Sequence for the Deamination ofα-Aminoesters. Tetrahedron Lett. 2009, 50, 2750–2753.
    [30] Friden-Saxin, M.; Pemberton, N.; Andersson, K. S.; Dyrager, C.; Friberg, A.; Gr?tli, M.; Luthman, K. Synthesis of 2-Alkyl-Substituted Chromone Derivatives usingMicrowave Irradiation. J. Org. Chem. 2009, 74, 2755–2759.
    [31] Bandini, M.; Fagioli, M.; Garavelli, M.; Melloni, A.; Trigari, V.; Umani-Ronchi, A. Can Simple Enones Be Useful Partners for the Catalytic Stereoselective Alkylation of Indoles? J. Org. Chem. 2004, 69, 7511–7518.
    [32] Harrington, P. E.; Kerr, M. A. Reaction of Indoles with Electron Deficient Olefins Catalyzed by Yb(OTf)3?3H2O. Synlett 1996, 1047–1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700