光催化重整甲醇及生物质衍生物制氢
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化重整生物质及其衍生物制氢,是一种清洁的、可持续发展的制氢技术,将是未来社会解决环境和能源问题的重要途径之一。未来氢能的利用形式主要是利用燃料电池将氢能转化为电能。其中质子交换膜燃料电池(PEMFC)是利用氢作为燃料的一种重要技术,但PEMFC采用Pt作电催化剂,CO极易吸附在Pt表面,导致Pt催化剂中毒,氢气中微量的CO就会使电池性能严重下降。因此,本论文以甲醇、乙醇和葡萄糖作为生物质衍生物的典型代表,研究了光催化重整生物质衍生物制氢过程中气体产物的分布,尤其是CO副产物在H_2中的含量,CO生成的机理,对光催化重整过程中抑制CO的生成进行了初步探索。
     以M(Pt,Pd,Au,Rh,Ni等)/TiO_2为催化剂,研究了光催化重整甲醇、乙醇、葡萄糖过程中气体产物的分布。结果表明光催化重整生物质衍生物的气体产物中除了H_2和CO_2,还有CO、CH_4等副产物,同时在反应液中可能生成许多中间物种。这些中间物种在催化剂表面发生反复多次的脱附、吸附、反应等过程,最后通过脱羧反应被氧化为CO_2。TiO_2催化剂上产氢活性极低,但CO在氢气中浓度较高;担载金属后,M/TiO_2的光催化活性大幅度提高,同时CO的生成被显著抑制。不同担载金属对光催化重整生物质的产氢活性及CO的生成具有重大影响,而且对不同的反应底物表现有差异。对甲醇和乙醇来讲,Pt/TiO_2的产氢活性最高,Pd/TiO_2的CO/H_2摩尔比值最低;对葡萄糖而言,Rh/TiO_2的产氢活性最高,同时CO/H_2的摩尔比值也最低。
     Au/TiO_2催化剂光催化重整甲醇可制取较低CO含量的H_2。中间产物甲酸在TiO_2表面的脱水反应是CO副产物的主要来源。Au粒子减小可大幅度提高产氢活性同时抑制CO生成。Au粒子在光催化条件下对CO生成的抑制作用,一方面是由于表面的光生空穴和活性氧化物种有利于甲酸的脱质子降解反应,生成以CO_2和H~+为主的反应产物;另一方面是由于部分生成的CO在Au/TiO_2催化剂上被进一步氧化的结果。
     Pt的担载量以及担载方法对Pt/TiO_2催化剂光催化重整甲醇的产氢活性和CO选择性都有很大影响。Pt担载量存在一阈值,担载量低于该值,产氢活性低,同时氢中CO含量高;担载量高于该值,产氢活性迅速升高,同时CO选择性降到最低。浸渍法制备的Pt/TiO_2催化剂比原位光还原法制备的催化剂具有较好的催化活性和较低的CO选择性,同时具有较低的阈值。
     在反应体系中添加少量的无机阴离子,如SO_4~(2-)、H_2PO_4~-等,在不降低产氢活性的前提下,可大幅度抑制光催化重整过程中CO的生成。阴离子对CO生成的抑制作用由弱到强的顺序为:Cl~-<NO_3~-<HCO_3~-<SO_4~(2-)<H_2PO_4~-。结合光谱表征的结果,我们认为副产物CO主要来源于反应中间物种甲酸在TiO_2表面氧缺陷位的脱水反应;SO_4~(2-)或H_2PO_4~-等无机阴离子可强烈吸附在TiO_2表面的氧缺陷位,降低了中间物种甲酸在这些氧缺陷位的吸附分解几率,从而显著抑制CO的生成。
     以Pt/TiO_2、Ni/TiO_2或Pd/TiO_2为催化剂,在葡萄糖反应体系中加入少量的SO_4~(2-),或者在催化剂上浸渍少量的SO_4~(2-),都可以明显降低光催化重整葡萄糖过程中CO的生成。说明采用少量无机阴离子吸附在TiO_2表面的氧缺陷位,以抑制光催化重整生物质衍生物制氢过程中CO的生成是一种有效方法。
     在论文工作的早期还进行了生物质的热化学转化研究,结果表明生物质快速热解温度为500℃时,液体产物的产率最高,达到干基原料的55.8%;经酸、碱、或盐预处理后,生物质快速热解的液体产物产率降低,而固体产物的产率提高。
Concerns about the depletion of fossil fuel reserves and the pollution caused bycontinuously increasing energy demands make H_2 an attractive alternative energy source. H_2production via photocatalytic reforming of biomass is a sustainable-energy technology due tothe potential application for the conversion of solar energy. Proton exchange membrane fuelcells (PEMFCs), using H2 as the fuel source, have received much attention as a potentialelectric power source. However, the Pt-anode catalyst of PEMFC is extremely sensitive to COcontaminant in H_2 feed gas. Small amount of CO can poison the catalyst and decrease thecatalytic performance. It is an urgent and challenging objective to reduce the COconcentration in H_2 for the applications in PEMFCs. Therefore, the effects of metals andmetal particle size on the CO formation, as well as the mechanism of CO formation areinvestigated using methanol, ethanol and glucose as the typical representatives ofbiomass-derived compounds.
     Among the gaseous products, the H_2, CO, CO_2 and CH_4 were detected as the majorproducts in the photocatalytic reforming of methanol, ethanol and glucose on M(Pt, Pd, Au,Rh, Ni etc.)/TiO_2 catalysts. It is shown that the loaded metals generally enhances the rate ofH_2 production while depresses the CO formation. Both H_2 production and CO formation arestrongly dependent on the kind of deposited metals. In the reforming of methanol and ethanol,the highest photoactivity was achieved on Pt/TiO_2 catalyst, while the CO formation was thelowest on Pd/TiO_2 catalyst. Rh/TiO_2 catalyst was found to be most active for H_2 productionwhile with the lowest CO concentration in the photocatalytic reforming of glucose. The factthat the molar ratio of CO_2/H_2 is much lower than the stiochiometric value indicates that a lotof oxidized fragments of biomass are produced and diffuse into the bulk solution. Theseintermediates are successively adsorbed and oxidized on the M/TiO_2 catalyst for several timesfinally forming CO_2 through the photo-Kolbe reaction.
     H_2 with low CO concentration was produced via photocatalytic reforming of methanol onAu/TiO_2 catalyst. The rate of H_2 production is greatly increased when the gold particle size isreduced from 10 nm to smaller than 3 nm. The concentration of CO in H_2 decreases withreducing the gold particle size of the catalyst. It is suggested that the by-product CO is mostlyproduced via decomposition of the intermediate formic acid species derived from methanol.The smaller gold particles possibly switch the HCOOH decomposition reaction mainly to H_2 and CO_2 products while suppress the CO and H_2O formation. In addition, some CO may beoxidized to CO_2 by photo-generated oxidizing species at the perimeter interface between thesmall gold particles and TiO_2 under photocatalytic condition.
     The loading of platinum on TiO_2 influences both the H_2 production and the CO formation.When the loading of Pt is higher than a threshold value, the rate of H_2 production is greatlyenhanced while the CO formation is largely depressed. The CO formation was significantlydepressed with a slight increase in H_2 production in the photocatalytic reforming of methanolon Pt/TiO_2 catalyst with addition of a small amount of inorganic anions, such as SO_4~(2-) andH_2PO_4~- in the reaction system. The ability of the anions for depressing CO formation is in theorder: Cl~-<NO_3~-<HCO_3~-<SO_4~(2-)<H_2PO_4~-. It is suggested that the byproduct CO is formedat oxygen vacancy sites on TiO_2 where formic acid species derived from methanol decomposeto CO and water. The deexcitation of the trapped photoexcited electrons at oxygen vacancysites may accelerate the dehydration reaction of formic acid. Sulfate and phosphate ions caneffectively suppress the CO formation via competing adsorption on oxygen vacancies with theformic acid species derived from methanol.
     The inhibition effect of the SO_4~(2-) anions on CO formation was also observed in thephotocatalytic reforming of glucose on Pt/TiO_2, Ni/TiO_2, and Pd/TiO_2 catalysts, indicatingthat the addition of some inorganic anions to the reaction solution is an efficient method todeppress CO formation in the photocatalytic reforming of biomass-derived compounds for H_2production.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238:37-38.
    [2] Kawai T, Sakata T. Photocatalytic hydrogen production from water by the decomposition of polyvinylchloride, protein, algae, dead insects and excrement. Chem Lett, 1981:81-84.
    [3] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980, 286:474-476.
    [4] John M R St, Furgala A J, Sammells A F. Hydrogen generation by photocatalytic oxidation of glucose by platinized n-TiO_2 Powder. J Phys Chem, 1983, 87:801-805.
    [5] Harada H, Sakata T, Ueda T. Effect of semiconductor on photocatalytic decomposition of lactic acid. J Am Chem Soc, 1985, 107:1773-1774.
    [6] Sakata T, Kawai T. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett, 1981, 80:341-344.
    [7] Chen H, Matsumoto A, Nishimiya N. et al. Preparation and characterization of TiO_2 incorporated Y-zeolite. Colloids Surf A: Physicochem Eng Aspects, 1999, 157:295-305.
    [8] Anandan S, Yoon M. Photocatalytic activities of the nano-sized TiO_2-supported Y-zeolites. J Photochem Photobiol C: Photochem Reviews, 2003, 4:5-18.
    [9] Barnwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO_2 and Pt-TiO_2. J Photochem Photobiol A: chem., 1995, 89:177-189.
    [10] Lin C H, Lee C H, Chao J H, et al. Photocatalytic generation of H_2 gas from neat ethanol over Pt/TiO_2 nanotube catalysts. Catal Lett, 2004, 98:61-66.
    [11] Wu Y, Lu G, Li S. The long-term photocatalytic stability of Co~(2+)-modified P25-TiO_2 powders for the H_2 production from aqueous ethanol solution. J Photochem Photobiol A: chem, 2006, 181:263-267.
    [12] Liu M, You W, Li C, et al. Water reduction and oxidation on Pt-Ru/Y_2Ta_2O_5N_2 catalyst under visible light irradiation. Chem Chmmun, 2004:2192-2193.
    [13] Wu Y, Li Y, Zhuang Q. Heterogeneous photocatalytic dehydrogenation from ethanol and heavy water. J Photochem Photobiol A: Chem, 1991, 62:261-267.
    [14] Scalafani A, Hermann J M.Comparison of the photoelectronic and photocatalytic activities of various anatase and futile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem, 1996, 100:13655-13661.
    [15] 由万胜.TiO_2及多金属氧酸盐光催化分解水制氢的研究.中国科学院大连化学物理研究所博士后研究工作报告,2005.
    [16] Zhang J, Li M, Li C, et al. UV Raman spectroscopic study on TiO_2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B, 2006, 110:927-935.
    [17] Kawai T, Sakata T, Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun, 1980:694-695.
    [18] Hirano K, Asayama H, Hoshino A, et al. Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO_2 suspensions. J Photochem Photobiol A: Chem, 1997, 110:307-311.
    [19] Wu N L, Lee M S. Enhanced TiO_2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrogen Energy, 2004, 29:1601-1605.
    [20] Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions. Part (II): photocatalytic mechanisms. Water Res, 1999, 33:669-676.
    [21] Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO_2 Particulate systems. J Phys Chem, 1979, 24:3146-3152.
    [22] Harbour J R, Hair M L. Transient radicals in heterogeneous systems: Detection by spin trapping. Adv Colloid Interface Sci, 1985,24:103-141.
    [23] Riegel G, Bolton J R. Photocatalytic efficiency variability in TiO_2 particles. J Phys Chem, 1995, 99:4215-4224.
    [24] Ollis D F, Hsiao C Y, Budiman L, et al. Heterogeneous photoassisted catalysis: Conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes. J Catal, 1984, 88:89-96.
    [25] Al-Ekabi H, Serpone N, Pelizzett E, et al. Kinetic studies in heterogeneous photocatalysis. 2.TiO_2-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2, 4, 5-trichlorophenol in air-equilibrated aqueous media. Langmuir, 1989, 5:250-255.
    [26] Richard C. Regioselectivity of oxidation by positive holes (h~+) in photocatalytic aqueous transformations. J Photochem Photobiol A: Chem, 1993, 72:179-182.
    [27] Micic O I, Zhang Y, Cromack K R, et al. Photoinduced hole transfer from TiO_2 to methanol molecules in aqueous solution studied by electron paramagnetic resonance. J Phys Chem, 1993, 97:13284-13288.
    [28] Ishibashi K , Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO_2 photocatalyst. J Photochem Photobiol A: Chem, 2000, 134:139-142.
    [29] Yamakata A, Ishibashi T, Onishi H. Electron- and hole-capture reactions on Pt/TiO_2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy. J Phys Chem B, 2002, 106:9122-9125.
    [30] Bahnemann D W, Hilgendorff M, Memming R. Charge carrier dynamics at TiO_2 particles: Reactivity of free and trapped holes. J Phys Chem B, 1997, 101:4265-4275.
    [31] Wang C, Groenzin H, Shultz M J. Direct observation of competitive adsorption between methanol and water on TiO_2: An in situ sum-frequency generation study. J Am Chem Soc, 2004, 126:8094-8095.
    [32] Dickinson A, James D, Perkins N, et al. The photocatalytic reforming of methanol. J Mol Catal A, 1999,146:211-221.
    [33] Millard L, Bowker M. Photocatalytic water-gas shift reaction at ambient temperature. J Photochem Photobiol A: Chem, 2002, 148:91-95.
    [34] Bowker M, James D, Stone P, et al. Catalysis at the metal-support interface: exemplified by the photocatalytic reforming of methanol on Pd/TiO_2. J Catal, 2003, 217:427-433.
    [35] Bowker M, Millard L, Greaves J, et al. Photocatalysis by Au nanoparticles: Reforming of methanol. Gold Bull, 2004, 37:170-173.
    [36] Sreethawong T, Suzuki Y, Yoshikawa S. Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. J Solid State Chem, 2005, 178:329-338.
    [37] Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. Catal Commun, 2005, 6:119-124.
    [38] Sakulkhaemaruethai S, Pavasupree S, Suzuki Y, et al. Photocatalytic activity of titania nanocrystals prepared by surfactant-assisted templating method—Effect of calcination conditions. Mater Lett, 2005, 59:2965-2968.
    [39] Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over mesoporous TiO_2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. Int J Hydrogen Energy, 2005, 30:1053-1062.
    [40] Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO_2 photocatalysts. Catal Commun, 2005,6:661-668.
    [41] Sreethawong T, Yoshikawa S. Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO_2 prepared by single-step sol-gel process with surfactant template. Int J Hydrogen Energy, 2006, 31:786-796.
    [42] Jing D, Zhang Y, Guo L. Study on the synthesis of Ni doped mesoporous TiO_2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett, 2005,415:74-78.
    [43] Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc, 1980, 102:5494-5502
    [44] Domen K, Nalto S, Onlshl T. et al. Study of the photocatalytic decomposition of water vapor over a NiO-SrTiO_3 Catalyst. J Phys Chem, 1982, 86:3657-3661.
    [45] Domen K, Kudo A, Onishi T. Mechanism of photocatalytic decomposition of water into H_2 and O_2 over NiO-SrTiO_3. J Catal, 1986, 102:92-98.
    [46] Domen K, Kudo A, Onishi T. Photocatalytic decomposition of water into H_2 and O_2 over NiO-SrTiO_2 powder. 1. Structure of the catalyst. J Phys Chem, 1986, 90:292-295.
    [47] Yoshikawa T, Bowker M. Reductive coupling desorption of methanol on reduced SrTiO_3(110). Phys Chem Chem Phys, 1999, 1:913-920.
    [48] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO_2 and SrTiO_3 photocatalysts codoped with antimony and chromium. J Phys Chem B, 2002, 106:5029-5034.
    [49] Ishii T, Kato H, Kudo A. H_2 evolution from an aqueous methanol solution on SrTiO_3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photochem Photobiol A: Chem, 2004, 163:181-186.
    [50] Wang D, Ye J, Kako T. et al. Photophysical and photocatalytic properties of SrTiO_3 doped with Cr Cations on Different Sites J Phys Chem B, 2006, 110:15824-15830.
    [51] Niishiro R, Kato H, Kudo A. Nickel and either tantalum or niobium-codoped TiO_2 and SrTiO_3 photocatalysts with visible-light response for H_2 or O_2 evolution from aqueous solutions. Phys Chem Chem Phys, 2005, 7:2241-2245.
    [52] Konta R, Ishii T, Kato H. et al. Photocatalytic activities of noble metal ion doped SrTiO_3 under Visible Light Irradiation. J Phys Chem B, 2004, 108:8992-8995.
    [53] Inoue Y, Kubokawa T, Sato K. Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water. J Phys Chem, 1991, 95:4509-4513.
    [54] Inoue Y, Asai Y, Sato K. Photocatalysts with tunnel structures for decomposition of water. Part 1. BaTi_4O_9, a pentagonal prism tunnel structure, and its combination with various promoters. J Chem Soc Faraday Trans, 1994, 90:797-801.
    [55] Shangguan W, Yashida A. Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxides. Int J Hydrogen Energy, 1999, 24:425-431.
    [56] Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu~(2+) doped layered hydrogen titanate. Int J Inorg Mater, 2000, 2:339-346.
    [57] Zhu H, Gao X, Lan Y. Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J Am Chem Soc, 2004, 126:8380-8381.
    [58] Kato H, Kudo A. Highly efficient decomposition of pure water into H_2 and O_2 over NaTaO_3 photocatalysts. Catal. Lett. 1999, 58: 153-154.
    [59] Kudo A, Kato H. Photocatalytic water splitting into H_2 and O_2 over K_2LnTa_5O_(15) powder. Chem Lett, 2000, 10:1212-1213.
    [60] Kato H, Kudo A. Water splitting into H_2 and O_2 on alkali tantalate photocatalysts ATaO_3 (A =Li, Na, and K). J Phys Chem B, 2001, 105:4285-4292.
    
    [61] Kudo, A. Photocatalyst materials for water splitting. Catal Surv Asia, 2003, 7:31-38.
    [62] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H_2 and O_2 over lanthanum-doped NaTaO_3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc, 2003, 125:3082-3089.
    [63] Kudo A. Development of photocatalyst materials for water splitting. Int J Hydrogen Energy, 2006, 31:197-202.
    [64] Kato H, Kobayashi H, Kudo A. Role of Ag~+ in the band structures and photocatalytic properties of AgMO_3 (M: Ta and Nb) with the perovskite structure. J Phys Chem B, 2002, 106:12441-12447.
    [65] Hosogi Y, Tanabe K, Kato H. et al. Energy structure and photocatalytic activity of niobates and tantalates containing Sn( II) with a 5s~2 electron configuration. Chem Lett, 2004, 33:28-29.
    [66] Zou Z, Yea J, Sayama K. et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414:625-627.
    [67] Zou Z, Ye J, Abe R. et al. Photocatalytic decomposition of water with Bi_2InNbO_7. Catal Lett, 2000, 68:235-239.
    [68] Zou Z, Ye J, Arakawa H. Photocatalytic water splittion into H_2 and /or O_2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrogen Energy, 2003, 28:663-669.
    [69] Zou Z, Ye J, Arakawa H. Photocatalytic properties and electronic structure of a novel series of solid photocatalysts, Bi_2RNbO_7 (R = Y, rare earth). Topics Catal, 2003,22:107-110.
    [70] Zou Z, Ye J, Sayamaa K. et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO_4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts. J Photochem Photobiol A: Chem, 2002, 148:65-69.
    
    [71] Ye J, Zou Z, Matsushita A. A novel series of water splitting photocatalysts NiM_2O_6 (M = Nb, Ta) active under visible light. Int J Hydrogen Energy, 2003, 28:651-655.
    [72] Zou Z, Arakawa H. Direct water splitting into H_2 and O_2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A: Chem, 2003, 158:145-162.
    [73] Asahi R, Morikawa T, Ohwaki T. et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293:269-271.
    [74] Hitoki G, Takata T, Kondo J N. et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ < 500 nm). Chem Commun, 2002, 1698-1699.
    [75] Hitoki G, Ishikawa A, Takata T. et al. Ta_3N_5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem Lett, 2002, 736-737.
    [76] Hara M, Hitoki G, Takata T. et al. TaON and Ta_3N_5 as new visible light driven photocatalysts. Catal Today, 2003, 78:555-560.
    [77] Chun W J, Ishikawa A, Fujisawa H. et al. Conduction and valence band positions of Ta_2O_5, TaON, and Ta_3N_5 by UPS and electrochemical methods. J Phys Chem B, 2003,107:1798-1803.
    [78] Hara M, Nunoshige J, Takata T. et al. Unusual enhancement of H_2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem Commun, 2003, 3000-3001.
    [79] Kasahara A, Nukumizu H G, Takata T. et al. Photoreactions on LaTiO_2N under visible light irradiation. J Phys Chem A, 2002, 106:6750-6752.
    [80] Kasahara A, Nukumizu H G, Takata T. et al. LaTiO_2N as a visible-light (λ < 600 nm)-driven photocatalyst (2). J Phys Chem B, 2003, 107:791-797.
    [81] Yamasita D, Takata T, Hara M. et al. Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 2004, 172:591-595.
    [82] Oetjen H F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H_2/CO as fuel gas. J Electrochem Soc, 1996, 143:3838-3842.
    [83] Lemons R A. Fuel cells for transportation. J Power Sources, 1990,29:251-264.
    [84] Schmidt V M, Brockerhoff P, Hohlein B, et al. Utilization of methanol for polymer electrolyte fuel cells in mobile systems. J Power Sources, 1994,49:299-313.
    [85] Gasteiger H A, Markovic N, Ross P N, et al. Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem; 1994; 98:617-625.
    [1] Kraeutler B, Bard A J. Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO_2 Powder and Other Substrates. J Am Chem Soc, 1978, 100:4317-4318.
    [2] Yang J C, Kim Y C, Shul Y G. Characterization of photoreduced Pt/TiO_2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO_2 catalysts. Appl Surf Sci, 1997, 121/122:525-529.
    [3] Angelidisa T N, Koutlemania M, Poulios I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO_2, in a closed-loop reactor. Appl Catal B: Environ, 1998, 16:347-357.
    [4] Zhang F, Chen J, Zhang X. et al. Simple and low-cost preparation method for highly dispersed Pd/TiO_2 catalysts. Catal Today, 2004, 93-95:645-650.
    [5] Sano T, Kutsuna S, Negishi N, et al. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A, 2002, 189:263-270.
    [6] Herrmann J, Disdier J, Pichat P. Photoassisted platinum deposition on TiO_2 powder using various platinum complexes. J Phys Chem, 1986, 90:6028-6034.
    [7] Tsubota S, Cunningham D A H, Bando Y. et al. Preparation of nanometer gold strongly interacted with TiO_2 and the structure sensitivity in low-temperature oxidation of CO. Stud Surf Sci Catal, 1995, 91:227-235.
    [8] Zanella R, Giorgio S, Shin C. et al. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO_2 prepared by deposition-precipitation with NaOH and urea. J Catal, 2004, 222:357-367.
    [9] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc, 1978, 100:170-175.
    [10] Ohtani B, Iwai K, Nishimoto S, et al. Role of platinum deposits on titanium(Ⅳ) oxide particles: Structural and Kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B, 1997, 101:3349-3359.
    [11] Ho S W, Chu C Y, Chen S G. Effect of thermal treatment on the nickel state and CO hydrogenation activity of titania-supported nickel catalysts. J Catal, 1998, 178:34-48.
    [12] Li P, Liu J, Nag N, et al. Atomic-scale study of in situ metal nanoparticle synthesis in a Ni/TiO_2 system. J Phys Chem B, 2005, 109:13883-13890.
    [13] Matsumura Y, Tode N, Yazawa T, et al. Catalytic methanol decomposition to carbon monoxide and hydrogen over Ni/SiO_2 of high nickel content. J Mol Catal A, 1995, 99:183-185.
    [14] 李灿,辛勤,应品良等.一种紫外拉曼光谱仪.中国专利授权号 ZL98113710.5
    [15] Li C. Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J Catal, 2003, 216:203-212.
    [16] Li C, Xiong G, Liu J. et al. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy. J Phys Chem B, 2001, 105:2993-2997.
    [17] Chen J, Feng Z, Li C. et al. ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and Laser-induced luminescence spectroscopies. J Phys Chem B, 2001, 105:2993-2997.
    [18] 陈均,冯兆池,李灿等.ZnO/SiO_2的激光诱导发光光谱研究.高等学校化学学报,2004,25:2074-2077.
    [1] Ho S W, Chu C Y, Chen S G. Effect of thermal treatment on the nickel state and CO hydrogenation activity of titania-supported nickel catalysts. J Catal, 1998, 178:34-48.
    [2] Li P, Liu J, Nag N, et al. Atomic-scale study of in situ metal nanoparticle synthesis in a Ni/TiO_2 system. J Phys Chem B, 2005, 109:13883-13890.
    [3] Matsumura Y, Tode N, Yazawa T, et al. Catalytic methanol decomposition to carbon monoxide and hydrogen over Ni/SiO_2 of high nickel content. J Mol Catal A, 1995, 99:183-185.
    [4] Kraeutler B, Bard A J. Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO_2 Powder and Other Substrates. J Am Chem Soc, 1978, 100:4317-4318.
    [5] Yang J C, Kim Y C, Shul Y G. Characterization of photoreduced Pt/TiO_2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO_2 catalysts. Appl Surf Sci, 1997, 121/122:525-529.
    [6] Angelidisa T N, Koutlemania M, Poulios I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO_2, in a closed-loop reactor. Appl Catal B: Environ, 1998, 16:347-357.
    [7] Zhang F, Chen J, Zhang X. et al. Simple and low-cost preparation method for highly dispersed Pd/TiO_2 catalysts. Catal Today, 2004, 93-95:645-650.
    [8] Sano T, Kutsuna S, Negishi N, et al. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A, 2002, 189:263-270.
    [9] Herrmann J, Disdier J, Pichat P. Photoassisted platinum deposition on TiO_2 powder using various platinum complexes. J Phys Chem, 1986, 90:6028-6034.
    [10] Sakata T, Kawai T. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett, 1981, 80:341-344.
    [11] Lin C H, Lee C H, Chao J H, et al. Photocatalytic generation of H_2 gas from neat ethanol over Pt/TiO_2 nanotube catalysts. Catal Lett, 2004, 98:61-66.
    [12] John M R St, Furgala A J, Samrnells A F. Hydrogen generation by photocatalytic oxidation of glucose by platinized n-TiO_2 Powder. J Phys Chem, 1983, 87:801-805.
    [13] Kawai T, Sakata T. Photocatalytic hydrogen production from water by the decomposition of polyvinylchloride, protein, algae, dead insects and excrement. Chem Lett, 1981:81-84.
    [14] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980, 286:474-476.
    [15] Sakata T, Kawai T. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem Phys Lett, 1981, 80:341-344.
    [16] Kawai T, Sakata T, Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun, 1980:694-695.
    [17] Linsebigler A L, Lu G, Yates, Jr. J T. Photocatalysis on TiO_2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95(3):735-758.
    [18] Jafiezic-Renault N, Pichat P, Foissy A, Mercier R. Effect of deposited Pt particles on the surface charge of TiO_2 aqueous suspensions by potentiometry, electrophoresis, and labeled ion adsorption. J Phys Chem, 1986, 90(12):2733-2738.
    [19] Kominami H, Furusho A, Murakami S, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid. Catal Lett, 2001, 76:31-34.
    [20] Ranjit K T, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO_2 catalysts. J Photochem Photobiol A, 1997, 108:73-78.
    [21] Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions on Ru/TiO_2 catalysts. J Photochem Photobiol A, 1995, 89:67-68.
    [1] Harnelinck C N, Faaij A P C. Future prospects for production of methanol and hydrogen from biomass. J Power Sources, 2002, 111:1-22.
    [2] Ubago-Perez R, Carrasco-Marin F, Moreno-Castilla C. Carbon-supported Pt as catalysts for low-temperature methanol decomposition to carbon monoxide and hydrogen. Appl Catal A, 2004, 275:119-126.
    [3] Chin Y H, Dagle R, Hu J, et al. Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today, 2002, 77:79-88.
    [4] Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO_2 and Al_2O_3. J Catal, 2003, 219:389-403.
    [5] Velu S, Suzuki K, Kapoor MP, et al. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts. Appl Catal A, 2001, 213:47-63.
    [6] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H_2 and O_2 over lanthanum-doped NaTaO_3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc, 2003, 1125:3082-3089.
    [7] Liu M, You W, Lei Z, et al. Water reduction and oxidation on Pt-Ru/Y_2Ta_2O_5N_2 catalyst under visible light irradiation. Chem Commun, 2004, 2192-2193.
    [8] Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440:295-295.
    [9] Yang Y Z, Chang C H, Idriss H. Photo-catalytic production of hydrogen form ethanol over M/TiO_2 catalysts (M = Pd, Pt or Rh). Appl Catal B, 2006, 67:217-222.
    [10] Kawai T, Sakata T. Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun, 1980, 694-695.
    [11] Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions, part (II): photocatalytic mechanisms. Water Res, 1999,33:669-676.
    [12] Dickinson A, James D, Perkins N, et al. The photocatalytic reforming of methanol. J Mol Catal A, 1999,146:211-221.
    [13] Bowker M, Millard L, Greaves J, et al. Photocatalysis by Au nanoparticles: reforming of methanol. Gold Bull, 2004, 37:170-173.
    [14] Wu N L, Lee M S. Enhanced TiO_2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrogen Energy, 2004, 29:1601-1605.
    [15] Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO_2 photocatalysts. Catal Commun, 2005,6:661-668.
    [16] Zou Z, Ye J, Abe R, Arakawa H. Photocatalytic decomposition of water with Bi_2InNbO_7. Catal Lett, 2000,68:235-239.
    [17] Galinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO_2 in the presence of sacrificial reagents. Energy Fuels, 2005,19:1143-1147.
    [18] Oetjen H F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H_2/CO as fuel gas. J Electrochem Soc, 1996, 143:3838-3842.
    [19] Tsubota S, Cunningham D A H, Bando Y, et al. Preparation of nanometer gold strongly interacted with TiO_2 and the structure sensitivity in low-temperature oxidation of CO. Stud Surf Sci Catal, 1995, 91:227-235.
    [20] Chang F W, Yu H Y, Roselin L S, et al. Production of hydrogen via partial oxidation of methanol over Au/TiO_2 catalysts. Appl Catal A, 2005, 290:138-147.
    [21] Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO_2 and Pt-TiO_2- J Photochem Photobiol A, 1995,89:177-189.
    [22] Bamwenda G R, Tsubota S, Kobayashi T, et al. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO_2. J Photochem Photobiol A, 1994, 77:59-67.
    [23] Bideau M, Claudel B, Faure L, et al. The photo-oxidation of acetic acid by oxygen in the presence of titanium dioxide and dissolved copper ions. J Photochem Photobiol A, 1991, 61:269-280.
    [24] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95:69-96.
    [25] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95:735-758.
    [26] Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO_2/Gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc, 2004, 126:4943-4950.
    [27] Chen Y, Wei Z, Chen Y, et al. Metal-semiconductor catalyst: photocatalytic and electrochemical behavior of Pt-TiO_2 for the water-gas shift reaction. J Mol Catal, 1983, 21:275-289.
    [28] Millard L, Bowker M. Photocatalytic water-gas shift reaction at ambient temperature. J Photochem Photobiol A, 2002, 148:91-95.
    [29] Boccuzzi F, Chiorino A, Tsubota S, et al. FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO_2. 2. J Phys Chem, 1996, 100:3625-3631.
    [30] Boccuzzi F, Chiorino A, Manzoli M. FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surf Sci, 2000,454-456:942-946.
    [31] Boccuzzi F, Chiorino A, Manzoli M, et al. Au/TiO_2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal, 2001,202:256-267.
    [32] Boccuzzi F, Chiorino A, Manzoli M, et al. FTIR study of the low-temperature water-gas shift reaction on Au/Fe_2O_3 and Au/TiO_2 catalysts. J Catal, 1999, 188:176-185.
    [1] Zou Z, Ye J, Abe R et al. Photocatalytic decomposition of water with Bi_2InNbO_7. Catal Lett, 2000, 68:235-239.
    [2] Galinska A, Walendziewski J. Photocatalytic water splitting over Pt-TiO_2 in the presence of sacrificial reagents. Energy Fuels, 2005, 19:1143-1147.
    [3] Oetjen H F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H_2/CO as fuel gas. J Electrochem Soc, 1996, 143:3838-3842.
    [4] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO_2. J. Am. Chem. Soc. 1978, I00: 170-I75.
    [5] Ohtani B, lwai K, Nishimoto S, et al. Role of platinum deposits on titanium(Ⅳ) oxide particles: Structural and Kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B, 1997, 101:3349-3359.
    [6] Kraeutler B, Bard A J. Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO_2 Powder and Other Substrates. J Am Chem Soc, 1978, 100:4317-4318.
    [7] Yang J C, Kim Y C, Shul Y G. Characterization of photoreduced Pt/TiO_2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO_2 catalysts. Appl Surf Sci, 1997, 121/122:525-529.
    [8] Angelidisa T N, Koutlemania M, Poulios I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO_2, in a closed-loop reactor. Appl Catal B: Environ, 1998, 16:347-357.
    [9] Zhang F, Chen J, Zhang X, et al. Simple and low-cost preparation method for highly dispersed Pd/TiO_2 catalysts. Catal Today, 2004, 93-95:645-650.
    [10] Sano T, Kutsuna S, Negishi N, et al. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A, 2002, 189:263-270.
    [11] Herrmann J, Disdier J, Pichat P. Photoassisted platinum deposition on TiO_2 powder using various platinum complexes. J Phys Chem, 1986, 90:6028-6034.
    
    [12] Taustert S J. Strong metal-support interactions. Accounts Chem Res, 1987, 20:389-394.
    [13] Alexeev O S, Chin S Y, Engelhard M H, et al. Effects of reduction temperature and metal-support interactions on the catalytic activity of Pt/ -Al_2O_3 and Pt/TiO: for the Oxidation of CO in the Presence and Absence of H_2. J Phys Chem B, 2005, 109:23430-23443.
    [14] Gan S, Liang Y, Baer D R, et al. Effect of platinum nanocluster size and titania surface structure upon CO surface chemistry on platinum-supported TiO_2 (110). J Phys Chem B, 2001, 105:2412-2416.
    [15] Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions on Ru/TiO_2 catalysts. J Photochem Photobiol A. 1995, 89:67-68.
    [16] Ranjit K T, Viswanathan B. Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO_2 catalysts. J Photochem Photobiol A. 1997, 108:73-78.
    [17] Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical properties of the TiO_2-Pt system in aqueous solutions. Int. J. Hydrogen Energy, 2002, 27:19-26.
    [18] Abe R, Sayama K, Arakawa H. Significant effect of iodide addition on water splitting into H_2 and O_3 over Pt-loaded TiO_2 photocatalyst: suppression of backward reaction.Chem Phys Lett, 2003, 371:360-364.
    [19] Karakitsou K, Verykios X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO_2/TiO_2 catalysts. J Catal, 1995, 152:360-367.
    [20] Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions. Part (II): photocatalytic mechanisms. Wat Res, 1999,33:669-676.
    [21] Kawai T, Sakata T, Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun, 1980: 694-695.
    [22] John M R St, Furgala A J, Sammells A F. Hydrogen generation by photocatalytic oxidation of glucose by platinized n-TiO_2 Powder. J Phys Chem, 1983, 87:801-805.
    [23] Kawai T, Sakata T. Photocatalytic hydrogen production from water by the decomposition of poly- vinylchloride, protein, algae, dead insects and excrement. Chem Lett, 1981:81 -84.
    [24] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980,286:474-476.
    [25] Linsebigler A L, Lu G, Yates J T Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem Rev, 1995, 95:735-758.
    [26] Chen T, Feng Z, Wu G et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO_2 by in-situ FTIR and time-resolved IR spectroscopy. J Phys Chem C, accepted.
    [27] Shi J, Chen J, Li C, et al. Photoluminescence characteristics of TiO_2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C, 2007, 111:693-699.
    [28] Mochizuki S, Shimizu T, Fujishiro F. Photoluminescence study on defects in pristine anatase and anatase-based composites. Physica B, 2003, 340-342:956-959.
    [29] Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO_2 particles: size quantization versus direct transitions in this indirect semiconductor. J Phys Chem, 1995, 99:16646-16654.
    [30] Wang K, Zhang J, Lou L, Yang S, et al. UV or visible light induced photodegradation of AO7 on TiO_2 particles: the influence of inorganic anions. J Photochem Photobiol A, 2004,165:201-207.
    [31] Chen HY, Zahraa O, Bouchy M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO_2 by inorganic ions. J Photochem Photobiol A, 1997, 108:37-44.
    [32] Guillard C, Lachheb H, Houas A, et al. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO_2 comparison of the efficiency of powder and supported TiO_2. J Photochem Photobiol A, 2003, 158:27-36.
    [33] Wang K, HsiehY, Wu C, et al. The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO_2 aqueous suspension. Chemosphere, 2000, 40:389-394.
    [34] Bamwenda G R, Tsubota S, Nakamura T, Haruta M. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO_2 and Pt-TiO_2. J Photochem Photobiol A, 1995,89:177-189.
    [35] Bamwenda G R, Tsubota S, Kobayashi T, Haruta M. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO_2. J Photochem Photobiol A, 1994, 77:59-67.
    [36] Sreethawong T, Puangpetch T, Chavadej S, et al. Quantifying Influence of Operational Parameters on Photocatalytic H_2 Evolution over Pt-Loaded Nanocrystalline Mesoporous TiO_2 Prepared by Single-Step Sol-Gel Process with Surfactant Template. J Power Sources, 2006, doi:10.1016/j.jpowsour.2006.12.050.
    [37] Li Y, Lu G, Li S. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO_2. Appl Catal A, 2001, 214:179-185.
    [38] Flaig-Baumann F, Hermann M, Boehm H P. Uber die Chemie der Oberflache des Titandioxids. III. Reaktionen der basischen Hydroxylgruppen auf der Oberflache. Z Anorg Allg Chem, 1970, 372(3):296-307.
    [39] Hu C, Yu J C, Hao Z, et al. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl Cataly B, 2003,46:35-47.
    [40] Abdullah M, Low G K C, Matthews R W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem, 1990, 94:6820-6825.
    [41] Yamazaki S, Fujinaga N, Araki K. Effect of sulfate ions for sol-gel synthesis of titania photocatalyst. Appl Catal A, 2001, 210:97-102.
    [42] Yan M, Chen F, Zhang J et al. Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B, 2005, 109:8673-8678.
    [43] Horanyi G. Investigation of the specific adsorption of sulfate ions on powdered TiO_2. J Colloid Interface Sci, 2003, 261:580-583.
    [44] Xu Y H, Wang L Y, Zhang Q et al. Correlation between photoreactivity and photophysics of sulfated TiO_2 photocatalyst. Mater Chem Phys, 2005, 92:470-474.
    [45] Samantaray S K, Parida K M. Effect of anions on the textural and catalytic activity of titania. J Mater Sci, 2003, 38:1835-1848.
    [46] Li Y, Wasgestian F. Photocatalytic reduction of nitrate ions on TiO_2 by oxalic acid. J Photochem Photobiol A, 1998,112:255-259.
    [47] Kominami H, Furusho A, Murakami S, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid. Catal Lett, 2001, 76:31-34.
    [48] Gao W, Guan N, Chen J, et al. Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Applied Catalysis B: Environmental 46 (2003) 341-351.
    [49] Ranjit K T, Krishnamoorthy R, Varadarajan T K, et al. Photocatalytic reduction of nitrite on CdS. J Photochem Photobiol A, 1995, 86:185-189.
    [1] Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO_2. J Am Chem Soc, 1978, 100:170-175.
    [2] Ohtani B, Iwai K, Nishimoto S, et al. Role of platinum deposits on titanium(IV) oxide particles: Structural and Kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. JPhys Chem B, 1997, 101:3349-3359.
    [3] Ho S W, Chu C Y, Chen S G. Effect of thermal treatment on the nickel state and CO hydrogenation activity of titania-supported nickel catalysts. J Catal, 1998, 178:34-48.
    [4] Li P, Liu J, Nag N, et al. Atomic-scale study of in situ metal nanoparticle synthesis in a Ni/TiO_2 system. J Phys Chem B, 2005, 109:13883-13890.
    [5] Matsumura Y, Tode N. Yazawa T. et al. Catalytic methanol decomposition to carbon monoxide and hydrogen over Ni/SiO_2 of high nickel content. J Mol Catal A, 1995, 99:183-185.
    [6] Zhang F, Chen J, Zhang X. et al. Simple and low-cost preparation method for highly dispersed Pd/TiO_2 catalysts. Catal Today, 2004, 93-95:645-650.
    [7] Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. photodeposition of platinum on TiO_2 powder and other substrates. J Am Chem Soc, 1978, 100:4317-4318.
    [8] Sano T. Kutsuna S, Negishi N, et al. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer. J Mol Catal A, 2002, 189:263-270.
    1. Rarnage J, Scurlock 3. Biomass. In: Bovle G, ed. Renewable energy-power for a sustainable future. Oxford: Oxford University Press, 1996:18-56.
    2.章树容.中国可再生能源开发利用现状及趋势.能源技术,1999,3:8-11.
    3. Broek R, Faaij A, Wijk A. Biomass combustion power generation technology. Biomass Bioenergy, 1996, 11:271-81.
    4. Ayhan D. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion & Management, 2001, 42:357-1378.
    5. Demirbas A. Mmchanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management, 2000, 41:633-646.
    6. Brown A L, Dayton D C, Daily J W. A study of cellulose pyrolysis chemistry and global kinetics at high heating rates. Energy & Fuel, 2001, 15:1286-1294.
    7. Bridgwater A V. Catalysis in thermal biomass conversion. Applied Catalysis A, 1994, 116:5-47.
    8. V. Bridgwater, Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 1999, 51:3-22.
    9. Rezzoug S A, Capart R. Solvolysis and hydrotreatment of wood to provide fuel. Biomass and Bioenergy, 1996, 11:343-352.
    10. Jakab E, Liu K, Meuzelaar H L C. Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Res, 1997, 36:2087-2095
    11. Varhegyi G, Jr M J A. Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. avicel cellulose in the presence and absence of catalysts. Energy & Fuel, 1998, 2(3)267-272.
    12. Bestue-Labazuy C, Soyer N, Bruneau C et al. Wood liquefaction with hydrogen or helium in the presence of iron additives. The Canadian Journal of Chemical Engineering, 1985,63:634-638.
    13. Putun A E, Ozcan A, Gercel H F et al, Production of biocrudes from biomass in a fixed-bedtubular reactor: product yields and compositions. Fuel, 2001, 80:1371-1378.
    14. Demirbas A. Supercritical fluid extraction and chemicals from biomass with supercritical fluids. Energy Conversion & Management. 2001, 42:279-294.
    15. Demirbas A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternative engine fuel. Energy Conversion & Management, 2000, 41:1741-1748.
    16. Demirbas A. Yield of oil products from thermochemical biomass conversion processes. Energy Conversion & Management, 1998, 39:685-690.
    17. Meshcheryakov V D, Kirillov V A. Analyzing biomass conversion into liquid hydrocarbons. Theoretical Foundations of Chemical Engineering, 2002, 36:466-471.
    18. Vasllakos N P, Barrelros M T. Homogeneous catalytic hydrogenolysis of biomass. Ind. Eng. Chem. Process Des. Dev, 1984,23:755-763.
    19. Samolada M C, Papafotica A Vasalos I A. Catalyst evaluation for catalytic biomass pyrolysis. Energy & Fuel, 2000, 14(6):1161-1167.
    20. Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components. Fuel, 1996, 75(8):987-998.
    21. Wilson N G, Williams P T. Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio-oil. International Journal of Energy Research, 2002, 27:131-143.
    22. Williams P T, Horne P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 1995, 31:39-61.
    23. Rocha J D, Luengo C A, Snape C E. The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Organic Geochemistry, 1999, 30:1527-1534.
    24. Sharma R K, Bakhshi N N. Upgrading of wood-derived bio-oil over HZSM-5. Bioresource Technology, 1991, 35:57-66.
    25. Lappas A A, Samolada M C, Iatridis D K et al. Biomass pyrolysis in a circulating fluid bed reactor for the production of foils and chemicals. Fuel, 2002, 81:2087-2095.
    26. Samolada M C, Baldauf W, Vasalos I A, Fuel, 1998, 77:1667-1675.
    27. Goudriaan F, Peferoen D G R. Liquid fuels from biomass via a hydrothermal process, Chemical Engineering Science, 1990, 45(8):2729-2734.
    28. Williams P T, Horne P A. The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel, 1995, 74:1839-1851.
    29. Grassi G. Biomass Pyrolysis Liquids Upgrading and Utilisation. In: Bridgwater A V and Grassi G. Ed. Renewable energy. Amsterdam : Elsevier, 1991:1 -21.
    30. Samolada M C, Baldauf W, Vasalos I A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel, 1998, 77(14):1667-1675.
    31. Rustamov V R, Abdullayev K M, Samedov E A. Biomass conversion to liquid fuel by two stage thermochemical cycle. Energy Convers. Mgmt, 1998, 39(9):869-875
    32. Araya P E, Droguett S E, Neuburg H J et al. Catalytic wood liquefaction using a hydrogen donor solvent. The Canadian Journal of Chemical Engineering, 1986, 64:775-780.
    33. Rezzoug S A, Capart R. Liquefaction of wood in two successive steps: solvolysis in ethylene-glycol and catalytic hydrotreatment. Aplied Energy, 2002, 72:631-644.
    34. Vasilakos N P, Austgen D M. Hydrogen-donor solvents in biomass liquefaction. Ind Eng Chem Process Des Dev, 1985, 24:304-311
    35. Vitolo S, Bresci B, Seggiani M et al. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel, 2001, 80:17-26.
    36. Scott D S, Piskorz J. The continuous flash pyrolysis of biomass. The Canadian Journal of Chemical Engineering, 1984, 62:404-412
    37. Evans R J, Milne T A. Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy & Fuels, 1987, 1:123-137.
    38. Oasmaa A, Kuoppala E, Gust S et al. Fast pyrolysis of forestry residue. 1. effect of extractives on phase separation of pyrolysis liquids. Energy & Fuels, 2003, 17:1-12.
    39. Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components. Fuel, 1996, 75:987-998.
    40. Olazar M, Aguado R, Bilbao J. Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst. AlChE Journal, 2000, 46:1025-1033.
    41. McGrath T, Sharma R, Hajaligol M. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel, 2001, 80:1787-1797.
    42. Raveendran K, Ganesh A, Khilar K C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 1995, 74:1812-1822.
    43. Nik-Azar M, Hajaligol M R, Sohrabi M et al. Mineral matter effects in rapid pyrolysis of beech wood. Fuel Processing Technology, 1997, 51:7-17.
    44. Shiraishi N, Maldas D. Liquefaction of biomass in the presence of phenol and H_2O using alkalies and salts as the catalyst. Biomass and Bioenergy, 1997, 12:273-279.
    45. Radlein D, Piskorz J, Grinshpun A, et al. Am Chem Soc Div Fuel Chem, 1987, 32(2):29-30.
    46. Alma M H, Basturk M A. Cocondensation of NaOH-catalyzed liquefied wood wastes, phenol and formaldehyde for the production of resol-type adhesives. Ind Eng Chem Res, 2001,40:5036-5039.
    47. Barth T, Borgund A E. Effects of base catalysis on the product destribution from pyrolysis of woody biomass in the presence of water. Organic Geochemistry, 1999, 30:1517-1526.
    48. Elliott D C, Bridgwater A V, Beckman D et al. Developments in direct thermochemical liquefaction of biomass: 1983-1990. Energy & Fuels, 1991, 5:399-410.
    49. Sada E, Kumazawa H, Kudsy M. Pyrolysis of lignins in molten salt media. Ind Eng Chem Res, 1992, 31:612-616.
    50. Williams P T, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy, 2000, 25:493-513.
    51. Bridgwater A V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catalysis Today, 1996,29:285-295.
    52. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technology, 2001, 79:277-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700