纸浆污泥纤维素酶水解糖化与增效工艺及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纸浆污泥是制浆造纸工业的主要固体废弃物,含有约40%~60%的纤维素资源,可以作为生产纤维素乙醇的原料。相对木质纤维素原料,纸浆污泥具有价格低廉、纤维结构疏松等优点。纸浆污泥通过纤维素酶水解发酵乙醇,将会拓宽生物质乙醇的原料来源,同时,减小纸浆污泥排放对环境造成的压力,是工业废弃物一种极具潜力的能源转化方式。本论文以纸浆纤维为底物,探讨了纤维素酶在纤维上的吸附以及酶水解过程中一系列物理和化学的变化,建立了纸浆污泥酶水解的动力学模型,为纸浆污泥的酶水解提供理论依据。另外,提出了一种使用阳离子聚合物,提高纤维素酶水解效率的新方法,可以大大降低酶解糖化的生产成本。
     纤维素酶在纤维上的吸附是酶水解反应的第一步。纤维素酶在纤维上吸附60 min时基本达到吸附平衡;纤维素酶吸附的过程满足二级吸附动力学模型,可表示为(?)的形式;纤维素酶在纤维上的吸附平衡满足Langmuir等温吸附;纤维素酶在短纤维上有最大的吸附量,而在长纤维上的吸附平衡常数最大,最易达到吸附平衡。纤维素酶吸附的热力学研究表明,纤维素酶吸附过程的吉布斯自由能△G°小于0,是自发过程,吸附同时存在物理吸附和化学吸附;吸附的反应焓变△H?为负值,表明吸附为放热过程;吸附的反应熵变△S°大于0,表明纤维素酶的吸附是不可逆的。纤维素酶在48目纤维上有最大的吸附焓变△H°,在28目纤维上有最大的吸附熵变△S°。反应温度、pH值和溶液中的离子强度是影响纤维素酶活力的主要因素。工业用纤维素酶可使用的温度为40~60℃,pH值为3~7,离子强度为20~100 mmol/L(以柠檬酸浓度表示)。响应面法优化漂白木浆酶水解的结果表明,经条件优化后,可溶糖转化率最大可达81.5%;葡萄糖转化率最大可达54.3%。木浆纤维在酶水解过程中,纤维形态是不断变化的,纤维长度和扭结角随酶水解时间的增加而减小,但漂白针叶木浆纤维和漂白阔叶木浆纤维形态的变化有明显的不同,而且两种纤维葡萄糖和可溶性糖的溶出速率也不同。纸浆的游离度和回用次数也是影响纤维酶水解的因素,游离度越低,水解效率越高;回用次数越多,水解效率越低。纤维素酶降解纤维是吸附和催化两个过程的综合作用,在实验温度范围内,纤维素酶的吸附与温度呈负相关关系,而纤维素酶的催化活性与温度呈正相关关系,两者的综合作用造成了不同长度的纤维酶水解与温度的依赖关系不同。细小纤维的酶水解更容易受到温度的影响,而长纤维的酶水解受温度的影响很小。酶水解活化能的计算证明了不同长度的纤维底物受温度影响的差异。因此,酶水解工业中应避免盲目升温到50℃进行酶水解而带来不必要的能量消耗。
     阳离子聚丙烯酰胺以电荷补丁或电荷桥接的机理,增加纤维素酶分子在纸浆纤维上的吸附,进而提高酶水解效率。中等电荷量(40%)、低分子量(约3.4~4.5 MDA)的阳离子聚丙烯酰胺,用量为250 mg/L对增加纸浆纤维酶水解效率的效果最明显。适宜的搅拌强度可以提高阳离子聚丙烯酰胺存在时,纤维素酶水解的效率,实验表明,反应器中流体的雷诺数Re为298时最佳。当纤维被切断到一定程度后即延迟添加阳离子聚丙烯酰胺,也可提高聚合物的作用效果。阳离子聚丙烯酰胺对酶水解的促进作用具有广泛性,同样适用于淀粉酶水解系统。
     纸浆污泥经过纤维素酶处理后,长纤维被切断成短纤维,提高了纤维粒子间结合的紧密程度,减少脱水后滤饼的孔隙率,增加其固含量,提高率最高可达6%。阳离子聚丙烯酰胺的加入可以减小脱水的阻力。纤维素酶提高纸浆污泥脱水固含量的方法,其投入和产出在经济上可达到平衡,随着纤维素酶性价比的提高以及污泥处理费用的持续增高,该方法有望得到广泛应用。
     纸浆污泥酶水解系统中加入少量的氯胺T,可抑制反应过程中细菌的增长,并保持纤维素酶的活性。调节系统初始的pH值很重要,可使酶水解过程的pH值保持在对纤维素酶适宜的范围内。根据纸浆污泥酶水解的机理,建立酶水解过程的动力学模型:(?)。利用该模型,可根据初始纤维素酶用量和酶水解时间,准确预测酶水解的转化率。纸浆污泥酶水解在工厂的中试表明,500 mg/L用量的阳离子聚丙烯酰胺可以使葡萄糖产量和可溶性糖产量分别提高32%和24%,将为企业带来良好的经济效益。
Paper sludge is a major solid waste from pulp and paper industry. Because it contains 40% ~ 60% cellulose in the dry components, paper sludge could be used as a raw material for cellulose ethanol industry. Comparing with the traditional lignocellulosic materials, such as wood, crop residues and straws, paper sludge has its own advantages: low price and loose structure. Paper sludge as a material for ethanol product through enzymatic hydrolysis and fermentation, will expand the material resource of ethanol. In the meantime, it also decreases the total sludge discharge, lessens the cost for sludge disposal, reduces the pressure for environment. It would be a highly potential method for energy conversion of industry waste. In this thesis, using pulp fiber as substrate, the adsorption of cellulase on cellulose fiber and the physical and chemical changes during the enzymatic hydrolysis process were discussed. These would provide the theoretical support for the enzymatic hydrolysis of paper sludge. Additionally, a new method for improving the efficiency of enzymatic hydrolysis by cationic polymer was also proposed, which could significantly reduce the cost of enzymatic saccharification.
     The adsorption of cellulase on cellulose fiber is the first step of the whole enzymatic hydrolysis process. It was found that the adsorption equilibrium was reached at the time of about 60 min. The kinetics of the adsorption process could be described by second order adsorption model, as the expression of(?). The adsorption equilibrium fits the Langmuir isotherm. The maximum adsorption amount was found in adsorption on short fiber, and the maximum Langmuir adsorption equilibrium constant in adsorption on long fiber, which indicated that cellulase shows the highest adsorption affinity on long fiber. Thermodynamics parameters were also calculated. The value of Gibbs energy change ?G ? was less than 0, value of enthalpy change ?H ? less than 0, value of entropy change ? S? higher than 0 , indicating that adsorption of cellulase on cellulose fiber is a spontaneous, exothermic and irreversible process. This adsorption process contains both physical adsorption and chemical adsorption. The highest enthalpy change ?H ? and entropy change ? S? were found in adsorption on 48 mesh fiber and 28 mesh fiber, respectively. Temperature, pH value and ionic strength in solution are the main factors affecting the activity of cellulase. For the industrial cellulase, it was found that temperature of 40~60℃, pH value of 3~7 and ionic strength of 20~100 mmol/L (expressed by concentration of citric acid) were the workable conditions. Response Surface Methodology was employed, to study the effects of temperature, cellulase dosage and pH on the efficiency of enzymatic hydrolysis of bleached pulp. At optimal conditions, the soluble sugar conversion could reach to 81.5%, and the glucose conversion to 54.3%. During the enzymatic hydrolysis process, the fiber configuration and quality change with reaction time. The changes were different for bleached softwood fiber and bleached hardwood fiber. In addition, the relative rate for glucose generation and soluble sugar generation in the hydrolysis was also not alike. The freeness and recycle times of pulp fiber also affect the enzymatic hydrolysis. With lower freeness, the efficiency was higher; with higher recycle times, the lower efficiency.
     The hydrolysis process of cellulose by cellulase is a combination of two process units, adsorption and catalytic step. The adsorption of the enzyme to cellulosic fiber is inversely dependent on temperature, while catalytic step is directly temperature dependent at the experimental conditions. The integration of these two effects causes the difference of temperature dependence of enzymatic hydrolysis for fibers with different length. The fines were high temperature dependent and easy to be affected by temperature, but the longer fiber shows the opposite performance. The activation energy for enzymatic hydrolysis was calculated through first order rate equation, which could confirm the proposed theory. The avoidance cost (capital and operational) of heating this material to 50oC for the enzymatic hydrolysis is significant.
     Cationic polyacrylamides(CPAM) could increase the adsorption of cellulase on cellulose fiber and then enchace the efficiency of enzymatic hydrolysis, by the mechanisms of charged patches or charged bridging. Cationic polyacrylamides with medium cationicity (40%), relatively low molecular weight (3.4~4.5 MDA) and dosage of 250 mg/L were found to have best efficiency-improving for enzymatic hydrolysis. Proper agitation could also enhance the efficiency, with the best Reynolds number of 298. It was found it had advantage to delay the addition of CPAM until the fiber was first shortened by the enzyme to a certain extent. The effect of CPAM in enzymatic hydrolysis system is universal, which could also be well used in the system of enzymatic hydrolysis of starch.
     After cellulase treatment, the fiber in paper sludge was cleanly cut into smaller units, cake consolidation would be improved because it would be easier to pack short fibers into a cake than longer ones. In other words, a lower void volume and a higher cake density would obtain. The highest improvement for cake solids could reach 6%. Cationic polyacrylamides could reduce the resistance in the dewatering process. The application of this method in industry is break even now, but will become more attactive as the cost:performace of cellulase increases and the cost of sludge disposal is trending higher.
     In the system of enzymatic hydrolysis of paper sludge, addition of small amount of Chloramine-T would restrain the growing of bacteria, and keep the cellulase active. Adjusting the initial pH value of the hydrolysis system is vital for controlling the whole process. The change of pH value during the hydrolysis would stay in the range suitable for cellulase. According to the mechanism of enzymatic hydrolysis, a kinetic model was proposed: (?). With varied intial enzyme loading and reaction time, precise conversion of hysrolysis could be expected. In the pilot scale of enzymatic hydrolysis of paper sludge, CPAM with dosage of 500 mg/L increased 32% of glucose production and 24% of soluble sugar production, respectively. It will highly benefit the industry.
引文
[1]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京,科学出版社, 2005.
    [2]Alvarez P., Blanco C., Santamaria R., et al. Lignocellulose/pitch based composites[J]. Composites Part a-Applied Science and Manufacturing, 2005, 36 (5): 649-657.
    [3]Kroner T., Prechtl S., Igelspacher R., et al. Bioethanol production from lignocellulose[J]. Bwk, 2006, 58 (3): 50-54.
    [4]Klemm D., Heublein B., Fink H.P., et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angew Chem Int Ed Engl, 2005, 44 (22): 3358-3393.
    [5]Pu Y.Q., Zhang D.C., Singh P.M., et al. The new forestry biofuels sector[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2008, 2 (1): 58-73.
    [6]Puls J. Chemistry and biochemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis[J]. Macromolecular Symposia, 1997, 120: 183-196.
    [7]Hult E.L., Larsson P.T., Iversen T. A CP/MAS C-13-NMR study of supermolecular changes in the cellulose and hemicellulose structure during kraft pulping[J]. Nordic Pulp & Paper Research Journal, 2001, 16 (1): 33-39.
    [8]Gabrielii I., Gatenholm P., Glasser W.G., et al. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood[J]. Carbohydrate Polymers, 2000, 43 (4): 367-374.
    [9]Ohkoshi M., Kato A., Hayashi N. C-13-NMR analysis of acetyl groups in acetylated wood .1. Acetyl groups in cellulose and hemicellulose[J]. Mokuzai Gakkaishi, 1997, 43 (4): 327-336.
    [10]Barakat A., Winter H., Rondeau-Mouro C., et al. Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation[J]. Planta, 2007, 226 (1): 267-281.
    [11]Bunzel M., Ralph J., Lu F., et al. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains[J]. Journal of Agricultural and Food Chemistry, 2004, 52 (21): 6496-6502.
    [12]Aimi H., Matsumoto Y., Meshitsuka G. Lignin fragments rich in detached side-chain structures found in water-soluble LCC[J]. Journal of Wood Science, 2005, 51 (3): 252-255.
    [13]Hosoya T., Kawamoto H., Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80 (1): 118-125.
    [14]Davin L.B., Lewis N.G. Lignin primary structures and dirigent sites[J]. Current Opinion in Biotechnology, 2005, 16 (4): 407-415.
    [15]Boerjan W., Ralph J., Baucher M. Lignin biosynthesis[J]. Annu Rev Plant Biol, 2003, 54: 519-546.
    [16]Pu Y.Q., Jiang N., Ragauskas A.J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology, 2007, 27 (1): 23-33.
    [17]Leschinsky M., Zuckerstatter G., Weber H.K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: Comparison of different lignin fractions formed during water prehydrolysis[J]. Holzforschung, 2008, 62 (6): 645-652.
    [18]Yang H.T., Xie Y.M., Zhan H.Y., et al. Analysis of the structure of milled wood lignin and lignin-carbohydrate complexes by C-13 isotopic tracer[J]. Research Progress in Pulping and Papermaking, 2006, 2006: 78-83
    [19]Fujimoto A., Matsumoto Y., Chang H.M., et al. Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin[J]. Journal of Wood Science, 2005, 51 (1): 89-91.
    [20]Evtuguin D.V., Neto C.P., Silva A.M.S., et al. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood[J]. Journal of Agricultural and Food Chemistry, 2001, 49 (9): 4252-4261.
    [21]Abreu H.D., do Nascimento A.M., Maria M.A. Lignin structure and wood properties[J]. Wood and Fiber Science, 1999, 31 (4): 426-433.
    [22]Chakar F.S., Ragauskas A.J. Review of current and future softwood kraft lignin process chemistry[J]. Industrial Crops and Products, 2004, 20 (2): 131-141.
    [23]Ibarra D., Chavez M.I., Rencoret J., et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: A two-dimensional nuclear magnetic resonance, fourier transform infrared, and pyrolysis-gas chromatography/massspectrometry study[J]. Journal of Agricultural and Food Chemistry, 2007, 55 (9): 3477-3490.
    [24]Argyropoulos D.S. New lignin insights during pulping and bleaching[C]. Emerging Technologies of Pulping & Papermaking, 2002: 20-30
    [25]Argyropoulos D.S. Salient reactions in lignin during pulping and oxygen bleaching: An overview[J]. Journal of Pulp and Paper Science, 2003, 29 (9): 308-313.
    [26]Naika G.S., Tiku P.K. Characterization of functional intermediates of endoglucanase from Aspergillus aculeatus during urea and guanidine hydrochloride unfolding[J]. Carbohydrate Research, 2010, 345 (11): 1627-1631.
    [27]Morais S., Heyman A., Barak Y., et al. Enhanced cellulose degradation by nano-complexed enzymes: Synergism between a scaffold-linked exoglucanase and a free endoglucanase[J]. Journal of Biotechnology, 2010, 147 (3-4): 205-211.
    [28]Huang X.L., Shao Z.Z., Hong Y.Z., et al. Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp S66-4: Molecular cloning, heterogonous expression, and biochemical characterization[J]. Journal of Microbiology, 2010, 48 (3): 318-324.
    [29]Larriba G., Cueva R. The major exoglucanase secreted by Saccharomyces cerevisiae as a model to study protein glycosylation[J]. Biomolecular Engineering, 2001, 18 (3): 135-142.
    [30]Xue Y.P., Jin L.Q., Liu Z.Q., et al. Purification and characterization of beta-glucosidase from Reticulitermes flaviceps and its inhibition by valienamine and validamine[J]. African Journal of Biotechnology, 2008, 7 (24): 4595-4601.
    [31]Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. J Biotechnol, 1997, 56 (1): 1-24.
    [32]Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresour Technol, 2002, 83 (1): 1-11.
    [33]Allison R.W., Wong K.K.Y., Suurnakki A., et al. Hemicellulase-assisted bleaching of modified kraft pulp produced with polysulphide addition[J]. Journal of Pulp and Paper Science, 1998, 24 (6): 178-183.
    [34]Franco P.F., Ferreira H.M., Ferreira E.X. Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4[J]. Biotechnology and Applied Biochemistry, 2004, 40: 255-259.
    [35]Fan Z.M., Werkman J.R., Yuan L. Engineering of a multifunctional hemicellulase[J]. Biotechnology Letters, 2009, 31 (5): 751-757.
    [36]Dien B.S., Cotta M.A., Jeffries T.W. Bacteria engineered for fuel ethanol production: current status[J]. Appl Microbiol Biotechnol, 2003, 63 (3): 258-266.
    [37]Schwarz W.H. The cellulosome and cellulose degradation by anaerobic bacteria[J]. Appl Microbiol Biotechnol, 2001, 56 (5-6): 634-649.
    [38]奚立民,曹树勇,柯中炉.木质纤维素类生物质制备燃料乙醇的微生物研究进展[J].化工进展, 2009, 28 (11): 2003-2008.
    [39]Blumer-Schuette S.E., Kataeva I., Westpheling J., et al. Extremely thermophilic microorganisms for biomass conversion: status and prospects[J]. Curr Opin Biotechnol, 2008, 19 (3): 210-217.
    [40]Gottschalk L.M.F., Oliveira R.A., Bon E.P.D. Cellulases, xylanases, beta-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse[J]. Biochemical Engineering Journal, 2010, 51 (1-2): 72-78.
    [41]Wen Z.Y., Liao W., Chen S.L. Production of cellulase/beta-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure[J]. Process Biochemistry, 2005, 40 (9): 3087-3094.
    [42]Kovacs K., Szakacs G., Zacchi G. Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride[J]. Bioresource Technology, 2009, 100 (3): 1350-1357.
    [43]Baldrian P., Valaskova V. Degradation of cellulose by basidiomycetous fungi[J]. FEMS Microbiol Rev, 2008, 32 (3): 501-521.
    [44]Zhang Y.H.P., Lynd L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems[J]. Biotechnology and Bioengineering, 2004, 88 (7): 797-824.
    [45]Kleman-Leyer K.M., Gilkes N.R., Miller R.C., Jr., et al. Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases[J]. Biochem J, 1994, 302 ( Pt 2): 463-469.
    [46]Kleman-Leyer K.M., Siika-Aho M., Teeri T.T., et al. The Cellulases Endoglucanase I andcellulase enzymes?[J]. Biotechnol Prog, 2001, 17 (6): 1049-1054.
    [58]Pan X., Xie D., Gilkes N., et al. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content[J]. Appl Biochem Biotechnol, 2005, 121-124: 1069-1079.
    [59]Chandra R.P., Bura R., Mabee W.E., et al. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?[J]. Adv Biochem Eng Biotechnol, 2007, 108: 67-93.
    [60]Sanchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27 (2): 185-194.
    [61]Kumar R., Wyman C.E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies[J]. Biotechnol Prog, 2009, 25 (2): 302-314.
    [62]Shi J., Chinn M.S., Sharma-Shivappa R.R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium[J]. Bioresource Technology, 2008, 99 (14): 6556-6564.
    [63]Hendriks A.T., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100 (1): 10-18.
    [64]Taherzadeh M.J., Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review[J]. Int J Mol Sci, 2008, 9 (9): 1621-1651.
    [65]Carvalheiro F., Duarte L.C., Girio F.M. Hemicellulose biorefineries: a review on biomass pretreatments[J]. Journal of Scientific & Industrial Research, 2008, 67 (11): 849-864.
    [66]He X., Miao Y.L., Jiang X.J., et al. Enhancing the Enzymatic Hydrolysis of Corn Stover by an Integrated Wet-milling and Alkali Pretreatment[J]. Applied Biochemistry and Biotechnology, 2010, 162 (2): 390-390.
    [67]Xu J.L., Cheng J.J., Sharma-Shivappa R.R., et al. Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production[J]. Energy & Fuels, 2010, 24: 2113-2119.
    [68]McIntosh S., Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment[J]. Bioresource Technology, 2010, 101 (17): 6718-6727.
    [69]Ballesteros M., Jose Negro M., Manzanares P., et al. Fractionation of Cynara cardunculus (cardoon) biomass by dilute-acid pretreatment[J]. Appl Biochem Biotechnol, 2007,cellulase enzymes?[J]. Biotechnol Prog, 2001, 17 (6): 1049-1054.
    [58]Pan X., Xie D., Gilkes N., et al. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content[J]. Appl Biochem Biotechnol, 2005, 121-124: 1069-1079.
    [59]Chandra R.P., Bura R., Mabee W.E., et al. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?[J]. Adv Biochem Eng Biotechnol, 2007, 108: 67-93.
    [60]Sanchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27 (2): 185-194.
    [61]Kumar R., Wyman C.E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies[J]. Biotechnol Prog, 2009, 25 (2): 302-314.
    [62]Shi J., Chinn M.S., Sharma-Shivappa R.R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium[J]. Bioresource Technology, 2008, 99 (14): 6556-6564.
    [63]Hendriks A.T., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100 (1): 10-18.
    [64]Taherzadeh M.J., Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review[J]. Int J Mol Sci, 2008, 9 (9): 1621-1651.
    [65]Carvalheiro F., Duarte L.C., Girio F.M. Hemicellulose biorefineries: a review on biomass pretreatments[J]. Journal of Scientific & Industrial Research, 2008, 67 (11): 849-864.
    [66]He X., Miao Y.L., Jiang X.J., et al. Enhancing the Enzymatic Hydrolysis of Corn Stover by an Integrated Wet-milling and Alkali Pretreatment[J]. Applied Biochemistry and Biotechnology, 2010, 162 (2): 390-390.
    [67]Xu J.L., Cheng J.J., Sharma-Shivappa R.R., et al. Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production[J]. Energy & Fuels, 2010, 24: 2113-2119.
    [68]McIntosh S., Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment[J]. Bioresource Technology, 2010, 101 (17): 6718-6727.
    [69]Ballesteros M., Jose Negro M., Manzanares P., et al. Fractionation of Cynara cardunculus (cardoon) biomass by dilute-acid pretreatment[J]. Appl Biochem Biotechnol, 2007,137-140 (1-12): 239-252.
    [70]Bower S., Wickramasinghe R., Nagle N.J., et al. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass[J]. Bioresour Technol, 2008, 99 (15): 7354-7362.
    [71]Cara C., Ruiz E., Oliva J.M., et al. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification[J]. Bioresour Technol, 2008, 99 (6): 1869-1876.
    [72]Kim S.B., Lee Y.Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment[J]. Bioresource Technology, 2002, 83 (2): 165-171.
    [73]Neely W.C. Factors affecting the pretreatment of biomass with gaseous ozone[J]. Biotechnol Bioeng, 1984, 26 (1): 59-65.
    [74]Sugimoto T., Magara K., Hosoya S., et al. Ozone pretreatment of lignocellulosic materials for ethanol production: Improvement of enzymatic susceptibility of softwood[J]. Holzforschung, 2009, 63 (5): 537-543.
    [75]Garcia-Cubero M.T., Gonzalez-Benito G., Indacoechea I., et al. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw[J]. Bioresource Technology, 2009, 100 (4): 1608-1613.
    [76]Zhao X., Cheng K., Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Appl Microbiol Biotechnol, 2009, 82 (5): 815-827.
    [77]Park N., Kim H.Y., Koo B.W., et al. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2010, 101 (18): 7046-7053.
    [78]Sannigrahi P., Miller S.J., Ragauskas A.J. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine[J]. Carbohydrate Research, 2010, 345 (7): 965-970.
    [79]Sannigrahi P., Ragauskas A.J., Miller S.J. Lignin Structural Modifications Resulting from Ethanol Organosolv Treatment of Loblolly Pine[J]. Energy & Fuels, 2010, 24: 683-689.
    [80]Hallac B.B., Sannigrahi P., Pu Y.Q., et al. Effect of Ethanol Organosolv Pretreatment on Enzymatic Hydrolysis of Buddleja davidii Stem Biomass[J]. Industrial & Engineering Chemistry Research, 2010, 49 (4): 1467-1472.
    [81]Zhao X.B., Cheng K.K., Liu D.H. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009, 82 (5): 815-827.
    [82]Zhang Z., Zhao Z.K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresour Technol, 2010, 101 (3): 1111-1114.
    [83]Li C., Knierim B., Manisseri C., et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification[J]. Bioresour Technol, 2010, 101 (13): 4900-4906.
    [84]Samayam I.P., Schall C.A. Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures[J]. Bioresour Technol, 2010, 101 (10): 3561-3566.
    [85]Arora R., Manisseri C., Li C.L., et al. Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass (Panicum virgatum L.)[J]. Bioenergy Research, 2010, 3 (2): 134-145.
    [86]Brandt A., Hallett J.P., Leak D.J., et al. The effect of the ionic liquid anion in the pretreatment of pine wood chips[J]. Green Chemistry, 2010, 12 (4): 672-679.
    [87]Lucas M., Macdonald B.A., Wagner G.L., et al. Ionic Liquid Pretreatment of Poplar Wood at Room Temperature: Swelling and Incorporation of Nanoparticles[J]. ACS Applied Materials & Interfaces, 2010, 2 (8): 2198-2205.
    [88]Monavari S., Bennato A., Galbe M., et al. Improved One-Step Steam Pretreatment of SO2-Impregnated Softwood with Time-Dependent Temperature Profile for Ethanol Production[J]. Biotechnology Progress, 2010, 26 (4): 1054-1060.
    [89]De Bari I., Nanna F., Braccio G. SO2-catalyzed steam Fractionation of aspen chips for bioethanol production: Optimization of the catalyst impregnation[J]. Industrial & Engineering Chemistry Research, 2007, 46 (23): 7711-7720.
    [90]Bura R., Saddler J.N. Process modifications of SO2-catalysed steam explosion of corn fibre for ethanol production[J]. Abstracts of Papers of the American Chemical Society, 2004, 227: 040-CELL.
    [91]Zhang B., Shahbazi A., Wang L., et al. Hot-water pretreatment of cattails for extraction of cellulose[J]. J Ind Microbiol Biotechnol, 2010.
    [92]Goh C.S., Lee K.T., Bhatia S. Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol[J]. BioresourTechnol, 2010, 101 (19): 7362-7367.
    [93]Yu Q., Zhuang X., Yuan Z., et al. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose[J]. Bioresour Technol, 2010, 101 (13): 4895-4899.
    [94]Kim Y., Hendrickson R., Mosier N.S., et al. Liquid hot water pretreatment of cellulosic biomass[J]. Methods Mol Biol, 2009, 581: 93-102.
    [95]Teymouri F., Laureano-Perez L., Alizadeh H., et al. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover[J]. Bioresour Technol, 2005, 96 (18): 2014-2018.
    [96]Alizadeh H., Teymouri F., Gilbert T.I., et al. Pretreatment of switchgrass by ammonia fiber explosion (AFEX)[J]. Appl Biochem Biotechnol, 2005, 121-124: 1133-1141.
    [97]Martin C., Thomsen M.H., Hauggaard-Nielsen H., et al. Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures[J]. Bioresour Technol, 2008, 99 (18): 8777-8782.
    [98]Palonen H., Thomsen A.B., Tenkanen M., et al. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood[J]. Appl Biochem Biotechnol, 2004, 117 (1): 1-17.
    [99]Keshwani D.R., Cheng J.J. Microwave-Based Alkali Pretreatment of Switchgrass and Coastal Bermudagrass for Bioethanol Production[J]. Biotechnology Progress, 2010, 26 (3): 644-652.
    [100]Zhu S.D., Wu Y.X., Zhao Y.F., et al. Fed-batch simultaneous saccharification and fermentation of microwave/acid/alkali/H2O2 pretreated rice straw for production of ethanol[J]. Chemical Engineering Communications, 2006, 193 (5): 639-648.
    [101]Gupta R., Sharma K.K., Kuhad R.C. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498[J]. Bioresource Technology, 2009, 100 (3): 1214-1220.
    [102]Wingren A., Galbe M., Zacchi G. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks[J]. Biotechnology Progress, 2003, 19 (4): 1109-1117.
    [103]Cantarella M., Cantarella L., Gallifuoco A., et al. Comparison of different detoxification
    [117]Fan Z., Lynd L.R. Conversion of paper sludge to ethanol, II: process design and economic analysis[J]. Bioprocess Biosyst Eng, 2007, 30 (1): 35-45.
    [118]Fan Z., Lynd L.R. Conversion of paper sludge to ethanol. I: impact of feeding frequency and mixing energy characterization[J]. Bioprocess Biosyst Eng, 2007, 30 (1): 27-34.
    [119]Shao X., Lynd L., Wyman C. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part II. Experimental validation using waste paper sludge and anticipation of CFD analysis[J]. Biotechnol Bioeng, 2009, 102 (1): 66-72.
    [120]Zhang J., Shao X., Lynd L.R. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: investigation of discrepancies between predicted and observed performance at high solids concentration[J]. Biotechnol Bioeng, 2009, 104 (5): 932-938.
    [121]Zhang J., Shao X., Townsend O.V., et al. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters[J]. Biotechnol Bioeng, 2009, 104 (5): 920-931.
    [122]Shen J., Agblevor F.A. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge[J]. Bioprocess Biosyst Eng, 2010.
    [123]Zhang J., Lynd L.R. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms[J]. Biotechnol Bioeng, 2010, 107 (2): 235-244.
    [124]Hubbe M.A., Nanko H., McNeal M.R. Retention Aid Polymer Interactions with Cellulosic Surfaces and Suspensions: A Review[J]. Bioresources, 2009, 4 (2): 850-906.
    [125]刘温霞,邱化玉.造纸湿部化学[M].北京,化学工业出版社, 2006.
    [126]Mooney C.A., Mansfield S.D., Beatson R.P., et al. The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates[J]. Enzyme and Microbial Technology, 1999, 25 (8-9): 644-650.
    [127]Klyosov A.A. Trends in biochemistry and enzymology of cellulose degradation[J]. Biochemistry, 1990, 29 (47): 10577-10585.
    [128]Antharavally B., Krohn R.I., Mallia A.K., et al. Development of a detergent and
    [117]Fan Z., Lynd L.R. Conversion of paper sludge to ethanol, II: process design and economic analysis[J]. Bioprocess Biosyst Eng, 2007, 30 (1): 35-45.
    [118]Fan Z., Lynd L.R. Conversion of paper sludge to ethanol. I: impact of feeding frequency and mixing energy characterization[J]. Bioprocess Biosyst Eng, 2007, 30 (1): 27-34.
    [119]Shao X., Lynd L., Wyman C. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part II. Experimental validation using waste paper sludge and anticipation of CFD analysis[J]. Biotechnol Bioeng, 2009, 102 (1): 66-72.
    [120]Zhang J., Shao X., Lynd L.R. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: investigation of discrepancies between predicted and observed performance at high solids concentration[J]. Biotechnol Bioeng, 2009, 104 (5): 932-938.
    [121]Zhang J., Shao X., Townsend O.V., et al. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters[J]. Biotechnol Bioeng, 2009, 104 (5): 920-931.
    [122]Shen J., Agblevor F.A. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge[J]. Bioprocess Biosyst Eng, 2010.
    [123]Zhang J., Lynd L.R. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms[J]. Biotechnol Bioeng, 2010, 107 (2): 235-244.
    [124]Hubbe M.A., Nanko H., McNeal M.R. Retention Aid Polymer Interactions with Cellulosic Surfaces and Suspensions: A Review[J]. Bioresources, 2009, 4 (2): 850-906.
    [125]刘温霞,邱化玉.造纸湿部化学[M].北京,化学工业出版社, 2006.
    [126]Mooney C.A., Mansfield S.D., Beatson R.P., et al. The effect of fiber characteristics on hydrolysis and cellulase accessibility to softwood substrates[J]. Enzyme and Microbial Technology, 1999, 25 (8-9): 644-650.
    [127]Klyosov A.A. Trends in biochemistry and enzymology of cellulose degradation[J]. Biochemistry, 1990, 29 (47): 10577-10585.
    [128]Antharavally B., Krohn R.I., Mallia A.K., et al. Development of a detergent andreducing agent compatible BCA protein assay[J]. Faseb Journal, 2006, 20 (5): A962-A962.
    [129]Krieg R.C., Dong Y., Schwamborn K., et al. Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE[J]. Journal of Biochemical and Biophysical Methods, 2005, 65 (1): 13-19.
    [130]Lynd L.R., Weimer P.J., van Zyl W.H., et al. Microbial cellulose utilization: Fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66 (3): 506-577.
    [131]Tu M.B., Chandra R.P., Saddler J.N. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine[J]. Biotechnology Progress, 2007, 23 (5): 1130-1137.
    [132]Kadam K.L., Rydholm E.C., McMillan J.D. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass[J]. Biotechnology Progress, 2004, 20 (3): 698-705.
    [133]Lu Y.P., Yang B., Gregg D., et al. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues[J]. Applied Biochemistry and Biotechnology, 2002, 98: 641-654.
    [134]Medve J., Stahlberg J., Tjerneld F. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose[J]. Applied Biochemistry and Biotechnology, 1997, 66 (1): 39-56.
    [135]Ericsen J., Goksoyr J. Cellulases from Chaetomium-Thermophile via dissitum[J]. Eropean Journal of Biochemistry, 1977, 77 (3): 445-450.
    [136]Jaycock M.J., Parfitt G.D. Chemistry of Interface[M]. New York: Halsted Press, 1981.
    [137]Kyriacou A., Neufeld R.J., MacKenzie C.R. Reversibility and competition in the adsorption of Trichoderma reesei cellulase components[J]. Biotechnology and Bioengineering, 1989, 33 (5): 631-637.
    [138]Carrard G., Linder M. Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei[J]. European Journal of Biochemistry, 1999, 262 (3): 637-643.
    [139]Beltrame P.L., Carniti P., Focher B., et al. Cotton cellulose: enzyme adsorption and enzymatic hydrolysis[J]. Journal of Applied Polymer Science, 1982, 27 (9): 3493-3502.
    [140]Ghose T.K. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59: 257-268.
    [141]Caulfield D.F., Moore W.E. Effect of varying crystallinity of cellulose on enzyme hydrolysis[J]. Wood Science and Technology, 1974, 6: 375-379.
    [142]Szijarto N., Siika-aho M., Tenkanen M., et al. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces[J]. Journal of Biotechnology, 2008, 136 (3-4): 140-147.
    [143]Fan L.T., Lee Y.H., Beardmore D.H. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis[J]. Biotechnology and Bioengineering, 1980, 22: 177-199.
    [144]Gupta R., Lee Y.Y. Mechanism of Cellulase Reaction on Pure Cellulosic Substrates[J]. Biotechnology and Bioengineering, 2009, 102 (6): 1570-1581.
    [145]Irwin D., Spezio M., Walker L.P., et al. Activity studies of eight purified cellulases: specificity, synergism and binding domain effects[J]. Biotechnology and Bioengineering, 1993, 42: 1002-1013.
    [146]Bravo V., Paez M.P., Aoulad M., et al. The influence of pH upon the kinetic parameters of the enzymatic hydrolysis of cellobiose with Novozym 188[J]. Biotechnology Progress, 2001, 17 (1): 104-109.
    [147]Tengborg C., Galbe M., Zacchi G. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood[J]. Biotechnology Progress, 2001, 17 (1): 110-117.
    [148]Bas D., Boyaci I.H. Modeling and optimization I: Usability of response surface methodology[J]. Journal of Food Engineering, 2007, 78 (3): 836-845.
    [149]Myers R.H., Montgomery D.C. Response surface methodology: Process and product optimization using designed experiments[M]. New York: John Wiley & Sons, Inc., 1995.
    [150]Bezerra M.A., Santelli R.E., Oliveira E.P., et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76 (5): 965-977.
    [151]Kalil S.J., Maugeri F., Rodrigues M.I. Response surface analysis and simulation as a tool for bioprocess design and optimization[J]. Process Biochemistry, 2000, 35 (6): 539-550.
    [152]王丹枫.纤维形态参数及测量[J].中国造纸, 2000, 19 (1): 36-39.
    [153]Robertson G., Olson J., Allen P., et al. Measurement of fiber length, coarseness, and shape with the fiber quality analyzer[J]. Tappi Journal, 1999, 82 (10): 93-98.
    [154]Hahn-Hagerdal B., Galbe M., Gorwa-Grauslund M.F., et al. Bio-ethanol - the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24 (12): 549-556.
    [155]Suurnakki A., Tenkanen M., Siika-Aho M., et al. Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp[J]. Cellulose, 2000, 7 (2): 189-209.
    [156]Kamaya Y. Role of endoglucanase in enzymatic modification of bleached kraft pulp[J]. Journal of Fermentation and Bioengineering, 1996, 82 (6): 549-553.
    [157]Akerholm M., Hinterstoisser B., Salmen L. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy[J]. Carbohydrate Research, 2004, 339 (3): 569-578.
    [158]Oh S.Y., Yoo D.I., Shin Y., et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate Research, 2005, 340 (15): 2376-2391.
    [159]Yoshida M., Liu Y., Uchida S., et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides[J]. Bioscience Biotechnology and Biochemistry, 2008, 72 (3): 805-810.
    [160]Hall M., Bansal P., Lee J.H., et al. Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate[J]. Febs Journal, 2010, 277 (6): 1571-1582.
    [161]Ai-Zuhair S. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis[J]. Bioresource Technology, 2008, 99 (10): 4078-4085.
    [162]Stephens C.H., Whitmore P.M., Morris H.R., et al. Hydrolysis of the amorphous cellulose in cotton-based paper[J]. Biomacromolecules, 2008, 9 (4): 1093-1099.
    [163]Den Haan R., Rose S.H., Lynd L.R., et al. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae[J]. Metabolic Engineering, 2007, 9 (1): 87-94.
    [164]Palonen H., Tenkanen M., Linder M. Dynamic interaction of Trichoderma reesei cellobiohydrolases Ce16A and Ce17A and cellulose at equilibrium and duringhydrolysis[J]. Applied and Environmental Microbiology, 1999, 65 (12): 5229-5233.
    [165]Linder M., Teeri T.A. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 12251-12255.
    [166]Ong E., Gilkes N.T., Miller R.C.J., et al. he cellulose-binding domain (CBDcex) of an exoglucanase from Cellulomonas fimi: production in Escherichia coli and characterization of the polypeptide[J]. Biotechnology and Bioengineering, 1993, 42: 401-409.
    [167]Gratton R., Doiron B., Chen G. Impact of pulp mill contaminants on the wet end chemistry of a fine paper machine[C]. 1997 Tappi Minimum Effluent Mills Symposium, Proceedings, San Francisco, CA, 1997: 225-228
    [168]Fukuda T., Ishikawa T., Ogawa M., et al. Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering[J]. Biotechnology Progress, 2006, 22 (4): 933-938.
    [169]Lai T.E., Pullammanappallil P.C., Clarke W.P. Quantification of cellulase activity using cellulose-azure[J]. Talanta, 2006, 69 (1): 68-72.
    [170]Abraham M., Kurup G.M. Pretreatment studies of cellulose wastes for optimization of cellulase enzyme activity[J]. Applied Biochemistry and Biotechnology, 1997, 62 (2-3): 201-211.
    [171]Wagberg L., Nordqvist T. Detection of polymer induced flocculation of cellulosic fibres by image analysis[J]. Nordic Pulp & Paper Research Journal, 1999, 14 (3): 247-255.
    [172]Ferreira A.G.M., Silveira M.T., Lobo L.Q. The viscosity of aqueous suspensions of cellulose fibres. Part 2. Influence of temperature and mix fibres[J]. Silva Lusitana, 2003, 11 (1): 61-66.
    [173]Cao Y., Tan H.M. The effect of shear field on the hydrolysis of cellulose[J]. Journal of Macromolecular Science-Physics, 2004, B43 (6): 1115-1121.
    [174]Enayati N., Parulekar S.J. Enzymatic saccharification of soybean hull-based materials[J]. Biotechnology Progress, 1995, 11: 708-711.
    [175]Ingesson H., Zacchi G., Yang B., et al. The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose[J]. Journal of Biotechnology, 2001, 88 (2):177-182.
    [176]Hartley W.H., Banerjee S. Imaging c-PAM-induced flocculation of paper fibers[J]. Journal of Colloid and Interface Science, 2008, 320 (1): 159-162.
    [177]Sharma V., Rausch K.D., Graeber J.V., et al. Effect of Resistant Starch on Hydrolysis and Fermentation of Corn Starch for Ethanol[J]. Applied Biochemistry and Biotechnology, 2010, 160 (3): 800-811.
    [178]Wu X., Zhao R., Wang D., et al. Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media[J]. Cereal Chemistry, 2006, 83 (5): 569-575.
    [179]Krishnan M.S., Taylor F., Davison B.H., et al. Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors[J]. Bioresource Technology, 2000, 75 (2): 99-105.
    [180]Cao N.G., Xu Q., Ni J.L., et al. Enzymatic hydrolysis of corn starch after extraction of corn oil with ethanol[J]. Applied Biochemistry and Biotechnology, 1996, 57-8: 39-47.
    [181]Singh N., Cheryan M. Process design and economic analysis of a ceramic membrane system for microfiltration of corn starch hydrolysate[J]. Journal of Food Engineering, 1998, 38 (1): 57-67.
    [182]Lin Y., Xia X.X. Modification of corn starch by alpha-amylase and its application at the size press[C]. Second International Papermaking and Environment Conference, Proceeding, Tianjin, China, 2008: 839-842
    [183]Horvathova V., Godany A., Sturdik E., et al. alpha-amylase from Thermococcus hydrothermalis: Re-cloning aimed at the improved expression and hydrolysis of corn starch[J]. Enzyme and Microbial Technology, 2006, 39 (6): 1300-1305.
    [184]Lovsin-Kukman I., Zelenik-Blatnik M., Abram V. Quantitative estimation of the action of alpha-amylase from Bacillus subtilis on native corn starch by HPLC and HPTLC[J]. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology, 1998, 206 (3): 175-178.
    [185]Horvathova V., Slajsova K., Sturdik E. Evaluation of the glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in hydrolysing the corn starch[J]. Biologia, 2004, 59 (3): 361-365.
    [186]ITC (US International Trade Commission) I.T.S. Wood Pulp and Waste Paper[R]. USITC Publication 3490, Office of Industries, Washington, DC, 2002.
    [187]Sterner P., Ferguson L. Beneficial re-use of deinked office waste sludge[C]. Proceedings, 6th Research Forum on Recycling, Magog, PQ, Canada, 2001: 213-217.
    [188]Frias M., Garcia R., Vigil R., et al. Calcination of art paper sludge waste for the use as a supplementary cementing material[J]. Applied Clay Science, 2008, 42 (1-2): 189-193.
    [189]Martinez Y., Rivero C. Effect of the paper sludge use on N, P, and K on two soils of agriculture importance at the Valencia lake basin[J]. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 2007, 30: 63-70.
    [190]Folorunso O.P., Anyata B.U. Potential use of waste paper/sludge as a ceiling board material[J]. Advances in Materials and Systems Technologies, 2007, 18-19: 49-53
    [191]Beauchamp C.J., Camire C., Chalifour F.P. Use of bark and combined paper sludge, for the revegetation of bark-covered land[J]. Journal of Environmental Engineering and Science, 2006, 5 (3): 253-261.
    [192]Rosker M. Andritz delivered sludge dewatering system for the DIP plant of the new paper machine PM 4 to LEIPA georg leinfelder GmbH in Schwedt/Oder, Germany[J]. Wochenblatt Fur Papierfabrikation, 2004, 132 (21): 1350-1351.
    [193]Chen L.C., Chien C.Y., Chu C.P., et al. Conditioning and dewatering of pulp and paper sludge[J]. Drying Technology, 2002, 20 (4-5): 967-988.
    [194]Dorica J.G., Harland R.C., Kovacs T.G. Sludge dewatering practices at Canadian pulp and paper mills[J]. Pulp & Paper-Canada, 1999, 100 (5): 19-22.
    [195]Harvey J.N., Boulanger E. Sludge dewatering process optimization cost reduction at an integrated pulp and paper mill[J]. Pulp & Paper-Canada, 1999, 100 (4): 21-24.
    [196]Kenny R., Almost S., Coghill R., et al. CPPA International review of pulp and paper activated sludge dewatering practices[J]. Pulp & Paper-Canada, 1997, 98 (8): 50-54.
    [197]Banerjee S., Hooda L. In-situ reduction of fibrous sludge in a pulp mill aerated stabilization basin[J]. Tappi Journal, 2005, 4 (5): 3-6.
    [198]Park S., Venditti R.A., Abrecht D.G., et al. Surface and pore structure modification of cellulose fibers through cellulase treatment[J]. Journal of Applied Polymer Science, 2007, 103 (6): 3833-3839.
    [199]Jackson L.S., Heitmann J.A., Joyce T.W. Enzymatic modifications of secondary fiber[J]. Tappi Journal, 1993, 76 (3): 147-154.
    [200]Lee D.J., Wang C.H. Theories of cake filtration and consolidation and implications to sludge dewatering[J]. Water Research, 2000, 34 (1): 1-20.
    [201]Fan Z.L., Lynd L.R. Conversion of paper sludge to ethanol, II: process design and economic analysis[J]. Bioprocess and Biosystems Engineering, 2007, 30 (1): 35-45.
    [202]Turon X., Rojas O.J., Deinhammer R.S. Enzymatic kinetics of cellulose hydrolysis: A QCM-D study[J]. Langmuir, 2008, 24 (8): 3880-3887.
    [203]Yasar M., Akmaz S., Gurgey I. Enzymatic hydrolysis of cellulose to glucose: Reaction kinetics and pathways.[J]. Biochemistry, 2001, 40 (29): 8616-8617.
    [204]Sarkar A.K., Etters J.N. Kinetics of the enzymatic hydrolysis of cellulose[J]. Aatcc Review, 2001, 1 (3): 48-52.
    [205]Gama F.M., Mota M. Enzymatic hydrolysis of cellulose .1. Relationship between kinetics and physico-chemical parameters[J]. Biocatalysis and Biotransformation, 1997, 15 (3): 221-236.
    [206]Shen J.C., Agblevor F.A. Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate[J]. Biochemical Engineering Journal, 2008, 41 (3): 241-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700