异甾类化合物合成及微波化学促进Wagner-Meerwein重排反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由三章组成。第一章为异甾类化合物的合成研究,制备了合成异甾类生物碱所需的具有C_(18)位活性官能团的异甾环中间体,并对合成工艺进行探讨。第二章为微波促进Hecogenin衍生物经Wagner-Meerwein Rearrangement反应生成异甾类化合物的初步研究。第三章为综述,对Cephalostatins和Ritterazines类吡嗪双甾生物碱的化学结构,活性以及相关的合成研究进行了文献综述。
     第一章
     异甾类生物碱是许多药用植物中的主要活性成分之一,主要分布在百合科贝母属和藜芦属植物中。该类生物碱也被称为藜芦类生物碱,其主要母核结构为C-去甲-D-高甾环(C-nor-D-homo steroid)与一个含氮杂环骈合而成,根据杂环的结构特征又可具体分为:黎芦胺型(veratramine type)、介黎芦型(jervine type)和瑟文型(cevanine type)。
     经过对异甾类生物碱结构进行研究后,我们可以认为这类化合物由两部分组成,即C-nor-D-homo甾体骨架与合适的含氮杂环。
     本研究以易得的天然甾族化合物Hecogenin为原料,依次经过乙酰化,选择性还原,取代反应,重排反应,硼氢化氧化反应,水解反应,氧化反应,差向异构化反应,还原反应,乙酰化反应,Baeyer-Villiger氧化反应裂解E/F环后构建具有与天然产物相同构型的13α-取代化合物,得到具有C_(18)位活性官能团的目标化合物13α-hydroxymethyl-17-ethyl-5α,12α-etiojervane-3,16,20-triol。总收率约为2%。初步建立了异甾类生物碱的A/B/C/D环骨架,为进一步合成黎芦胺型(veratramine type)、介黎芦型(jervine type)或瑟文型(cevanine type)生物碱打下基础。并对反应过程中的条件选择及其优化进行了讨论。对反应过程中的某些关键步骤进行工艺上的改良,提高收率和反应速度,以适应大量制备的要求。
     第二章
     在甾体化合物的生物合成途径中,很重要的一步是经过分子重排形成异甾环(C-nor-D-homo)结构。该结构也是黎芦胺型(veratramine type)、介黎芦型(jervinetype)和瑟文型(cevanine type)生物碱的基本骨架。C-nor-D-homo甾环结构可由番麻皂苷乙酸酯的12β-对甲苯磺酰基取代物经Wagner-Meerwein Rearrangement反应得到。该反应的产物由不同比例的环外双键化合物C-nor-D-homo-Δ~(17a(18))-olefin与环内双键化合物C-nor-D-homo-Δ~(13(17a))-olefin构成,其中环外双键化合物为进一步合成异甾类生物碱的重要中间体。
     本研究结合微波辐射促进有机合成反应的优点,如:加快反应速度,能提高产物的收率,纯度,某些反应具有选择性,方便后处理,污染小等,设计了一种利用微波辐射技术进行Wagner-Meerwein Rearrangement反应的方法,并初步探讨了该重排反应发生的机理以及不同溶剂条件,反应时间和功率对该反应速度,收率以及选择性的影响。
     无水吡啶由于其沸点较高,极性较小并且具有一定碱性,是作为Wagner-Meerwein Rearrangement反应的最佳溶剂。微波辐射较长时间能够获得良好的收率,并且有利于得到预期的环外双键产物化合物。
     第三章
     本文对Cephalostatins和Ritterazines吡嗪双甾体的分离,合成以及构效关系研究进行了文献综述,参考了该类化合物从1988年发现至今(2009年)的72篇文献,为该类化合物的进一步开发利用提供依据。
This thesis is composed of three parts.The first part is about the synthesis ofC_(18)-functionalized C-nor-D-homo steroidal intermediate which is the basic skeletonof isosteroidal alkaloids and the optimization of the preparation process.The secondpart of my work focuses on the microwave promoted Wagner-MeerweinRearrangement of Hecogenin derivatives into C-nor-D-homo steroids.The third partis a review section on the chemical study,bioactivity assay and synthetic research ofCephalostatins and Ritterazines.
     Part One
     Isosteroidal alkaloids,widely distributed in Liliaceae family,including Veratrum andFritillaria,have proved to be the active components of many folk medicines.Theyare characterized by a C-nor-D-homo ring system and can be further divided intocevanine,veratramine and jervine types.The C_(27) cholestane carbon skeleton with five or six carbocyclic or heterocyclic ringsis made up of two structural units:(a) C-nor-D-homo skeleton;(b) an appropriateheterocyclic nitrogen system.
     In our synthetic strategy,C-nor-D-homo steroidal derivative possessing the desiredαstereochemistry at C_(13) and an appropriate functionality at C_(18) has been synthesized byesterification,selective reduction,substitution,Wagner-Meerwein Rearrangement,hydroboration-oxidation,hydrolysis,oxidation,epimerization,reduction,esterrification,Baeyer-Villiger Oxidation with a total yield of 2%.The effects ofreaction solvents,catalysts,reaction time and other factors on the yields of each stephave been investigated and the optimization process has been discussed.
     This work has achieved the goal of construction of basic A/B/C/D skeleton ofisosteroidal alkaloids for further synthesis of those compounds in veratramine type,jervine type and cevanine type.
     Part TwoIn the biogenesis of steroids,an important step is to undergo molecularRearrangement to release C-nor-D-homo ring system carbon framework of which isclassified as the basic skeleton of isosteroidal alkaloids such as cevanine type,veratramine type,and jervine type from the Liliaceae family.Derivatives fromhecogenin acetate undergo solvolysis to give varying proportions of theC-nor-D-homo-△~(17a(18))-olefin 2 and the△~(13(17a))-isomer 3,depending upon the reactionconditions.Since no preferable synthetic methods for perfect formation of exocyclicolefin,an essential building block for C_(18)-functionalized isosteroidal derivatives,havebeen developed so far,the highly regioselective synthesis of 2 has been a topic ofinterest.
     The recent findings have indicated that with the coupling of microwave irradiation,some chemical processes with special attributes are achieved,such as enhancedreaction rates,higher yields,greater selectivity and improved ease of manipulation.This methodology encouraged us to explore the Rearrangement of hecogeninderivatives into C-nor-D-homo steroids using microwave irradiation.The effects of reaction solvents,time,power and other factors on the yields of eachstep have been investigated and the mechanism in this process throughWagner-Meerwein Rearrangement has been discussed.We have found an efficientmicrowave-assitsted approach that is suitable for the Rearrangement of hecogeninderivatives into C-nor-D-homo steroids,which may offers advantages of shortreaction time,less amount of organic solvent,better isomer-selectivity,one-pottwo-step reaction and easy work-up.
     According to the results,it has been found that anhydrous pyridine is the solvent ofchoice for the formation of 2 under these conditions,mainly due to its better solubilityof the substrate and its low polarity.
     Part Three
     The Cephalostatins and Ritterazines comprise a family of trisdecacyclic pyrazinesnatural products which are among the most powerful anticancer agents ever tested bythe National Cancer Institute.Our review on this topic has summarized the isolation,synthesis and structure-activity relationship study from the first discovery in 1988 tonow.It could be helpful to understand the history of these compounds and furtherdevelop their utilization.
引文
[1]Buffler,C.R.Microwave Cooking and Processing.Van Nostrand Reinhold:New York:1993;p1-68
    [2]金饮汉,黄卡玛,微波化学.北京:科学技术出版社1999.
    [3]C.R.Strauss and R.W.Trainor.Developments in microwave-assisted organic chemistry.Aust.J Chem.1995,48,1665-1692.
    [4]F.Langa.Microwave irradiation:more than just a method for accelerating reactions.Contemp.Org.Synth.1997,4,373-386.
    [5]Kappe,C.O.Controlled Microwave Heating in Modem Organic Synthesis.Angeu:Chem.,Int.Ed.2004,43,(46),6250-6284.
    [6]Matthew D.Bowman,Jennifer L.Holcomb,Chad M.Kormos,Nicholas E.Leadbeater,and Victoria A.Williams.Approaches for Scale-Up of Microwave-Promoted Reactions.Organic Process Research & Development 2008,12,41-57.
    [7]Brett A.Roberts and Christopher R.Strauss.Toward Rapid,“Green”,Predictable Microwave-Assisted Synthesis.Ace.Chem.Res.,2005,38,(8),653-661.
    [8]Lidstr(?)m,P.,Tierney,J.P.Microwave-Assisted Organic Synthesis.Blackwell Publishing:Oxford,U.K.:2005.
    [9]Kappe,C.O.;Stadler,A.Microwaves in Organic and Medicinal Chemistry.Wiley-VCH:Weinheim,Germany:2005.
    [10]Loupy,A.,Microwaves in Organic Synthesis.Wiley-VCH:Weinheim,Germany:2002.
    [11]Hayes,B.L.Microwave Synthesis:Chemistry at the Speed of Light.CEM Publishing:Matthews,NC:2002.
    [12]Larhed,M.,Olofsson,K.Microwave Methods in Organic Synthesis.Springer:Berlin,Germany:2006.
    [13]Gerald D.Artman Ⅲ,Alan W.Grubbs and Robert M.Williams.Concise,Asymmetric,Stereocontrolled Total Synthesis of Stephacidins A,B and Notoamide B.J.Am.Chem.Soc 2007,129,(19),6336-6342.
    [14]Matthew Kwok Wai Choi and Patrick H.Toy.Polymer-supported thioanisole:a versatile platform for organic synthesis reagents.Tetrahedron 2004,60,(12),2875-2879.
    [15]Mats Larhed and Anders Hallberg.Microwave-assisted high-speed chemistry:a new technique in drug discovery Drug Discovery Today 2001,6,(8),406-416.
    [16]Bernard Wathey,J.T.,Pelle Lidstr(?)m and Jacob Westman,The impact of microwave-assisted organic chemistry on drug discovery Drug Disco Very Today 2002,7,(6),373-380.
    [17]Shipe,William D.;Wolkenberg,Scott E;Lindsley,Craig W.Accelerating lead development by microwave enhanced medicinal chemistry.Drug Discovery Today:Technologies 2005,2,(2),155-161.
    [18]Kappe,C.Oliver;Dallinger,Doris.The impact of microwave synthesis on drug discovery.Nature Reviews Drug Discovery 2006,5,(1),51-63.
    [19]Bogdal,Dariusz;Penczek,Piotr;Pielichowski,Jan;Prociak,Aleksander.Microwave assisted synthesis,crosslinking,and processing of polymeric materials.Advances in Polymer Science 2003,163.
    [20] Wiesbrock, F. H., Richard; Schubert, Ulrich S. Microwave-assisted polymer synthesis: Stateof-the-art and future perspectives. Macromolecular Rapid Communications 2004, 25, (20), 1739-1764.
    [21] Hoogenboom, R. S., Ulrich S. Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromolecular Rapid Communications 2007, 28, (4), 368-386.
    [22] Barlow, S. M., Seth R. Single-mode microwave synthesis in organic materials chemistry. Advanced Functional Materials 2003, 13, (7), 517-518.
    [23] Zhu, Y.-J. W., Wei-Wei; Qi, Rui-Juan; Hu, Xian-Luo, Microwave-assisted synthesis of singlecrystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie, International Edition 2004,43, (11), 1410-1414.
    [24] Perelaer, J. d. G, Berend-Jan; Schubert, Ulrich S. Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials 2006, 18, (16), 2101-2104.
    [25] Jhung, S. H. J., Taihuan; Hwang, Young Kyu; Chang, Jong-San. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? Chemistry 2007, 13, (16), 4410-4417.
    [26] Tsuji, Masaharu; Hashimoto, Masayuki; Nishizawa, Yuki; Kubokawa, Masatoshi; Tsuji, Takeshi. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry 11, (2), 440-452.
    [27] Collins, Jonathan M.; Leadbeater, Nicholas E. Microwave energy: a versatile tool for the biosciences. Organic & Biomolecular Chemistry 2007, 5, (8), 1141-1150.
    [28] de la Hoz, Antonio; Diaz-Ortiz, Angel; Moreno, Andres. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews 2005, 34, (2), 164-178.
    [29] Perreux, Laurence; Loupy, Andre. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001, 57, (45), 9199-9223.
    [30] Mats Larhed, Christina Moberg and Anders Hallberg. Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry. Acc. Chem. Res. 2002, 35, (9), 717-727.
    [31] G. Bond, R. B. Moyes, J. D. Polliington, D. A. Whan. The superheating of liquids by microwave radiation. Chem. Ind. 1991, (18), 686-687.
    [32] D. R. Baghurst and D. M. P. Mingos. Superheating effects associated with microwave dielectric heating. J. Chem Soc, Chem. Commun. 1992, (9), 674-677.
    [33] R. S. Varma. Solvent-free organic syntheses. Green Chem 1999, 1,(1), 43-45.
    [34] A. Miklavc. Strong acceleration of chemical reactions occurring through the effects of rotational excitation on collision geometry. ChemPhysChem 2001, 2, (8/9), 552-555.
    [35] J. Berlan, P. Giboreau, S. Lefeuvre and C. Marchand. Synthese organique sous champ microondes : premier exemple d'activation specifique en phase homogene Tetrahedron Letters 32,(21), 2363-2366.
    [36] S. C. Jullien, M. Delmotte, A. Loupy, H. Jullien. Symposium Microwave and High Frequency 1991,Ⅱ, 397-400.
    [37] J. G P. Binner, N. A. Hassine, T. E. Cross, J. Mater. The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of titanium carbide. Sci 1995, 30, (21), 5389-5393.
    [38] D. A. Lewis, J. D. Summers, T. C. Ward, J. E. McGrath. Accelerated imidization reactions using microwave radiation. Journal of Polymer Science, Part A: Polymer Chemistry. 1992, 30,(8), 1647-1653.
    [39] M. Antonia Herrero, Jennifer M. Kremsner, and C. Oliver Kappe. Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry. J. Org. Chem. 2008, 73, (1), 36-47.
    [40] Raymond J. Giguere, Terry L. Bray and Scott M. Duncan. Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters 1986, 27, (41), 4945-4948.
    [41] Richard Gedye, F. S., Kenneth Westaway, Humera Ali, Lorraine Baldisera, Lena Laberge and John Rousell. The use of microwave ovens for rapid organic synthesis Tetrahedron Letters 1986, 27, (3), 279-282.
    [42] Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jaquault, P.; Mathe, D. New solvent-free organic synthesis using focused microwaves. Synthesis 1998, (9), 1213-1234.
    [43] Pelle Lidstrom, Jason Tierney, Bernard Wathey and Jacob Westman. Microwave assisted organic synthesis-a review Tetrahedron 2001, 57, (45), 9225-9283.
    [44] M. Baruah, D. Prajapati, J. S. Sandhu. Regeneration of carbonyl compounds from semicarbazones under microwave irradiations. Synth. Commun. 1998, 28, (22), 4157-4163.
    [45] Robert S. Huber and Graham B. Jones. Acceleration of the Ortho Ester Claisen Rearrangement by Clay-Catalyzed Microwave Thermolysis: Expeditious Route to Bicyclic Lactones. J, Org. Chem. 1992, 57, (21), 5779.
    [46] Antoine Hinschberger, A.-C. G, Isabelle Bureaua and Sylvain Raulta. Reinvestigation of Rearrangement of Benzodiazepinediones into Quinoleines Under Microwave or Conventional Heating Conditions. Tetrahedron 2000, 56, 1361-1367.
    [47] Firouz Matloubi Moghaddam, Mohammad Ghaffarzadeha and Seyed Hossein Abdi-Oskouib. Tandem Fries Reaction-Conjugate Addition under Microwave Irradiation in Dry Media; One-pot Synthesis of Flavanones. J. Chem. Research 1999, 574-575.
    [48] Christopher J. Davis, Timothy E. Hurst, Aouregan M. Jacob, and Christopher J. Moody. Microwave-Mediated Claisen Rearrangement Followed by Phenol Oxidation: A Simple Route to Naturally Occurring 1,4-Benzoquinones. The First Syntheses of Verapliquinones A and B and Panicein A. J. Org. Chem. 2005, 70, (11), 4414-4422.
    [49] Mohammad R. Saidi and Kamal Bigdeli. Microwave Promoted and Improved Thermal Synthesis of Pyranocoumarins and Furocoumarins. J. Chem. Research. 1998, 800-801.
    [50] Marc Presset, Yoann Coquerel, and Jean Rodriguez. Microwave-Assisted Wolff Rearrangement of Cyclic 2-Diazo-l,3-Diketones: An Eco-compatible Route to α-Carbonylated Cycloalkanones. J, Org. Chem. 2009, 74, (1), 415-418.
    [51] Geetha Gopalakrishnan, Viswanathan Kasinath, and N. D. Pradeep Singh. Microwave-Assisted Ketone-Ketone Rearrangement: An Improved Synthesis of 3-(4-Alkoxyphenyl)-3-methylbutan-2-ones. Org. Lett. 2002, 4, (5), 2002.
    [52] Saibal Kumar Das, K. Anantha Reddy, Chandrasekhar Abbineni, Joyita Roy, K. V. L. Narasimha Rao, Rachna H. Sachwani and Javed Iqbal. Microwave-induced, InCl_3-catalyzed Ferrier Rearrangement of acetylglycals: synthesis of 2,3-unsaturated C-glycosides. Tetrahedron Letters 2003,44, 4507-4509.
    [53] John P. Gilday, Philip Lenden, Jonathan D. Moseley, and Brian G. Cox. The Newman-Kwart Rearrangement: A Microwave Kinetic Study. J. Org. Chem. 2008, 73, (8), 3130-3134.
    [54] Hui-Jun Li, Yan Jiang and Ping Li. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Natural Product Reports 2006, 23, 735-752.
    [55] J. M. Coxon, M. P. Hartshorn, D. N. Kirk, M. A. Wilson. A study of the Rearrangement of hecogenin derivatives into C-nor-D-homo steroids Tetrahedron 1969, 25, (15), 3107-3122
    [56] James P. Kutney, Roderick W. Brookes, Carlos C. Fortes, Yasuoki Murakami, Alan Preston, Yoichiro Ueda. Synthetic studies in the veratrum alkaloid series. The total synthesis of C18-functionalized C-nor-D-homo steroid derivatives-valuable intermediates in the total synthesis of veratrum alkaloids. J. Am. Chem. Soc. 1976, 99, (3), 963-964.
    [57] Kutney JP, Fortes CC, Honda T, Murakami Y, Preston A, Ueda Y. Synthetic studies in the veratrum alkaloid series. The total synthesis of verticine. J Am Chem Soc. 1977, 99, (3), 964-966.
    [58] G. Wagner, W. Brickner. About the relationship of the Pinene halide hydrate with the halide hydrides of the borneol. [machine translation]. Chem. Ber. 1899, 32, 2302-2325.
    [59] P. Vogel. Carbocation Chemistry. Elsevier, New York: 1985.
    [60] J. A. Berson. In Molecular Rearrangement. Wiley-Interscience, New York: 1963; p111.
    [61] Schreiber Paul. 70 years of the Wagner rearrangement. Critical review on the history of chemistry. Chemiker-Zeitung, Chemische Apparatur 1969, 93, (24), 957-964.
    [62] H. Meerwein, K. Van Emster. The equilibrium isomerism between bornyl chloride, isobornyl chloride and camphene hydrochloride. Chem. Ber. 1922, 55B, 2500-2528.
    [63] Paul D. Bartlett, Irving Pockel. The Wagner-Meerwein Rearrangement. A Kinetic Reinvestigation of the Isomerization of Camphene Hydrochloride. J. Am. Chem. Soc. 1938, 60,(7), 1585-1590.
    [64] Herbert C. Brown, K. J. Morgan, Frank J. Chloupek. Structural Effects in Solvolytic Reactions. I. The Role of Equilibrating Cations in Carbonium Ion Chemistry. Nature of the Intermediates Involved in the Solvolysis of Symmetrically Substituted P-Phenylethyl Derivatives. J. Am. Chem. Soc. 1965, 87, (10), 2137-2153.
    [65] Herbert C. Brown. Question of .sigma. bridging in the solvolysis of 2-norbornyl derivatives. Acc. Chem. Res. 6, (11), 377-386.
    [66] A. V. Trofimov. Effeet of the structure of cyclic radical cations on their reaction rates. Khimicheskaya Fizika 2004, 23, (5), 34-39.
    [67] Barry M. Trost and Tatsuro Yasukata. A Catalytic Asymmetric Wagner Meerwein Shift. J. Am. Chem. Soc. 2001, 123, (29), 7162-7163.
    [68] Alex Nickon, Raymond C. Weglein. Bond alignment vs. product stability in the control of Wagner-Meerwein Rearrangements. J. Am. Chem. Soc. 1975, 97, (5), 1271-1273.
    [69] D. M. Brouwer, H. Hogeveen. Importance of orbital orientation as a rate-controlling factor in intramolecular reactions of carbonium ions. Recl. Trav. Chim. 1970, 89, 211-224.
    [70] P. D. Bartlett. Non Classical Ions. W. A. Benjamin, Menlo Park, Calif: 1965; p 466.
    [71] J. March. Advanced Organic Chemistry: Reaction, Mechanism and Structure. 4rd ed.; Wiley-Interscience, New York: 1992.
    [72] C. Villa, M. T. Genta, A. Bargagna, E. Mariani and A. Loupy. Microwave activation and solvent-free phase transfer catalysis for the synthesis of new benzylidene cineole derivatives as potential UV sunscreens Green Chem. 2001, 3, 196-200.
    [73] Rajender S. Varma. Solvent-free organic syntheses, using supported reagents and microwave irradiation. Green Chem 1999, 1, 43-55.
    [1] Pettit, George R.; Inoue, Masuo; Kamano, Yoshiaki. Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J. Am. Chem. Soc. 1988, 110, (6), 2006-2007.
    [2] Barrington, E. J. W. The Biology of Hemichordata and Protochordata. W. H. Freeman and Company: San Fransisco: 1965; p 1-176.
    [3] Wani, Mansukhlal C, et al. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, (9), 2325-2327.
    [4] Pettit, George R.; Inoue, Masuo; Kamano, Yoshiaki; et al. J. Chem. Soc, Chem. Commun. 1988, 865-867.
    [5] Pettit, George R., et al. Antineoplastic agents. 165. Isolation and structure of the unusual Indian Ocean Cephalodiscus gilchristi components, cephalostatins 5 and 6. Canadian Journal of Chemistry 1989, 67, (10), 1509-1513.
    [6] Pettit, George R., Masuo; Kamano, Yoshiaki; et al. Antineoplastic agents. 214. Isolation and structure of cephalostatins 7-9. J. Org. Chem. 1992, 57, (2), 429-431.
    [7] Pettit, George R., Jun Ping; Williams, Michael D.; Christie, Nigel D.; Doubek, Dennis L.; Schmidt, Jean M.; Boyd, Michael R. Antineoplastic agents. 271. Isolation and structure of cephalostatins 10 and 11. J. Nat. Prod. 1994, 57, (1), 52-63.
    [8] Pettit, George R., Yoshitatsu; Xu, Junping; Boyd, Michael R.; Williams, Michael D. Antineoplastic agents. 284. Isolation and structure of the symmetrical disteroidal alkaloids cephalostatin 12 and cephalostatin 13. Bioorganic & Medicinal Chemistry Letters 1994, 4, (12), 1507-1512.
    [9] Pettit, George R., Junping; Iehihara, Yoshitatsu; Williams, Michael D.; Boyd, Michael R. Antineoplastic agents. 285. Isolation and structures of cephalostatins 14 and 15. Canadian Journal of Chemistry 1994, 72, (11), 2260-2267.
    [10] Pettit, George R., Jun-Ping; Schmidt, Jean M.; Boyd, Michael R. Antineoplastic agents. Part 292. Isolation and structure of the exceptional pterobranchia human cancer inhibitors cephalostatins 16 and 17. Bioorg. Med. Chem. Lett. 1995, 5, (17), 2027-2032.
    [11] Pettit, George R., Rui; Xu, Jun-ping; Ichihara, Yoshitatsu; Williams, Michael D.; Boyd, Michael R. Antineoplastic agents. 398. Isolation and structure elucidation of cephalostatins 18 and 19. J. Nat. Prod. 1998, 61, (7), 955-958.
    [12] http://www.ucmp.berkeley.edu/chordata/urochordata.html.
    [13] http://cas.bellannine.edu/tietjen/images/urochordates.htm.
    [14] Fukuzawa, S. M., Shigeki; Fusetani, Nobuhiro, Ritterazine A, a highly cytotoxic dimeric steroidal alkaloid, from the tunicate Ritterella tokioka. J. Org. Chem. 1994, 59, (21), 6164-6166.
    [15] Fukuzawa, S. M., Shigeki Matsunaga and Nobuhiro Fusetani. Ten more ritterazines, cytotoxic steroidal alkaloids from the tunicate Ritterella tokioka. Tetrahedron 1995, 51, (24), 6707-6716.
    [16] Fukuzawa, S. M., Shigeki; Fusetani, Nobuhiro. Isolation of 13 new ritterazines from the tunicate Ritterella tokioka and chemical transformation of ritterazine B. J. Org. Chem. 1997, 62, (13), 4484-4491.
    [17] Miao, Shichang; Andersen, Raymond J. Rubrolides A-H, metabolites of the colonial tunicate Ritterella rubra. J. Org. Chem. 1991, 56, (22), 6275-6280.
    [18] Rinehart, Kenneth L., et al. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J. Am. Chem. Soc. 1981, 103, (7), 1857-1859.
    [19] Wright Amy E., et al. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J. Org. Chem. 1990, 55, (15), 4508-4512.
    [20] Fukuzawa, Seketsu; Matsunaga, Shigeki; Fusetani, Nobuhiro. Isolation and structure elucidation of ritterazines B and C, highly cytotoxic dimeric steroidal alkaloids, from the tunicate Ritterella tokioka. J. Org. Chem. 1995, 60, (3), 608-614.
    [21] Lee, S. L., Thomas G.; Lantrip, Douglas; Fuchs, Philip L. Redox Refunctionalization of Steroid Spiroketals. Structure Correction of Ritterazine M. Organic Letters 2002, 4, (3), 313-316.
    [22] Kim, Seongkon; Fuchs, P. L. Cephalostatin chemistry. 4. Application of the Reich iodoso syn-elimination for the preparation of an intermediate appropriate for the synthesis of both hexacyclic steroidal units of cephalostatin 7. Tetrahedron Letters 1994, 35, (39), 7163-7166.
    [23] Bhandaru, Sudhakar; Fuchs, P. L. Cephalostatin chemistry. 7. Synthesis of C14', 15' dihydro derivative of the south hexacyclic steroid unit of cephalostatin. 1. Part I. Regiospecific Rh[Ⅱ]-mediated intermolecular oxygen alkylation of a primary neopentyl alcohol. Tetrahedron Letters 1995, 36, (46), 8347-8350.
    [24] Thomas G. LaCour, Chuangxing Guo, Michael R. Boyd, and Philip L. Fuchs. Outer-Ring Stereochemical Modulation of Cytotoxicity in Cephalostatins. Organic Letters 2000, 2, (1), 33-36.
    [25] Lee, S. F., Philip L. The First Total Synthesis of (Corrected) Ritterazine M. Organic Letters 2002,4,(3), 317-318.
    [26] Seongmin Lee, Thomas G. LaCour, Douglas Lantrip, and Philip L. Fuchs. Redox Refunctionalization of Steroid Spiroketals. Structure Correction of Ritterazine M. Organic Letters 2002,4, (3), 313-316.
    [27] Jong Seok Lee and Philip L. Fuchs. New Oxidative Tools for the Functionalization of the Cephalostatin North 1 Hemisphere. Organic Letters 2003, 5, (13), 2247-2250.
    [28] Wei Li and Philip L. Fuchs. An Efficient Synthesis of the C-23 Deoxy, 17α-Hydroxy South 1 Hemisphere and Its Cephalostatin 1 Analog. Organic Letters 2003, 5, (16), 2849-2852.
    [29] Jong Seok Lee and Philip L. Fuchs. A Biomimetically Inspired, Efficient Synthesis of the South 7 Hemisphere of Cephalostatin 7. J. Am. Chem. Soc. 2005, 127, (38), 13122-13123.
    [30] Lee, Seongmin; Fuchs, Philip L. In situ nitrosonium ion generation-a-Oximinylation of enol ethers from steroidal spiroketals: Introduction of C23 (R)-OH in cephalostatin intermediates. Canadian Journal of Chemistry 2006, 84, (10), 1442-1447.
    [31] Li, Wei; LaCour, Thomas G.; Fuchs, P. L. Cephalostatin Support Studies. 22. Dyotropic Rearrangement Facilitated Proximal Functionalization and Oxidative Removal of Angular Methyl Groups: Efficient Syntheses of 23'-Deoxy Cephalostatin 1 Analogues. J. Am. Chem. Soc. 2002, 124, (17), 4548-4549.
    [32] Bhandaru, Sudhakar; Fuchs, P. L. Cephalostatin chemistry. 8. Synthesis of a C14,15' dihydro derivative of the south hexacyclic steroid unit of cephalostatin 1. Part Ⅱ. Spiroketal synthesis and stereochemical assignment by NMR spectroscopy. Tetrahedron Letters 1995, 36, (46), 8351-8354.
    [33] Pan, Y.; Merriman, R.; Tanzer, L. R.; Fuchs, P. L. Synthesis and pharmacological evaluation of nonacyclic and trisdecacyclic pyrazines related to cephalostatin. Bioorg. Med. Chem. Lett. 1992, 2, (9), 967-972.
    [34] S. C. Smith and C. H. Heathcock. A Convenient Procedure for the Synthesis of bis-Steroidal Pyrazines: Models for the Cephalostatins. J. Org. Chem. 1992, 57, 6379.
    [35] S. C. Smith and C. H. Heathcock. Synthesis of Unsymmetrical Pyrazines by Reaction of 1,4-Diazabutadienes with Enamines. J. Org. Chem. 1993, 58, 6155.
    [36] S. C. Smith and C. H. Heathcock. Synthesis and Biological Activity of Unsymmetrical Bis-steroidal Pyrazines Related to the Cytotoxic Marine Natural Product Cephalostatin 1. J. Org. Chem. 1994, 54, 6828.
    [37] Andreas Kramer, Ulrike Ullmann and Ekkehard Winterfeldt. A short route to cephalostatin analogues.J.Chem. Soc, Perkin Trans. 1 1993, 2865-2867.
    [38] Michael Drogemuller, Rolf Jautelat, Ekkehard. Directed Synthesis of Nonsymmetrical Bis-Steroidal Pyrazines and the First Biologically Active Cephalostatin Analogues. Angew. Chem., Int. Ed. Engl 1996, 35, (13-14), 1572-1574.
    [39] Drugemuller, M.; Flessner, T.; Jautelet, R.; Scholz, U.; Winterfeldt, E. Eur. J. Org. Chem. 1998,2811-2831.
    [40] Fuchs, P. L., et al. Synthesis of the North 1 Unit of the Cephalostatin Family from Hecogenin Acetate. J. Am. Chem. Soc. 1999, 121,(10), 2056-2070.
    [41] Jeong, Jae Uk; Fuchs, P. L. Cephalostatin chemistry. 6. Synthesis of the south hexacyclic steroid unit of cephalostatin 7. Tetrahedron Letters 1995, 36, (14), 2431-2434.
    [42] Ernesto Surez, et al. A Convenient Synthesis of C-22 and C-25 Stereoisomers of Cephalostatin North 1 Side Chain from Spirostan Sapogenins. Org. Lett. 2002, 4, (8), 1295-1297.
    [43] George Majetich and Karen Wheless. Remote Intramolecular Free Radical Functionalizations: An Update. Tetrahedron 1995, 51, (26), 7095-7129.
    [44] Thomas G. LaCour and P. L. Fuchs. Concurrent Ring Opening and Halogenation of Spiroketals. Tetrahedron Letters 1999,40, 4655-4658.
    [45] Phillips, Scott T.; Shair, Matthew D. Syntheses of the Eastern Halves of Ritterazines B, F, G, and H, Leading to Reassignment of the 5,5-Spiroketal Stereochemistry of Ritterazines B and F. J. Am. Chem. Soc. 2007, 129, (20), 6589-6598.
    [46] Fuchs, P. L., et al. Interphylal Product Splicing: The First Total Syntheses of Cephalostatin 1, the North Hemisphere of Ritterazine G, and the Highly Active Hybrid Analog, Ritterostatin G_N1_N. J. Am. Chem. Soc. 1998, 120, (4), 692-707.
    [47] Guo, C. L., Thomas G.; Fuchs, P. L. Cephalostatin support studies. 15. On the relationship of OSW-1 to the cephalostatins. Bioorg. Med. Chem. Lett. 1999, 9, (3), 419-424.
    [48] Guo, Chuangxing; Bhandaru, Sudhakar; Fuchs, P. L.; Boyd, Michael R. An Efficient Protocol for the Synthesis of Unsymmetrical Pyrazines. Total Synthesis of Dihydrocephalostatin 1.J.Am. Chem. Soc. 1996, 118, (43), 10672-10673.
    [49] Boyd, Michael R.; Paull, Kenneth D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Development Research 1995, 34, (2), 91-109.
    [50] Fuchs, P. L., et al. Biomimetic Total Syntheses of (+)-Cephalostatin 7, (+)-Cephalostatin 12, and (+)-Ritterazine K.J. Am. Chem. Soc. 1995, 117, (40), 10157-10158.
    [51]Jeong, Jae Uk; Guo, Chuangxing; Fuchs, P. L. Synthesis of the South Unit of Cephalostatin 7. Total Syntheses of (+)-Cephalostatin 7, (+)-Cephalostatin 12, and (+)-Ritterazine K. J. Am. Chem. Soc. 1999, 121, (10), 2071-2084.
    [52] Chuangxing Guo and P. L. Fuchs. The first synthesis of the aglycone of the potent anti-tumor steroidal saponin OSW-1. Tetrahedron Letters 1998, 39, (10), 1099-1102.
    [53] Chuangxing Guo, Thomas G. LaCour and P. L, Fuchs. On the relationship of OSW-1 to the cephalostatins. Bioorg. Med. Chem. Lett. 1999, 9, (3), 419-424.
    [54] Kramer, U.; Ullmann, Winterfeldt, E. A short route to cephalostatin analogs. J. Chem. Soc. Perk. Trans. 1. 1993, (23), 2865-2867.
    [55] Robert M. Moriarty, Om Prakash. Hypervalent iodine in organic synthesis. Acc. Chem. Res. 1986, 19, (8), 244-250.
    [56] Douglass F. Taber, and Karen V. Taluskie. Computationally Guided Organometallic Chemistry: Preparation of the Heptacyclic Pyrazine Core of Ritterazine N. J. Org. Chem. 2006,71,(7), 2797-2801.
    [57] Douglass F. Taber, and Jean-Michel Joerger. Preparation of the 5/5-Spiroketal of the Ritterazines. J. Org. Chem. 2007, 72, (9), 3454-3457.
    [58]Douglass F. Taber, and Jean-Michel Joerger. Synthesis of Bis-18,18'-desmethyl Ritterazine N. J. Org. Chem. 2008, 73, (11), 4155-4159.
    [59] Khaled Q. Shawakfeh, Nairn H. Al-Said, Raed M. Al-Zoubi. Synthesis of bis-diosgenin pyrazine dimers: New cephalostatin analogs. Steroids 2008, 73, 579-584.
    [60] Dubowchik GM, Firesone RA. The synthesis of branched steroidal prodrugs of nitrogen mustard for antitumor targeting via reconstituted LDL. Tetrahedron Letters 1994, 35, 4523-4526.
    [61] Gan Y, Wientjes MG, Au JL-S. Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res 2006, 23, (6), 1324-1331.
    [62] Guthre JP, Cossa J, Darson BA. A water soluble dimeric steroid with catalytic properties. Rate enhancements from hydrophobic binding. Canadian Journal of Chemistry 1986, 64, 2456-2469.
    [63] Schmidt A, Beckert A, Weiss RD. Simple procedure for reductive coupling of steroids with a cross-conjugated dienone system. Tetrahedron Letters 1992, 33, 4299-4300.
    [64] Pettit JM, Xu JP, Schmidt JM. Isolation and structure of the exceptional Pterobranchia human cancer inhibitors cephalostatins 16 and 1. Bioorg Med Chem Lett. 1995, 5, 2027-2030.
    [65] Bryan R. Moser. Review of Cytotoxic Cephalostatins and Ritterazines: Isolation and Synthesis. J. Nat. Prod. 2008, 71, (3), 487-491.
    [66] Ekkehard Winterfeldt, et al. Synthesis of Cephalostatin Analogues by Symmetrical and Non-Symmetrical Routes. Eur. J. Org. Chem. 1998, 2811-2831.
    [67] Angelika M. Vollmar. et al. Cephalostatin 1 Inactivates Bcl-2 by Hyperphosphorylation Independent of M-Phase Arrest and DNA Damage. MOLECULAR PHARMACOLOGY 2005, 67,(5), 1684-1689.
    [68]Verena M.Dirsch,Irina M.Mu(?)ller,So(?)ren T,et al.Cephalostatin 1 Selectively Triggers the Release of Smac/DIABLO and Subsequent Apoptosis That Is Characterized by an Increased Density of the Mitochondrial Matrix.CANCER RESEARCH 2003,63,8869-8876.
    [69]Takefumi Komiya,Nobuhiro Fusetani,et al.Ritterazine B,a new cytotoxic natural compound,induces apoptosis in cancer cells.Cancer Chemother Pharmacol 2003,51,202-208.
    [70]Anita Rudy,Nancy L(?)pez-Ant(?)n,Verena M.Dirsch,and Angelika M.Vollmar.The Cephalostatin Way of Apoptosis.J.Nat.Prod.2008,71,(3),482-486.
    [71]Mohamed Rahmani,Eric Maynard Davis,Timothy Ryan Crabtree,et al.The Kmase Inhibitor Sorafenib Induces Cell Death through a Process Involving Induction of Endoplasmic Reticulum Stress.MOLECULAR AND CELLULAR BIOLOGY 2007,27,(15),5499-5513.
    [72]Nancy Lo' pez-Anto'n,Anita Rudy,Nicole Barth,et al.The Marine Product Cephalostatin 1 Activates an Endoplasmic Reticulum Stress-specific and Apoptosome-independent Apoptotic Signaling Pathway.THE JOURNAL OF BIOLOGICAL CHEMISTRY 2006,281,(44),33078-33086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700