修饰电极的制备及对亚硝酸盐等小分子的检测及杀菌性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,环境污染的程度逐渐增大,直接影响到人们正常的生产和生活,甚至威胁到人类的生存,环境保护形势日益严峻。因此,开发能够持续、快速、有效的检测并消除污染的手段和方法势在必行。而化学修饰电极以其廉价、快速、灵敏度高、选择性好等优点,较好的迎合了现阶段环境分析任务的要求,受到了广泛的关注。
     纳米材料独特的结构状态使其产生了小尺寸效应、量子尺寸效应、表面效应等,从而在光、电、吸附、催化等方面展现出独特的功能。利用纳米材料对基底电极进行修饰时,电极表面比表面积急剧增大,这就为电极的进一步修饰或对被测物的检测提供了更多的活性位点。另外,纳米材料修饰电极时,其本身的物化特性也被引入电极表面,从而使得该电极的电化学活性得到强化。本文研究了纳米材料修饰电极对生物大分子的作用及其在环境污染物分析中的应用,主要分为以下四个方面:
     1.通过将醛基二茂铁与第3代树状高分子复合制备了末端为二茂铁的树状大分子(Fc-D),并以Nafion溶液为固定剂用以修饰玻碳电极。研究结果表明该修饰电极对神经递质多巴胺的氧化还原具有较强的催化作用,对多巴胺的检测具有较高的灵敏度和较好的线性范围,并且能够有效的排除抗坏血酸的影响。
     2.以第4代树状高分子、多壁碳纳米管和壳聚糖复合材料修饰玻碳电极,并分别采用共价键结合和静电吸附法,以戊二醛和DNA为交联剂固定细胞色素C构建了新型亚硝酸盐生物传感器。结果表明,该纳米复合材料非常适合作为细胞色素C的固定材料,并具有较高的催化活性,被固定的细胞色素C的电化学响应十分明显。利用该生物传感器对亚硝酸盐检测的响应速度快,灵敏度高,线性范围宽,检出限低,并具有较强的抗干扰能力和良好的稳定性与重现性。
     3.在离子液体与水的两相溶液中,通过电沉积的方法制备了纳米二氧化铅修饰的钛电极,以此电极为阳极,探讨了该电极对水体中细菌的杀灭能力。对比实验与死亡细胞的透射电镜图表明,在灭菌过程中起主要作用的是电生成的羟基自由基。另外,随着离子液体含量的增加,电沉积的二氧化铅的粒径逐渐减小。较小的粒子赋予了电极较大的比表面积和更多的活性位点,能够生成更多的羟基自由基,并最终使得杀菌效果逐步增大。
     4.首先制备了层间插入十二烷基磺酸钠的镁铝类水滑石,然后在十六烷基三甲基溴化铵和3-氨丙基三乙氧基硅烷的作用下使其氨基化制备了氨基化镁铝类水滑石(NH2-HTlc)。然后以NH2-HTlc为修饰剂修饰热解石墨电极,并通过循环伏安法探讨了该电极对吸附在其表面的大肠杆菌的杀灭作用。结果表明,被吸附的大肠杆菌在经过循环伏安扫描后死亡率达到了98.68%,大肠杆菌的死亡可归因于其内部鸟嘌呤的氧化。
In recent years, with the increasing of its degree, environmental pollution has directly affected people's normal production and life, and even threats human survival. The environmental protection situation becomes worse and worse. Therefore, it is imperative to develop the sustained, rapid and effective means for the detection and elimination of pollution. The chemically modified electrode with its advantages such as cheap, fast, high sensitivity and good selectivity, better meet the mission requirements of current environmental analysis, and receives more and more attention.
     Owing to the small size effect, quantum size effects, surface effects resulted from its unique structure, nano-materials have shown distinctive function in many fields such as optical, electronic, adsorption, catalysis and so on. By using of the nano-materials modified electrode, the electrode surface increases rapidly, which would provide more active sites for the further modification. In addition, when the nano-materials were used to modify electrode, both of their own physical and chemical properties had also been introduced to the electrode surface, and the electrochemical active of the electrode would be greatly strengthened. In this paper, we have studied the effect of the nano-materials modified electrode to the biological macromolecules and the environmental pollutants, which could be divided into four aspects as follow:
     1. Ferrocenyl-tethered PAMAM G3 dendrimers (Fc-D) was synthesized and used to modified glassy carbon electrode (GCE) with Nafion acting as the binder. The obtained modified electrode had a dramatically enhanced electrocatalytic property to DA and effectively eliminated the interference of AA. The proposed method showed a high sensitivity and a good linear range.
     2. Novel nitrite biosensors were successfully prepared via immobilizing Cytochrome c (Cty c) onto the multi-walled carbon nanotubes-PAMAM-chitosan (MWNT-PAMAM-Chit) nanocomposite modified glass carbon electrode (GCE), with glutaraldehyde and DNA acting as the coupling agent, respectively. The results showed that MWNT-PAMAM-Chit nanocomposite provided a perfect platform for the immobilization of Cyt c and facilitates the electron exchange between the Cyt c and electrode. The immobilized Cyt c displayed a good electrocatalytic response to the oxidation of nitrite, which was attributed to the highly reactive Cyt c 7r-cation generated by the further oxidation of Cyt c. The obtained novel nitrite biosensors exhibited wide linear ranges, low detection limit, good reproducibility and stability.
     3. The electrochemical inactivation of microorganisms using Escherichia coli (E. coli) as testing species by a novel PbO2 electrode was investigated. The PbO2 electrode was constructed by electrochemical deposition of PbO2 on the treated Ti substrate in the fluorine (F) doped ionic liquids/water (ILs/H2O) two phase solution. Further investigation showed that the crystal size of electrodeposited PbO2 became smaller with the increase of ILs concentration in the electrolyte solution. The small crystal size favored to the generation of the absorbable·OH on the electrode surface, which was proved to play a key role during the disinfection process. TEM investigation revealed the morphological change of the E. coli cells during the bactericidal process.
     4. The surfaces of the interlayer of MgAl-hydrotalcite like compounds (MgAl-HTlc) have been modified with amine moieties through condensation between the hydroxyl groups and APS molecules, forming a covalent bond. Then, it was used to modify graphite electrode for the adsorption of E. coli. Cyclic voltammetry (CV) was used to investigate the disinfection of the modified electrode. The result showed that the germicidal efficiency could reach to 98.68% and the possible disinfection mechanism might be the oxidation of guanine within E. coli.
引文
陈晓君,张敏,杨娅.纳米溶胶—凝胶膜修饰电极及电化学催化性能.分析化学,2002,30(8):972-974.
    董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社2003
    段德良,王宅中,周世萍.镧取代Dawson型磷钨杂多酸聚吡咯修饰电极的制备及其电化学性能.分析化学,2001,29(6):679-681.
    黄强,刘红英,方宾.电化学DNA生物传感器研究的应用进展,化学进展,2009,21(5):1052-1059.
    黄杉生,陶菡.P2W18杂多酸-萘胺修饰电极研制及应用.分析测试学报,2000,19(3):66-67.
    李梦瑶,孔令蜜,朱佩思,彭斌,黄杉生,袁寅祥.细胞色素c/L-半胱氨酸修饰金电极检测亚硝酸根,理化检验-化学分册,2008,44:495-498
    黎雪莲,袁若,柴雅琴,张凌燕,王娜,朱强.基于静电吸附甲苯胺蓝和纳米金固定过氧化酶生物传感器的研究.分析化学(研究简报),2006,(34)3:389-392.
    刘红,陆天虹,李淑萍.类水滑石化合物制备方法研究综述.南京师大学报(自然科学版),2009,32(2):82-86.
    刘洁翔,候忠德,谢鲜梅.类水滑石化合物的合成及催化应用.太原理工大学学报,2000,31(6):628-632
    马曾燕,李将渊,向伟.聚吡咯/多壁碳纳米管修饰电极对多巴胺的测定,化学研究与应用,2008,20:1570-1574.
    任湘菱,唐芳琼.超细银—金复合颗粒增强酶生物传感器的研究.化学学报,2002,60(3):393-397.
    时伟杰,艾仕云,李金焕,朱鲁生.基于树状高分子固定DNA的电化学生物传感器的研究,2008,36(3):335-338
    时伟杰.DNA电化学生物传感器的制备及对莠去津检测的研究:[硕士学位论文].山东农业大学,资源与环境学院,2008.
    王升文,邱银香.PEDT膜修饰电极的制备及对苯二酚电催化作用的研究,化学中间体,2008,10:39-42
    汪云,周东美.亚甲紫的电化学聚合和亚硝酸根的电催化还原.高等学校化 学学报,1997,18(6):864-868
    王瑜,孙元喜.聚中性红膜修饰电极测定痕量N02-的研究.分析试验室,1998,17(6):10~13.
    许可,吕德义,葛忠华.离子型层状化合物制备及应用研究.化工新型材料,2005,33(2):56~59
    杨飘萍,吴通好.水滑石的结构性质、合成及催化应用.石化技术与应用,2005,23(1):61~66
    尹淑涛,薛文通,张泽俊;霍婷.聚吡咯修饰铂电极快速测定植物油中维生素E的研究,食品工业科技,2008,12:233-235
    于文强;易清风.电沉积纳米金修饰钛电极对甲醛的电催化氧化,传感技术学报,2009,11,1529-1532
    赵元弟,庞代文,张敏.DNA修饰电极的研究(Ⅰ Ⅹ)--DNA探针在金基底上的固定,表征及其表面分子杂交.高等学校化学学报,2001,22(5):744-748.
    张峰,狄俊伟.示差脉冲伏安法测定麦芽酚.分析科学学报,2003,5:82-89.
    张渝阳,高鹏,赵坤,王娜,刘娜,臧树良.Cd Te量子点标记的DNA电化学传感器的研究,分析测试学报,2009,28:515-51.
    Almeida M.G, Silveira C.M., Moura J.J.G. Biosensing nitrite using the system nitriteredutase/Nafion/methyl viologen-A voltammetric study. Biosens. Bioelectron,2007,22:2485-2492
    Ai S., Wang Q., Li H., Jin L. Study on production of free hydroxyl radical and its reaction with salicylic acid at lead dioxide electrode. J. Electroanal. Chem, 2005,578:223-229
    Atkins P., Overton T., Rourke J.,Weller M., Armstrong F.,2006.Biological Inorganic Chemistry,4th ed.W.H. Freeman & Company, New York
    Averill B.A., Dissimilatory nitrite and nitric oxide reductase, Chem. Rev.96 (1996)2951-2964
    Bodini M.E., Sawyer D. Voltammetric determination of nitrate ion at parts-per-billion levels. Anal. Chem,1977,49:485-489
    Cao J., Zhao H., Cao F., Zhang J., Cao C. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes. Electrochimica. Acta,2009,54: 2595-2602
    Cao X., Luo L., Ding Y., Zou X., Bian R. Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sens. Actuators. B,2008,129:941-946
    Cao X., Wang N., Guo L. Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing. Sens. Actuators B, 2009,137:710-714
    Carpenter N.G., Pletcher D. Amperometric method for the determination of nitrate in water, Anal. Chim. Acta,1995,317:287-293
    Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type Anionic Clay:P reparation, Properties and Application. Catal. Today,1991,11:173~301
    Chen H., Mousty C., Cosnier S., Silveira C., Moura J.J.G., Almeida M.G. Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem. Commun,2007,9:2240-2245
    Chen Q., Ai S., Zhu X., Yin H., Ma Q., Qiu Y. A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode. Biosens. Bioelectron,2009,24:2991-2996
    Chen X.J., West A.C., Cropek D.M., Banta S. Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome c. Anal. Chem,2008,80:9622-9629
    Chen S.M., Chen S.V. The bioelectrocatalytic properties of cytochrome C by direct electrochemistry on DNA film modified electrode. Electrochim. Acta, 2003,48:513-529
    Chen X., Wang F., Chen Z. An electropolymerized Nile Blue sensing film-based nitrite sensor and application in food analysis. Anal. Chim. Acta, 2008,623:213-220
    Cho M., Chung H., Choi W., Yoon J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection,Water Res,2004,38:1069-1077
    Crepaldi E.L., Pavan P.C., Tronto J., Valim J.B. Chemical, Structural, and Thermal Properties of Zn(Ⅱ)-Cr(Ⅲ) Layered Double Hydroxides Intercalated with Sulfated and Sulfonated Surfactants. J. Colloid Interface Sci,2002,278:429~442
    Dai Z., Bai H., Hong M., Zhu Y., Bao J., Shen J. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosens. Bioelectron,2008,23:1869-1873
    Dai Z., Liu S., Ju H. Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing. Electrochim. Acta, 2004,49:2139-2144
    Dickerson R.E., Takano T., Eisenberg D., Kallai O.B., Samson L., Cooper A., Margoliash E. Studies of Thrombin Formation with an Insoluble Derivative ofProthrombin. J. Biol. Chem,1971,246:1511-1535
    Ding S., Wei W., Zhao G Direct electrochemical response of cytochrome c on a room temperature ionic liquid, N-butylpyridinium tetrafluoroborate, modified electrode. Electrochem. Commun,2007,9:2202-2206
    Ding Y, Wang Y, Li B., Lei Y, Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite, Biosens. Bioelectron, doi:10.1016/j.bios.2010.01.024
    Dong S., Che G., Xie Y. 2003, Chemical Modified Electrode, Science Press, Beijing
    Erdem A., Pividori M.I., Valle Md., Alegret S. Rigid carbon composites:a new transducing material for label-free electrochemical genosensing. J. Electroanal. Chem,2004,567:29-37
    Faulkner K.M., Bonavent Ura C., Crumbl Iss A.L., A spectroelectrochemical method for differentiati on of steric and electr onic effects in hemogl obins and myogl obins. J. Biol. Chem,1995,270 (23):13604-13612
    Furtado C.A., Kim U.J., Gutierrez H.R., Pan L., Dickey E.C., Eklund P.C. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc,2004,126:6095-6105
    Gaskova D., Sigler K., Janderova B., Plasek J. Announcement. Bioelectrochem. Bioener,1996,32:195-202
    Georgina A., Silvia C., Manuel P., Alberto R., Mario R., Teresa M. Selective electrochemical determination of dopamine in the presence of ascorbic acid using sodium dodecyl sulfate micelles as masking agent. Electrochim. Acta, 2008,53:3013-3020
    Ghasemzadeh P.C.B., Mitchell K., Adams R.N. Nafion coated fiber electrodes for neutochemical studies in brain tissue. Electroanalysis,1990,2:175-182
    Hartmann M. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater,2005,17:4577-4593
    Huang X., Li Y., Chen Y., Wang L. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B,2008,134:780-786
    Ito K., Takayama Y, Makabe N., Mitsui R., Hirokawa T. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns. J. Chromatogr. A,2005,1083:63-67
    Iwagishi T., Sawada K., Yamamoto H., Koyama K., Shirai H. Electrodeposition of Zinc-Magnesium Alloy from 1-Ethyl-3-Methylimidazolium Bromide Molten Salt. Electrochemistry,2003,71:318-321
    Jeong J., Kim J.Y., Yoon J. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol,2006, 40:6117-6122.
    Ji X., Jin B., Jin J., Nakamura T. Voltammetry of immobilized cytochrome c on novel binary self-assembled monolayers of thioctic acid and thioctic amide modified gold electrodes. J. Electroanal. Chem,2006,590:173-180
    Jia N., Wang Z., Yang G., Shen H., Zhu L. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem. Commun,2007,9:233-238
    Kangfu Zhou, Yihua Zhua, Xiaoling Yang, Jie Luo, Chunzhong Li, Shaorong Luan,A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites Electrochim. Acta,2010, 55:3055-3060
    Kang X., Mai Z., Zou X., Cai P., Mo J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem,2007,363: 143-150
    Kaniansky D., Zelensky I., Hybenova A., Onuska F.I. Determination of Chloride, Nitrate, Sulfate, Nitrite, Fluoride, and Phosphate by Online Coupled Capillary Isotachophoresis-Capillary Zone Electrophoresis with Conductivity Detection. Anal. Chem,1994,66:4258-4264
    Kawagoe K.T., Johnson D.C. Electrocatalysis of anodic oxygen-transfer reactions. Oxidation of phenol and benzene at bismuth-doped lead dioxide electrodes in acidic solutions. J. Electrochem. Soc,1994,141:3404-3409
    Koh W.C.A., Rahman M.A., Choe E.S., Lee D.K., Shim Y.B. A cytochrome c modified-conducting polymer microelectrode for monitoring in vivo changes in nitric oxide. Biosens. Bioelectron,2008,23:1374-1381
    Konstantinou I.K., Hela D.G., Albanis T.A. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Environ. Pollut,2006,141: 555-570
    Kumar S.A., Tang C., Chen S. Poly (4-amino-1-1'-azobenzene-3,4'-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta,2008,74:860-866
    Lacourse W. R., Hsiao Y. L., Johnson D. C. Electrocatalytic Oxidations at Electrodeposited Bismuth (Ⅲ)-Doped Beta-Lead Dioxide Film Electrodes. J. Electrochem. Soc,1989,136:3714-3719
    Laviron E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem, 1979,101:19-28
    Li J., Lin X. Simultaneous determination of dopamine and serotonin on goldnanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sens. Actuators B,2007,124:486-493
    Li M., He P., Zhang Y., Hu N. An electrochemical investigation of hemoglobin andcatalase incorporated in collagen films. Biochim. Biophys. Acta,2005, 1749:43-51
    Liang W., Qu J., Chen L., Liu H., Lei P. Inactivation of Microcystis aeruginosa by Continuous Electrochemical Cycling Process in Tube Using Ti/RuO2 Electrodes. Environ. Sci. Technol,2005,39:4633-4639
    Lin X., Zhang Y., Chen W., Wu P. Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sens. Actuators. B,2007,122:309-314
    Lin C., Vasantha V.S., Ho K. Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs. Sens. Actuator. B,2009, 140:51-57
    Liu C., Lu C., Jiang L., Study on the electrochemical behavior of dopamine and uric acid at a 2-amino-5-mercap to [1,3,4] triazole self assembled monolayers electrode. Electroanalysis,2006,18:291-297
    Lin L., Qiu P., Cao X., Jin L. Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of Cytochrome c. Electrochim. Acta, 2008,53:5368-5372
    Liu T., Kang T., Lu L., Zhang Y., Cheng S. Au-Fe(Ⅲ) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor,J. Electroanal.Chem,2009,632:197-200.
    Liu W.K., Brown M.R.W., Elliott T.S.J. Mechanisms of the bactericidal activity of low amperage electric current (DC). Antimicrob J. Chemother,1997,61: 163-170
    Matsunaga T., Naksono S., Takamuku T., Burgess J.G., Nakamura N., Sode K. Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl. Environ. Microbiol,1992,58: 686-689
    Mo J., Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal. Chem, 2001,73:1196-1202
    Moccelini S.K., Fernandes S.C., Vieira I.C. Bean sprout peroxidase biosensor based on 1-cysteine self-assembled monolayer for the determination of dopamine. Sens. Actuators. B,2008,133:364-369
    Moorcroft M.J., Davis J., Compton R.G Detection and determination of nitrate and nitrite:a review. Talanta,2001,54:785-803
    Moore GR., Pettigrew G.W.1990 Cytochromes c Evolutionary Structural and Physicochemical Aspects Springer-Verlag Berlin
    Niu Y., Yeung L.K., Crooks R.M. Size-Selective Hydrogenation of Olefins by Dendrimer-Encapsulated Palladium Nanoparticles. J. Am. Chem. Soc,2001, 123:6840-6846
    Ochiai E. J. Transport in proteins and DNAs—principles and applications in bioinorganic chemistry. Chem. Educ,1997,74:600-604
    Oellerich S., Wackerbarth H., Hildebrandt P. Spectroscopic characterization of nonnative conformational states of cytochrome c. J. Phys. Chem. B 2002, 106:6566-6580
    Park A.Y., Kwon H., Woo A.J., Kim S.J. Layered Double Hydroxide Surface Modified with (3-aminopropyl)triethoxysilane by Covalent Bonding. Adv. Mater,2005,17:106~109
    Park J.; Lee M. S.;Han D.; Lee D.H.; Park B. J.; Lee I.;Uzawa M.; Aihara M.; Takatori K. Inactivation of Vibrio para-haemolyticus in effluent seawater by alternating-current treatment. Appl. Environ. Microbiol,2004,70 (3): 1833-1835.
    Patermarakis G., Fountoukidis E. Disinfection of water by electrochemical treatment. Water Res,1990,24:1491-1496
    Qian L., Yang X. Dendrimers as "controllers" for modulation of electrodeposited silver nanostructures. Colloid. Surface. A,2008,317: 528-534
    Quiroz M.A., Reyna S.C., Martinez-Huitle C.A., Ferro S., De Battisti A. Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl. Catal. B:Environ,2005,59:259-266
    Raj C.R., Ohsaka T. Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer. J. Electroanal. Chem,2001,496:44-49
    Pihel K., Walker Q.D., Wightman R.M. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal. Chem,1996,68: 2084-2089
    Rusling J.F. Enzyme bioelectrochemistry in cast biomembrane-like Films. Acc. Chem. Res,1998,31:363-369
    Sato M., Kono H., Shiga M., Motoyama I., Hata K. A Simple Modification of Vilsmeier Method for the Preparation of Formylferrocene. Chem. Soc. Jap, 1968,41:252-254
    Serra B., Morales M.D., Zhang J., Reviejo A.J., Hall E.H., Pingarron J.M. In-a-Day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor. Anal. Chem,2005,77:8115-8121
    Scharf M., Moreno C., Costa C., Van Dijk C., Payne W.J., LeGall J., Moura I., Moura J.J.G., Biochem. Biophys. Res. Commun,1995,209:1018.
    Scott R.W.J., Datye A.K., Crooks R.M. Bimetallic Palladium-Platinum Dendrimer-Encapsulated Catalysts. J. Am. Chem. Soc,2003,125: 3708-3709
    Shen L., Hu N. Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for layer-by-layer assembly of electroactive films. Biomacromolecules,2005,6:1475-1483
    Shen L., Hu N. Electrostatic adsorption of heme proteins alternated with polyamidomine dendrimers for layer-by-layer assembly of electroactive films. Biomacromolecules,2005,6:1475-1483
    Sherwood G.A., Johnson D.C. Electrocatalysis of the reduction of nitrate ion at cadmium electrodes by electrodeposited copper. Anal. Chim. Acta,1981, 129:87-100.
    Shi W., Ai S., Li J., Zhu L. Electrochemical Biosensor Based on Dendrimer Immobilized Deoxyribonucleic Acid. Chinese J. Anal. Chem,2008,36: 335-338
    Shi X., Lesniak W., Islam M.T., MuNiz M.C., Balogh L.P., Baker J.R. Comprehensive characterization of surface-functionalized poly (amidoamine) dendrimers with acetamide, hydroxyl, and carboxyl groups. Colloid Surface A,2006,272:139-150
    Shie J., Yogeswaran U., Chen S. Electroanalytical properties of cytochrome c by direct electrochemistry on multi-walled carbon nanotubes incorporated with DNA biocomposite film. Talanta,2008,74:1659-1669
    Skoog D.A., Holler F.J., Nieman T.A.1998, Principles of Industrumental Analysis, Saunders College Publishing, Philadelphia.
    Son H.;Cho M.;Chung H.;Choi S.; Yoon J.Bactericidal activity of mixed oxidants:Comparison with free chlorine. J. Ind. Eng.Chem,2004,10 (5): 705-709.
    Sousa A.L., Wilney J.R., Santos, Rita C.S., Luz, Flavio S., Damos, Lauro T., Kubota, Auro A., Suzuki S., Kataoka K., Yamaguchi K., Metal coordination and mechanism of multicopper nitrite reductase, Acc. Chem. Res,2000,33: 728-735.
    Takahashi S., Kurosawa S., Anzai J. Electrochemical determinati on of 1-lactate using phenylboronic acid monolayer-modified electrodes. Electroanalysis, 2008,20:816-818
    Tanaka, Sonia M.C.N., Tanaka. Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-1-lysine film, Talanta 2008,75:333-338
    Tang L., Zhu Y., Xu L., Yang X., Li C. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta,2007,73:438-443
    Taniguchi I., Iseki M., Yamaguchi H., Yasukouchi K. Surface enhanced Raman scattering study of horse heart cytochrome c at a silver electrode in the presence of bis(4-pyridyl)disulfide and purine. J. Electroanal. Chem,1984, 175:341-348
    Taniguchi I., Toyosawa K., Yamaguchi H., Yasukouchi K. Voltammetric response of horse heart cytochrome c at a gold electrode in the presence of sulfur bridged bipyridines. J. Electroanal. Chem,1982,140:187-193
    Tomalia D.A., Baker H., Dewald J.R., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers; starburst- dendritic macromolecules. Polym J Tokyo,1985,17:117-132
    Tomalia D.A., Baker H., Dewald J.R., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. Dendritic macromolecules-synthesis of starburst dendrimers. Macromolecules,1986,19:2466-2468
    Tomalia D. A., Baker H., Dewald J. R. Size and solution properties of globular. Macromolecules,1982,15:1093~1098
    Vaccari A. Clays and Catalysis:A Promising Future. Applied Clay Science, 1999,14:161~198
    Velichenko A.B., Amadelli R., Zucchini G.L., Girenko D.V. Electrochimica. Acta,2000,45:4341-4350
    Vishnuvardhan V., Kala R., Rao T.P. Chemical switch based reusable dual optoelectronic sensor for nitrite. Anal. Chim. Acta,2008,623:53-58.
    Wael K.D., Buschop H., Smet L.D., Adriaens A. Immobilization of cytochrome c on cysteamine-modified gold electrodes with EDC as coupling agent. Talanta,2008,76:309-313
    Wang G., Xu J., Chen H. Interfacing cytochrome c to electrodes with a DNA-carbon nanotube composite film. Electrochem. Commun,2002a,4:506-509
    Wang G.F., Satake M., Horita K. Spectrophotometric determination of nitrate and nitrite in water and some fruit samples using column preconcentration. Talanta,1998,46:671-678
    Wang J., Yang J. Z., Chen H. X., Liu W. H. Chinese J. Synth. Chem,2001,9(1): 62-64
    Wang J.X., Shi Z.J., Shi Z.J. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem,2002b,74:1993-1997
    Wang J., Pamidi N. Sol-gel-derived thick-film amperometric immunosensors. Anal. Chem,1998,70(6):1171-1175
    Wu Q., Storrier G.D., Parients F., Wang Y., Shapleigh J.P., Abruna H.D. A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an electropolymerized film of a pyrrole-derived bipyridinium Anal. Chem,1997,69:4856-4863
    Wang Y., Hu S. A novel nitric oxide biosensor based on electropolymerization poly(toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens. Bioelectron,2006,22:10-17
    Wen Zhen-Hai, Kang Tian-Fang,Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes,Talanta,2004,62: 351-355
    Wightman R.M., May L.J., Michael A.C. Detection of dopamine dynamics in the brain. Anal. Chem,1988,60:769-779
    Wu Q Storrier G.D., Parients F., Wang Y, Shapleigh J.P., Abruna H.D. A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an electropolymerized film of a pyrrole-derived bipyridinium. Anal. Chem,1997,69:4856-4863
    Xiang C., Zou Y, Sun L., Xu F. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem. Commun,2008,10:38-41
    Xu J.R, Liu B. Preconcentration and determination of lead ions at a chitosan-modified glassy carbon electrode, Analyst,1994,119:1599-1601
    Xu X., Tian B., Kong J., Zhang S., Liu B., Zhao D. Ordered mesoporous niobium oxide film:A novel matrix for assembling functional proteins for bioelectrochemical applications. Adv. Mater,2003,15:1932-1936
    Yamazaki I., Araiso T., Hayashi Y., Yamada H., Makino R. Analysis of acid-base properties of peroxidase and myoglobin. Adv. Biophys,1978,11: 249-281
    Yang W., Bai Y., Li Y., Sun C. Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film. Anal. Bioanal. Chem,2005,382:44-50
    Yao H., Li N., Xu J., Zhu J.,Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode, Talanta,2007, 71:550-554
    Ye J., Baldw I.N.R.P. Catalytic reducti on of myoglobin and hemoglobin at chemically modified electrodes containingmethylene blue. Anal. Chem, 1988,60 (20):2263-2268.
    Ye Y, Ju H. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron, 2005,21:735-741
    Yeo H., Lee Y. S., Johnson D.C. Growth of lead dioxide on a gold electrode in the presence of foreign ions. Electrochim. Acta,1992,37:1811-1815
    Yoon H.C., Hong M.Y., Kim H.S. Functionalization of a Poly(amidoamine) Dendrimer with Ferrocenyls and Its Application to the Construction of a Reagentless Enzyme Electrode. Anal. Chem,2000,72:4420-4427
    Yu N., Gao L., Zhao S., Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochimica. Acta,2009,54: 3835-3841
    Zhou M., Dai Q., Lei L., Ma C., Wang D. Long life modified lead dioxide anode for organic wastewater treatment:electrochemical characteristics and degradation mechanism. Environ. Sci. Technol,2005,39:363-370
    Zare H.R., Rajabzadeh N., Nasirizadeh N., Ardakani M.M. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J. Electroanal. Chem,2006,589:60-69
    Zeng Y., Huang Y., Jiang J., Zhang X., Tang C., Shen G., Yu R. Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem. Commun,2007, 9:185-190
    Zhang L. Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens. Bioelectron,2008a,23:1610-1615
    Zhang L., Zhang J., Zhang C. Electrochemical synthesis of polyaniline nano-network on alanine functionalized glassy carbon electrode, its application for the direct electrochemistry of horse heart cytochrome c. Biosens. Bioelectron,2009,24:2085-2090
    Zhao G., Xu J., Chen H. Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Anal. Biochem,2006,350:145-50
    Zhao G., Yin Z., Zhang L., Wei X. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem. Commun,2005,7: 256-260
    Zhao Z., Cai X. Determination of trace nitrite by catalytic polarography in ferrous iron thiocyanate medium. J. Electroanal. Chem,1988,252:361-370
    Zhou M.H., Wu Z.C., Wang D.H.C. Characteristic of Phenol Degradation Under Various Electrocatalysis Processes. Chem. J. Chin. Univ,2003,24: 1637-1641
    Zhou Y., Zhi J., Zou Y., Zhang W., Lee S.T. Direct Electrochemistry and Electrocatalytic Activity of Cytochrome c Covalently Immobilizedon a Boron-Doped Nanocrystalline Diamond Electrode. Anal. Chem,2008,80: 4141-4146
    Zhou Y., Yuan R., Chai Y A reagentless amperometric immunosensor based on goldnanoparticles/thionine/Nafion-membrane-modified gold electrode for determination of a-1-fetoprotein. Electrochem. Commun,2005,7:355-360.
    Zhu L., Wang K., Lu T., Xing W., Li J., Yang X. The direct electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential. J. Mol. Catal. B,2008,55:93-98
    Zhu X., Ai S., Chen Q., Yin H., Xu J. Label-free electrochemical detection of Avian Influenza Virus genotype utilizing multi-walled carbon nanotubes-cobalt phthalocyanine-PAMAM nanocomposite modified glassy carbon electrode. Electrochem. Commun,2009,11:1543-1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700