纳米材料的绿色合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以多糖类有机化合物为模板调控无机晶体的生长是近年来一个新的研究方向。多糖是各种单糖的缩聚物,是地球上最丰富的可再生天然有机物之一。多糖的相对分子量比较大,大多带有负电荷,由于是一种多羟基的高分子物质,所以在分子间可以通过氢键形成超分子,作为模板来引导纳米粒子的生长。利用多糖类有机化合物的种类差异,可以制备出具有不同结构和独特性能的无机纳米材料。利用生物多糖制备纳米材料有很多优点,如多糖资源丰富,可再生,成本低廉;制备过程中的化学反应都在水体系中进行;多糖在合成纳米材料的过程不但充当模板剂,有些甚至还充当稳定剂、还原剂。这就避免了以往纳米材料制备过程中使用有机溶剂、有机表面活性剂、强还原剂等高毒害物质,满足绿色合成的要求。由于纳米材料具有高表面积,呈现了极好的催化性能。本论文将多糖类有机化合物引入金属氧化物与金属纳米材料的制备中,并研究其中几种金属纳米材料在有机合成反应中的催化性能,主要包含以下四个方面的研究内容:
     (1)用一种简单、绿色的方法通过以淀粉为模板合成具有高比表面积的NiO纳米颗粒。产物形貌新颖且具有良好的赝电容性质。同时,我们研究了煅烧温度和模板用量对产物结构参数的影响,并提出了NiO纳米颗粒的形成机理。同时探讨不同模板(葡聚糖)对多孔NiO的制备的适用性以及淀粉模板对于其它多孔金属氧化物制备(Co3O4)的适用性。
     (2)利用可溶性淀粉和乙酸盐作为前驱体,在氮气气氛下热处理淀粉与乙酸盐的混合物,通过一种简单的绿色合成方法制备了碳保护的纳米镍和碳保护的纳米钴两种复合材料,样品具有较高的比表面积,在空气中具有很好的稳定性和耐酸性。
     (3)利用葡聚糖为模板和还原剂制备了银/碳复合物。并以醛、炔、胺三组分的偶联反应(A3)为模型,对纳米银/碳复合物在有机反应中的催化性能进行了初步研究。以银/碳复合物为催化剂,以54 %收率成功制得了炔丙基胺衍生物。
     (4)水热法制备空心微球结构金属氧化物并研究其超电容性能。报道两种制备方法:一种是利用葡萄糖和金属盐前驱体混合一步水热、热处理最终得到金属氧化物空心球;另一种是首先水热制得胶体碳球,然后以胶体碳球为硬模板,制得金属氧化物空心球。制得的样品均具有较高的比表面积和较好的超电容性能。
It is a new researching area of controlling the growth of inorganic crystals by using polysaccharide as template. Polysaccharide is the condensation polymer of saccharide, which is one of the richest renewable natural organic macromolecules on the earth. It usually has large molecular weight and has negative charges. Polyhydroxylated macromolecules present dynamic supramolecular associations facilitated by inter- and intra-molecular hydrogen bonding resulting in molecular level capsules, which can act as templates for nanoparticle growth. The structures and properties of inorganic crystals can be controlled by various kinds of polysaccharide templates with different conformation and molecular weight. It has many advantages. For example, polysaccharide is readily available, renewable and low cost. Besides, the chemical reaction for the nanomaterials using polysaccharide as the template can be carried out in aqueous system. In some reactions, polysaccharides not only can act as template agent, but also act as stabilizer and reducing agent. This method can efficiently avoid some toxic organic chemicals such as organic solvents, strong reducing agents, and fulfills the requirement of green chemistry. As compared to bulk materials, nanoscale materials catalysts exhibit perfect catalytic activities because of their large surface areas. In this paper, polysaccharide has been used as the template for the preparation of metal oxides and metals nanomaterials. And we also study the catalytic activities of resultant nanomaterials in reaction of three-component coupling of aldehyde, alkyne, and amine(A3).
     The main contents of this thesis are as follows:
     Firstly, we demonstrate an easy and environmentally friendly synthetic route to prepare NiO nanoparticles with large BET surface area by using starch as sacrificial template. The sample has favorable faradaic pseudocapacitive behavior and novel shape. The effects of the starch content and the calcination temperature on the structural parameters of the resultant NiO were studied. And the formation mechanism of the NiO nanoparticles was proposed. Furthermore, the method has also been demonstrated for the other polysaccharide and the other metal oxide (Co3O4). Secondly, carbon-protected metallic nanoparticles (nickel and cobalt) composites have been prepared by the pyrolysis of the mixture of soluble starch and acetate in N2 flow. The obtained samples possess mesoporous structures and high BET surface areas. And the obtained samples are highly stable in air and strong acid.
     Ag/C complex was prepared by using polysaccharide as template and reducing agent. With the three-components coupling reaction of amine, alkyne and aldehyde as prototype, the catalytic property of the nanoparticle was also studied. The propyl amine was achieved successfully with 54 % yield by using Ag/C as calatyst.
     Thirdly, we have prepared metal oxides hollow sphere via a hydrothermal approach. The electrochemical properties of the samples were studied. Two methods are reported. The first method: various metal salts were dissolved together with glucose in water, then metal oxides hollow spheres were prepared by heating treatment of the mixtures. The second method: 1) hydrothermal synthesis of colloidal carbon spheres, 2) the synthesis of metal oxides hollow sphere using the resulting colloidal carbon spheres as template. The resulting samples have large BET surface areas and have favorable faradaic pseudocapacitive behavior.
引文
[1]毛传斌,李恒德,崔福斋,等.无机材料的仿生合成[J].化学进展, 1998, 10(3): 246-254.
    [2] Ball P, Garwin L. Science at the atomic scale[J]. Nature, 1992, 355: 761~766.
    [3] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl2[J]. Nature, 1998, 395: 336~337.
    [4] Renzhi M, Yoshio B, Tadao S, el at. Growth, morphology, and structure of boron nitride nanotubes[J]. Chem. Mater, 2001, 13(9): 2965~2971.
    [5] Jiang X C, Xie Y, Lu J, et al. Synthesis of novel nickel sulfide layer-rolled structures[J]. Adv. Mater., 2001, 13(16):1278~1281.
    [6]徐如人,庞文琴.无机化学与制备化学[M].高等教育出版社, 2001. 526~550.
    [7]汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展[J].无机化学学报, 2000, 16(2): 213~216.
    [8]刘珍,梁伟.纳米材料制备方法及其研究进展[J].材料科学与工艺, 2000, 8(3): 103~108.
    [9]李晓婚,樊安,祖庸.纳米级氧化锌的研究进展[J].现代化工, 2000, 20(7): 23~26.
    [10] Suzkui M, Kagwaa M, Syono Y, et al. Synthesis of ultrafine single component oxide particles by the spray一ICP technique[J]. J. Mater. Sci., 1992, 27(3): 679~684.
    [11]祖庸,雷闰盈,俞行.新型防晒剂—纳米二氧钛[J].化工新型材料, 1988, 6: 2630~2634.
    [12]李道华,叶向荣,忻新泉.纳米材料的室温(湿)固相化学反应合成[J].化学研究与应用, 1999, 11(4): 415~418.
    [13]周益明,忻新泉.低热固相合成化学[J].无机化学学报, 1999, 15(3): 273~292.
    [14] Wang C C, Ying J Y. Sol~gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chem. Mater., 1999, 11(11): 3113~3120.
    [15]酒金婷,李小亭,葛月等.聚合物燃烧方法制备Co3O4纳米粒子[J].应用化学, 2001(9): 755~757.
    [16] Liu B, Zeng H C, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm[J]. J. Am. Chem. Soc., 2003, 125: 4430~4437.
    [17]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机化学学报, 1996, 11(2): 193~206.
    [18]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报, 1995, 58(11): 6~9.
    [19] Pradhan B K, Kyotani T, Tomita A. Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes[J]. Chem. Commun., 1999, 14: 1317~1318.
    [20] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548~552.
    [21] Yang D, Qi L, Ma J. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes[J]. Adv. Mater., 2002, 14(21): 1543~1546.
    [22] Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates[J]. Chem. Commun., 2003, 22: 2784~2785.
    [23] Silver J, Withnall R, Ireland T G, et al. Novel nano-structured phosphor materials cast from natural Morpho butterfly scales[J]. Journal of Modern Optics, 2005, 52 (7): 999~1007.
    [24] Wang L Q, Shin Y, Samuels W D, et al. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization[J]. J. Phys. Chem. B, 2003, 107(50): 13793.
    [25]郭忠武,王来曦.糖化学研究进展[J].化学进展, 1995, 7(l): 10~29.
    [26] Burger M M. A difference in the architecture of the surface membrane of normal and virally transformed cells[J]. Proc. Natl. Acad. Sci., 1969, 62(3): 994~1001.
    [27] Inbar M, Sachs L. Structural difference in sites on the surface membrane of normal and transformed cells[J]. Nature, 1969, 223: 710~712.
    [28]刑其毅,徐瑞秋,周政,等.基础有机化学[M].第二版,北京:高等教育出版社, 1994. 969~1002.
    [29] Bunars F E. The chemistry of lignin[M]. New York: Academic Press Inc., 1852. 5~10.
    [30] He J H, Toyoki K. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers[J]. Chem. Mater., 2003, 15 (22): 4401~4405.
    [31] Walsh D, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges [J]. Nat. Mater., 2003, (2): 341~386.
    [32] Walsh D, Wimbush S C, Hall S R. Dextran as a morphological directing agent in the synthesis of high-Tc superconducting YBa2Cu3O7-δsponges with improved critical current densities[J]. Chem. Mater., 2007, 19(4): 647~649
    [33]曹洁明,郑明波,陆鹏,等.利用还原性多糖合成银纳米粒子[J].化学学报, 2005, 63 (16): 1541~1544.
    [34] Zheng M B, Cao J M, Chen Y M, et al. Facile fabrication of nickel oxide hollow spheres and amorphous carbon/nickel nanoparticles composites using colloidal carbonaceous microspheres as template[J]. Chem. Lett., 2005, 34 (8): 1174~1175.
    [35] Zhou J F, Zhou M F, Caruso R A. Agarose Template for the Fabrication of Macroporous Metal Oxide Structures[J]. Langmuir, 2006, 22(7): 3332~3336.
    [36] Qin G W, Liu J, Balaji T, et al. A Facile and Template-Free Method to Prepare Mesoporous Gold Sponge and Its Pore Size Control[J]. J. Phy. Chem. C, 2008, 112 (28): 10352~10358.
    [37] Tridib K S, Arun C. Starch-mediated shape-selective synthesis of Au nanoparticles withtunable longitudinal plasmon resonance[J]. Langmuir, 2004, 20(9): 3520~3522.
    [38] Dragana M D, Stern W B, Taubert A. Zinc Oxide/Carbohydrate hybrid materials via mineralization of starch and cellulose in the strongly hydrated ionic liquid Tetrabutylammonium hydroxide[J]. Cryst. Growth Des., 2008, 8 (1): 330~335.
    [39] Huang J G, Ichinose L, Kunitake T. Biomolecular modification of hierarchical cellulose fibers through titania nanocoating angewandte chemie[J]. Angew. Chem. Int. Ed, 2006, 45(18): 2883~2886.
    [40] Huang H Z, Yang X R. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate[J]. Biomacromolecules, 2004, 5(6): 2340~2346.
    [41] Huang H Z, Yang X R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method[J]. Carbohydr. Res., 2004, 339(15): 2627~2631.
    [42] Zhang B J, Davis S A, Mann S. Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films[J]. Chem. Mater., 2002, 14(3): 1342~1369.
    [43] He J H, Kunitake T, Naka A. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers[J]. Chem. Mater., 2003, 15(23): 4401~4406.
    [44] He J H, Kunitake T, Watanabe T. Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template[J]. Chem. Commun., 2005, 6: 795~796.
    [45] Zhang W, Zhang D, Fan T, et al. Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales[J]. Nanotechnology, 2006, 17(3): 840~844.
    [46] Berti L, Alessandrini A, Faeci P. DNA-templated photoinduced silver deposition[J]. J. Am. Chem. Soc., 2005, 127(32): 11216~11217.
    [47] Bharde A, Wani A, Shouehe Y, et al. Bacterial aerobic synthesis of nanocrystalline magnetite[J]. J. Am. Chem. Soc., 2005, 127(26): 9326~9327.
    [48] Ahmad A, Mukherjee P, Mandal D, et al. Enzyme mediated extra cellular synthesis of CdS nanoparticles by the fungus, fusarium oxysporum[J]. J. Am. Chem. Soc., 2002, 124(41): 12108~12109.
    [49] Tabuchi J, Saito T, Kibi Y, et al. Large capacitance electric double layer capacitor using activated carbon/carbon composite[J]. IEEE transactions on components, hybrids and manufacturing technology, 1993, 16(4): 431-436.
    [50] Dong X P, Shen W H, Gu, J L, et al. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors[J]. J. Phys. Chem. B, 2006, 110(12): 6015~6019.
    [51] Nam K W, Kim K B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism[J]. J. Electrochem. Soc.,2002, 14(3): A346~A354.
    [52]李新勇,张桂兰,汤国庆等.纳米晶体材料的研究进展[J].化学进展, 1996, 8: 231~239.
    [53] Ma X C, Li X, Lun N, e tal. Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique[J]. Materials Chemistry and Physics, 2006, 97(2-3): 351~356.
    [54] Nhut J M, Vieira R, Pesant L. Synthesis and catalytic uses of carbon and silicon carbide nanostructures[J], Catalysis Today, 2002, 76(1): 11–32.
    [55]王亚青,周继承,杨晓烽.纳米金复合催化剂制备及其低温选择催化环己烷氧化性能[J].过程工程学报, 2009, 9(6): 1186-1191.
    [56]郑长青,李毅群,郑文杰.乙二胺功能化纤维素负载纳米钯催化Suzuki反应的研究[J],有机化学, 2009, 29(12): 1983-1987.
    [57]张艳,储伟,钟琳,余良军.碳纳米管负载纳米钯催化Heck的反应[J].石油学报:石油加工2009, 25(6): 796-800.
    [58] Frelink T, Visscher W, van Veen J A R. Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol[J]. J. Electroanal. Chem., 1995, 382(1-2):65~73.
    [59] Chechik V, Crooks M R, Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts[J]. J. Am. Chem. Soc., 2000, 122: 1243~1244.
    [60] Julietta L, Karine H, Didier A. Synthesis and catalytic activity of DAB-dendrimer encapsulated Pd nanoparticles for the Suzuki coupling reaction[J]. 2006, 359(15): 4909~4911.
    [61] Nakagawa H, Namba A, Hlmann M B. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon cata[J]. Fuel, 2004, 83(6): 719~725.
    [62] Sharma A, Saito I, Nakagawa H. Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds[J]. Fuel, 86 (2007): 915~920.
    [63] Hou T, Yuan L X, Ye T Q. Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst[J]. International Journal of Hydrogen Energy, 2009, 34: 909 5~ 9107.
    [64] Ji H P, Sun Y K, Soo M K, et al. Cobalt-Rhodium Heterobimetallic Nanoparticle-Catalyzed Synthesis ofα,β-Unsaturated Amides from Internal Alkynes, Amines, and Carbon Monoxide[J]. Organic Letter, 2007, 9(13): 2465~2468.
    [65] Raveendran P, Fu J, Wallen S L. Completely“green”synthesis and stabilization of metalnanoparticles[J]. J. Am. Chem. Soc, 2003, 125(46): 13940~13941.
    [66] Lorenzo B, Andrea A, Paolo F. DNA-Templated hotoinduced silver deposition[J]. J. AM. CHEM. SOC., 2005, 127: 11216~11217.
    [67] Takato M, Yusuke M, Hisashi F, et al. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst[J]. Angew. Chem., 2008, 120: 144 ~147.
    [68] Shimizu K, Ohshima K, Satsuma A. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by g-Alumina supported silver- cluster[J]. Chem. Eur. J., 2009, 15: 9977~9980.
    [69] Murugadoss A, Goswami P, Paul A, et al.“Green”chitosan bound silver nanoparticles for selective C–C bond formation via in situ iodination of phenols[J]. Journal of Molecular Catalysis A: Chemical, 2009, 304: 153~158.
    [70] Huebner C E, Donoghue E M, Wenk P, et al. A new class oF highly active antihistaminics[J]. Jacs, 1960, 32: 2077~2081.
    [71] Wasserscheid P, Keim W. Ionic Liquids - New“Solutions”for Transition Metal Catalysis[J]. Angew. Chem. Int. Engl., 2000, 39(21): 3772~3789.
    [72] Wei C M, Li C J. A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via C-H Activation Catalyzed by Gold in Water[J]. Am. Chem. Soc. 2003, 125: 9584~9585.
    [73] Wei C M, Li Z G, Li C J. The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine[J]. Am. Chem. Soc, 2003, 5(23):4473~4475. O
    [74] Yan W J, Wang R, Xu Z Q, e tal, A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine[J]. Journal of Molecular Catalysis A: Chemical, 2006, 255(1-2): 81~85.
    [75] Mohanan J L, Arachchige I U, Brock S L. Porous semiconductor chalcogenide aerogels[J]. Science, 2005, 307(5708): 397~400.
    [76] Srinivasan V, Weidner J W. An electrochemical route for making porous nickel oxide electrochemical capacitiors[J]. J. Electrochemical. Soc., 1997, 144(8): L210~L213.
    [77]郭炳琨,李新海,杨青松等.电池原理及制造技术[M].长沙:中南大学出版社, 2003. 261~270.
    [78] Tartaj P, Morales M P, Veintemillas-Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine[J]. J. Appl. Phys., 2003, 36(13): 182~197
    [79] Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles[J]. J. Am. Chem. Soc., 2004, 126(1): 273~279.
    [80] Kim D K, Mikhaylova M, Zhang Y, et al. Protective coating of superparamagnetic iron oxidenanoparticles[J]. Chem. Mater., 2003, 15(8): 1617~1627.
    [81] Bao Y, Michael B, Alexandre B P, et al. Controlled crystalline structure and surface stability of cobalt nanocrystals[J]. J. Phys. Chem. B, 2005, 109(15): 7220~7222.
    [82] Wu M Z, Zhang Y D, Hui S, et al. Structure and magnetic properties of SiO2 coated Co nanoparticles[J]. J. Appl. Phys., 2002, 92(1): 491~495.
    [83] Hayashi T, Hirono S, Tomita M,et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon[J]. Nature, 1996, 381: 772~774.
    [84] Lu A H, Li W C, Matoussevitch N, et al. Highly stable carbon-protected cobalt nanoparticles and graphite shells[J]. Chem. Commun., 2005, 1: 98~100.
    [85] Teunissen W, Groot F M F, Geus J, et al. The structure of carbon encapsulated NiFe nanoparticles[J]. J. Catal., 2001, 204(1): 169~174.
    [86] Hamaoui B E, Zhi L J, Wu J S, et al. Uniform carbon and carbon/cobalt nanostructures by solid-state thermolysis of polyphenylene dendrimer/cobalt complexes[J]. Adv. Mater., 2005, 17(24): 2957~2960.
    [87] Zalich M A, Baranauskas V V, Riffle J S, et al. Structural and magnetic properties of oxidatively stable cobalt nanoparticles encapsulated in graphite shells[J]. Chem. Mater., 2006, 18(11): 2648~2655.
    [88] He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers[J]. Chem. Mater., 2003, 15(24): 4401~4406.
    [89] He J, Kunitake T, Nakao A. Facile fabrication of composites of platinum nanoparticles and amorphous carbon films by catalyzed carbonization of cellulose fibers[J]. Chem. Commun., 2004, 410~411.
    [90] Cao J M, Zheng M B, Lu P, et al. Synthesis of silver nanoparticles by reductive polysaccharides[J]. Acta Chim. Sinica, 2005, 63(16): 1541~1544.
    [91] Chen Y P, Cao J M, Zheng M B, et al. Novel synthesis of nanoporous nickel oxide and nickel nanoparticles/amorphous carbon composites using soluble starch as the template[J]. Chem. Lett., 2006, 35(7): 700~701.
    [92] Qi Z M, Zhou H S, Naoki M I, et al. Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution[J]. J. Phys. Chem. B, 2004, 108(22): 7006 ~7011
    [93] Yu C, Qiu J S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch[J]. Chem. Eng. Res. Des., 2008, 86(8): 904~908.
    [94] Yang W, Yang C, Sun M, et al. Green synthesis of nanowire-like Pt nanostructures and their catalytic properties[J]. Talanta, 2009, 78(2): 557~564.
    [95] Kiang C H, Endo M, Ajayan P M, Dresselhaus G, Dresselhaus M S. Size effects in carbon nanotubes[J]. Phys. Rev. Lett., 1998, 81(9): 1869~1872.
    [96] Park I S, Choi M, Kim T W, et al. Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template[J]. J. Mater. Chem., 2006, 16(33): 3409~3416.
    [97] Kamata K, Lu Y, Xia Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores[J]. J. Am. Chem. Soc., 2003, 125(9): 2384~2385.
    [98] Wang Y, Cai L, Xia Y. Monodispersed spherical colloids of Pb and their use as chemical templates to produce hollow particles[J]. Adv. Mater., 2005, 17(4): 473~477.
    [99] Caruso F, Caruso R, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391): 1111~1114.
    [100] Breen M, Dinsmore A, Pink R, et al. Sonochemically produced ZnS-coated polystyrence core-shell particles for use in photonic crystals[J]. Langmuir, 2001, 17: 903~907.
    [101] Dai Z, Dahne L, Mohwald H et al. Novel capsules with high stability and controlled permeability by hierarchic templating[J]. Angew. Chem. Int. Ed., 2002, 41(21): 4019~4022.
    [102] Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed., 2005, 44(32): 5083~5087.
    [103] Cao A, Hu J, Liang H, et al. Self-assembled vanadium pentoxide hollow microspheres from nanorods and their application in lithium-ion batteries[J]. Angewandte. Chemie, 2005, 117(28): 4465~4469.
    [104] Peng Q, Xu S, Zhuang Z, et al. A general chemical conversion method to various semiconductor hollow structures[J]. Small, 2005, 1(2): 216~221.
    [105] Peter T, Malama C, Thomas J. Titanium containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature, 1994, 368(24): 321~323.
    [106] Sun Y, Mayers B, Xia Y. Metal nanostructures with hollow interiors[J]. Adv. Mater., 2003, 15(728): 641~646.
    [107] Cha J, Bartl M, Wong M, et al. Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators[J]. Nano Lett., 2003, 3(7): 907~911.
    [108] Caruso F, Schuler C, Kurth D. Core-shell particles and hollow shells containing metallo-supramolecular components[J]. Chem. Mater., 1999, 11(11): 3394~3399.
    [109] Yang W, Trau D, Renneberg R, et al. Layer-by-layer constuction of navel biofunctional fluorscent microparticles for immunoassay applications[J]. J. Collod. Interf. Sci., 2001, 234: 356~362.
    [110] Yoon S, Sohn K, Kim J, et al.Fabrication of carbon capsules with hollow macroporous core/ mesoporous shell structures[J]. Adv. Mater., 2002, 14(1): 19~21.
    [111] Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem., Int. Ed. Engl., 2004, 43(5): 597~601.
    [112] Sun X, Li Y. Ga2O3 and GaN semiconductor hollow spheres[J]. Angew. Chem., Int. Ed. Engl., 2004, 43(29): 3827~3831.
    [113] Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14): 2211~2214.
    [114] Wang Q, Li H, Chen L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics, 2002, 152-153: 43~50.
    [115] Li X L, Lou T J, Sun X M, et al. Highly sensitive WO3 hollow-sphere gas sensors[J]. Inorg. Chem., 2004, 43(17): 5442~5449.
    [116] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach[J]. Chem. Mater. 2006, 18(16): 3808~3812.
    [117]郑明波,曹洁明,陈勇平,等.快速沉淀法制备多孔纳米NiO及其电容性质研究[J].高等学校化学学报, 2006, 27(6): 1138~1140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700