Mg/Al水滑石中Fe~(3+)的加入对水溶液中铬吸附的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以硝酸镁、硝酸铝、硝酸铁、氢氧化钠、碳酸钠为主要原料,采用液相共沉淀法合成了Mg/Al及Mg/Al/Fe纳米级水滑石材料,并采用热分解法在500℃焙烧制得本实验所需吸附剂-煅烧水滑石材料(CH-Mg/Al, CH-Mg/Al/Fe)。三价铁的加入对CH-Mg/Al去除铬的影响主要从结构特性、吸附性能及去除机理三方面来考察。结构特性主要通过X射线衍射图谱、透射电镜观察、热重-差热分析、红外光谱分析等手段对吸附剂的晶体结构、形貌形态、热稳定性等方面进行表征;吸附性能的影响主要从溶液pH、初始铬浓度、吸附剂投加量、接触时间、温度及竞争离子等方面的影响来考虑;另外还通过吸附剂前后红外谱图对比、不同接触时间的XRD分析从吸附机理方面研究了Fe3+的加入对CH-Mg/Al吸附铬的影响。通过表征得知:三价铁的加入对其结构几乎没有本质影响,只是降低了水滑石前驱体的结晶度和层间距,增加了粒子的分散性能。吸附性能表明:CH-Mg/Al及CH-Mg/Al/Fe对溶液中Cr (Ⅵ)的吸附均在pH=3.0时达到最好,通过各种影响因素的考查发现:尽管吸附过程都是吸热、自发的熵增过程,但是Fe3+的加入不利于溶液中Cr (Ⅵ)的去除,Langmuir等温线拟合出的最大饱和吸附量显示Fe3+的引入使其平均吸附量降低了10.2 mg/g左右。不同接触时间的XRD谱图分析得知:CH-Mg/Al及CH-Mg/Al/Fe对铬的去除机理不仅涉及煅烧水滑石的插层作用,而且还有层状结构恢复后的外表面吸附及层间阴离子的离子交换作用。吸附比例结果显示无论是CH-Mg/Al还是CH-Mg/Al/Fe,去除过程中插层作用都占很大比例,而且CH-Mg/Al中加入三价铁之后,使得层间阴离子的离子交换作用变得更加难以进行。
The calcined hydrotalcites (CH-Mg/Al and CH-Mg/Al/Fe) were obtained by thermal decomposition of their corresponding precursors at 500℃. The precursors were synthesized by co-precipitation method using Mg(NO3)2·6H2O, Al(NO3)3·9H2O, Fe(NO3)3·9H2O, NaOH and NaCO3. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on removal of Cr (VI) from aqueous solution was studied from aspects of structure characteristics, adsorption properties and mechanism discussions. The structure characteristics of the adsorbents were analyzed by means of XRD, TEM, TG-DTA, pHPZC and FTIR. The adsorption properties were studied as a function of pH, initial chromium concentration, sorbent dose, contact time, temperature and coexisting ions. Additionally, the removal mechanism was also discussed by comparing the analysis of FTIR before and after adsorption and the XRD patterns of adsorbents at different contact times during reconstruction process. The structure characteristics showed that replacing Al3+ with Fe3+ has almost not changed the structure of CH-Mg/Al but reducing the crystallinity and interlayer spacing. The removal of Cr (VI) gets the maximum at pH 3.0 for both CH-Mg/Al and CH-Mg/Al/Fe. The isotherms indicated that the adsorption both fitted better to Langmuir model, but the theoretical saturated adsorption capacity reduces by 10.2 mg/g by addition of Fe3+. Although thermodynamic parameter values revealed the adsorption natures on CH-Mg/Al and CH-Mg/Al/Fe are endothermic and spontaneous processes, the value changes indicated the addition of Fe3+ in CH-Mg/Al goes against the adsorption process. The removal mechanism involved not only intercalation but also adsorption on external surface of the layers and interlayer anion exchange for both CH-Mg/Al and CH-Mg/Al/Fe. Furthermore, it also indicated that intercalation accounts for a large proportion during the removal process whatever for CH-Mg/Al, or for CH-Mg/Al/Fe. Additionally, the replacement of Al3+ by Fe3+ in hydrotalcite led to the interlayer anion exchange more difficult.
引文
[1]陈勇生,孙启俊,陈钧,等.重金属的生物吸附技术研究[J].环境科学进展,1997,5(6):34-43.
    [2]Barnhart, Joel. Chromium chemistry and implications for environmental fate and toxicity [J]. Journal of Soil Contamination,1997,6(6):561-568.
    [3]韦林森.铁镍氧化物磁性粒子的制备与吸附模拟废水中Cr(Ⅵ)行为研究[D].大连:大连理工大学化学学院,2007.
    [4]李杰.电镀废水处理与电镀工业的持续发展[J].表面工程,2005,4:53-56.
    [5]姚俊,吴文学,杨小端,等.电解锰中重金属元素与流域污染[J].吉林大学学报,1999,20(3):74-77.
    [6]储金宇,曹凯杰,吴春笃.印染废水处理技术综述[J].安徽农业科学,2007,35(7):2041-2042,2060.
    [7]战金辉.垃圾填埋场衬垫对重金属吸附特性的研究[D].大连:大连理工大学化学学院,2008.
    [8]杨国栋.花生壳对水中Cr(Ⅵ)的吸附性能研究[D].兰州:兰州理工大学化工学院,2009.
    [9]Qiu G, Feng X B, Wang Sh F, et al. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China [J].Appl. Geochem.,2005,20(3):627-638.
    [10]Li P, Feng X B, Shang L H, et al. Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China [J]. Appl. Geochem.,2008,23(8):2055-2064.
    [11]沈伟.细菌纤维素的表面衍生化及其对重金属离子的吸附性能研究[D].上海:东华大学材料学院.2009.
    [12]赵丽红,李素霞,柯斌,等.铅污染现状及其修复机理研究进展[J].武汉生物工程学院学报,2006,2(1):43-46.
    [13]杨胜科,王文科,张威,等.砷污染生态效应及水土体系中砷的治理对策研究[J].地球科学与环境学报,2004,26(3):69-73.
    [14]Strausak D, Mercer F B Julian, Dieter H H, et al. Copper in disorders with neurological symptoms:Alzheimer's, Menkes, and Wilson diseases [J]. Brain Research Bulletin,2001,55(2):175-185.
    [15]Shi Z C. Nickel carbonyl:toxicity and human health [J].Sci. Total Environ.,1994,148:293-298.
    [16]Berner T 0, Murphy M M, Slesinske R. Determining the safety of chromium tripicolinate for addition to foods as a nutrient supplement [J].Food Chem. Toxicol.,2004,42:1029-1042.
    [17]Hermann J, Goad C, Arquitt A, Stoecker B. Effects of dietary chromium, copper and zinc on plasma lipid concentrations in male Japanese quail [J]. Nutrition Research,1998,18(6):1017-1027.
    [18]US Environmental Protection Agency (EPA). Toxicological review of trivalent chromium (CAS No,16065-83-1). In support of summary information on the integrated risk information system (R). Washington, DC, August.1998.
    [19]Springer-Verlay Telons. Goyer R A, Cherian M G:Toxicology of metals:Biochemical aspects (Handbook of Experimental Pharmacoly)[Hardcover][M].1995,115:467-480.
    [20]Tandon S K, Saxena D K, Gaur J S, et al. Comparative toxicity of trivalent and hexavalent-Alterations in blood and liver [J]. Environ. Res.,1978,15:90-99.
    [21]李爱琴,唐宏建,王阳峰.环境中铬污染的生态效应及其防治[J].中国环境管理干部学院学报.2006,16(1):76-77.
    [22]汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1)33-37,48.
    [23]赵振新,李少群,余贵英,等.六价铬经口摄入的动物慢性毒性实验研究[J].环境与健康杂志.1988,2,28-30.
    [24]Tunali S, Kiran I, Akar T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass [J]. Miner. Eng.,2005,18(7):681-689.
    [25]Bai R S and Abraham T E. Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass [J]. Bioresour. Technol.,2003,87(1):17-26.
    [26]Goyal N, Jain S C, Banerjee U C. Comparative studies on the microbial adsorption of heavy metals [J]. Advances in Environmental Research,2003,7(2):311-319.
    [27]Prasad M N V, Freitas H. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak) [J].Environ. Pollut.,2000, 110(2):277-283.
    [28]李金枝,朱建华,谢明兰.铬与健康[J].广东微量元素科学,1997,4(8):681-689.
    [29]皮肤外伤处理不当所致铬疮一例[J].工业卫生与职业病,1987,13(5):307.
    [30]Babu N K C, Asma K, Raghupathi A, et al. Screening of leather auxiliaries for their role in toxic hexavalent chromium formation in leather-posing potential health hazards to the users [J].Journal of Clean Product,2005,13(12):1189-1195.
    [31]张汉池,张继军,刘峰.铬的危害与防治[J].内蒙古石油化工,2004,30:72-73.
    [32]张骏,韩磊,曹文东.某电镀厂低浓度铬对作业工人职业危害调查分析[J].工业卫生与职业病,2009,35(2):94-96.
    [33]武红叶,曾明.六价铬致癌机制的研究进展[J].癌变·畸变·突变,2006,18(6):491-493.
    [34]张建民.生物处理电镀铬废水的研究[J].工业水处理,1999,19(5):21-22.
    [35]张惠,戴友芝,刘剑,等.曲霉菌体吸附剂对水中六价铬研究[J].工业用水与废水,2005,36(2):37-39.
    [36]Song Y C, Piak B C, Shin H S, et al. Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater [J]. Water Sci. Technol.,1998,38:187-194.
    [37]颜家保,王朝霞,吴文升.还原沉淀法处理含铬废水的工艺研究[J].武汉科技大学学报(自然科学版),2002,25(1):43-44.
    [38]闫旭,李亚峰.含铬废水的处理方法[J].辽宁化工,2010,39(2):143-146.
    [39]赵如金,吴春笃.常温铁氧体法处理重金属离子废水研究[J].化工环保,2005,25(4):263-266.
    [40]贾金平,谢少艾,陈宏锦.电镀废水处理技术及工程实例[M].北京:化学工业出版社,2003:151.
    [41]赵丽,王成端,赵诚,等.电解还原法处理含铬废水[J].科技导报,2006,24(11):58-60.
    [42]韩英哲,文学洙,裴文,等.光催化法利用太阳能处理含Cr6+废水的研究[J].化学世界,1983,3:66-67.
    [43]Doll T E, Frimmel F H. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials-determination of intermediates and reaction pathways [J]. Water Res., 2004,38(4):955-964.
    [44]Rincon A G, Pulgarin C. Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia:post-irradiation events in the dark and assessment of the effective disinfection time [J]. Applied Catalysis B: Environmental,2004,49(2):99-112.
    [45]Ohko Y, iuchi K, Chisa niwa, et al.17 β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity [J].Environ. Sci. Technol.,2002,36(19):4175-4181.
    [46]何代平.光催化法处理含Cr(Ⅵ)废水的研究[J].应用化工,2007,36(1):19-21.
    [47]李靖,武强,张翠,等.膜技术在含铬废水处理领域的研究应用概况[J].化工进展,2009,28:52-55.
    [48]Chen Sh Sh, Li Ch W, Hsu H D, et al. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes [J].J. Hazard. Mater.,2009,161:1075-1080.
    [49]Ozaki H, Sharma K, Saktaywin W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal:effects of interference parameters [J]. Desalination,2002,144:287-294.
    [50]吴克明,石瑛,王俊,等.离子交换树脂处理钢铁钝化含铬废水的研究[J].工业安全与环保,2005,31(4):22-23.
    [51]徐灵,王成端,姚岚.离子交换树脂处理含铬废水的研究[J].工业安全与环保,2007,33(11):12-13.
    [52]Rengaraj S, Joo C K, Kim Y, et al. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins:1200H,1500H and IRN97H [J]. J. Hazard. Mater.,2003, B102:257-275.
    [53]Barkat M, Nibou D, Chegrouche S, et al. Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions [J]. Chem. Eng. Process.,2009,48:38-47.
    [54]Kauspediene D, Kazlauskiene E, Gefeniene A, et al. Comparison of the efficiency of activated carbon and neutral polymeric adsorbent in removal of chromium complex dye from aqueous solutions [J]. J. Hazard. Mater.,2010,179:933-939.
    [55]Hu X J, Wang J S, Liu Y G, et al. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics [J]. J. Hazard. Mater.,2011,185(1):306-314.
    [56]Dakily M, Khamis M, Manassra A, et al. Selective adsorption of chromium (Ⅵ) in industrial wastewater using low-cost abundantly available adsorbents [J].Adv. Environ. Res.,2002,6:533-540.
    [57]Vinod K G, Rastogi A, Nayak A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material [J].J. Colloid Interface Sci.,2010,342:135-141.
    [58]Allmann R and Jepsen H P. Structure of hydrotalcite [J].Neues Jahrbuch fur Mineralogie-Monatshefte.1969,12:544-551.
    [59]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and applications [J].Catal. Today,1991,11:173-301.
    [60]Reichle W T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals [J].J. Catal.,1985,94:547-557.
    [61]Wu G Q, Wang L Y, Evans D G, et al. Layered double hydroxides containing intercalated zinc sulfide nanoparticles:Synthesis and characterization [J].Eur. J. Inorg. Chem.,2006,16:3185-3196.
    [62]Shigeo M. Physico-chemical properties of synthetic hydrotalcites in relation to composition [J]. Clays Clay Miner.,1980,18:50-56.
    [63]Taylor H F W. Crystal structures of some double hydroxide minerals [J]. Mineralogical Magazine,1973,39:377-389.
    [64]李冬梅,王海增,王立秋,等.焙烧水滑石吸附脱出水中硫酸根离子的研究[J].矿物学报,2007,27(2):109-114.
    [65]Goswamee R L, Sengupta P, Bhattacharyya K G, et al. Adsorption of Cr (Ⅵ) in layered double hydroxides [J]. Applied Clay Science,1998,13(1):21-34.
    [66]Narita E, Yamagishi T, Aizu K, et al. The formation of layered hydrotalcite-like compounds by coprecipitation of Co (Ⅱ) and Ni (Ⅱ) with Al (Ⅲ) in aqueous ammoniacal solutions [J].Int. J. Miner. Process.,1990,29:267-278.
    [67]Budhysutanto W N, Kramer H J M, Agterveld D V, et al. Pre-treatment of raw materials for the hydrothermal synthesis of hydrotalcite-like compounds [J].Chem. Eng. Res. Des.,2010,88:1445-1449.
    [68]陈春霞,赵建强,张留帅,等.焙烧还原法合成纳米Mg3Al-EDTA-HTLcs水滑石[J].材料导报,2010,24:38-40.
    [69]刘红,陆天虹,李淑萍.类水滑石化合物制备方法研究综述[J].南京师大学报(自然科学版).2010,32(2):82-86.
    [70]国家环保局《水和废水监测分析方法》编委会.《水和废水监测分析方法》[M].北京:中国环境科学出版社出版(第三版),1989.
    [71]Ferreira O P, Moraes S G de, Duran N, et al. Evaluation of boron removal from water by hydrotalcite-like compounds [J]. Chemosphere,2006,62:80-88.
    [72]Smiciklas I D, Milonjic S K, Pfendt P, et al. The point of zero charge and sorption of cadmium (Ⅱ) and strontium (Ⅱ) ions on synthetic hydroxyapatite [J].Sep. Purif. Techol.,2000,18:185-194.
    [73]Das J, Das D, Parida K M. Preparation and characterization of Mg-Al hydrotalcite-like compounds containing cerium [J].J. Colloid Interface Sci.,2006,301:569-574.
    [74]Li Y, Gao B, Wu T, et al. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide [J]. Water Res.,2009,43: 3067-3075.
    [75]Gupta V K, Shrivastava A K and Jain N. Biosorption of chromium from aqueous solution by green algae spirogyra species [J]. Water Res.,2001,35:4079-4085.
    [76]Khan A R, Ataullah R and Al-Haddad A. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures [J].J. Colloid Interface Sci.,1997,194:154-165.
    [77]Cortes-Martinez R, Martinez-Miranda V, Solache-Rios M, et al. Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions [J].Sep. Sci. Technol.,2004,39(11):2711-2730.
    [78]Ho Y S, Chiu W T, Wang C C. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust [J]. Bioresour. Technol.,2005,96:1285-1291.
    [79]Tsai S C, Juang K W, Jan Y L. Sorption of cesium on rocks using heterogeneity-based isotherm models [J].J. Radioanal. Nucl. Chem.,2005,266(1):101-105.
    [80]Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics-Review [J].Sep. Purif. Technol.,2008,61:229-242.
    [81]Mellah A and Chegrouche S. The removal of zinc from aqueous solutions by natural bentonite [J]. Water Res.,1997,31(3):621-629.
    [82]Chegrouche S, Mellah A and Telmoune S. Removal of lanthanum from aqueous solutions by natural bentonite [J]. Water Res.,1997,31(7):1733-1737.
    [83]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J].J. Am. Chem. Soc.,1918,40:1361-1402.
    [84]Freundlich H. Adsorption [J].J. Phys. Chem.,1926,57:385-471.
    [85]Chatter jee S, Lee D S, Lee M W, et al. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide [J]. Bioresour. Technol.,2009,100:2803-2809.
    [86]Ho Y S, Ng J C, Mckay G. Kinetics of pollutant sorption by biosorbents:Review [J].Sep. Purif. Methods,2000,29(2):189-232.
    [87]Weber W J, Morris J C, Kinetics of adsorption on carbon from solution [J]. Journal of the Sanitary Engineering Division,1963,89(2):31-60.
    [88]Wang L, Meng Ch G, M Han, et al. Lithium uptake in f ixed-pH solution by ion sieves [J].J. Colloid and Interface Sci.,2008,325:31-40.
    [89]Ho Y S and Mckay G, Pesudo-second order model for sorption processes [J]. Process Biochem.,1999,34(5):451-465.
    [90]Li Y, Gao B, Wu T, et al. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide [J]. Water Res.,2009,43: 3067-3075.
    [91]Hernandez-Moreno M J, Ulibarri M A, Rendon J L, et al. IR Characteristics of hydrotalcite-like compounds [J].Phys. Chem. Miner,1985,12:34-38.
    [92]Ramos-Ramirez E, Gutierrez Ortega N L, Contreras Soto C A, et al. Adsorption isotherm studies of chromium (Ⅵ) from aqueous solution using sol-gel hydrotalcite-like compounds [J].J. Hazard. Mater.,2009,172:1527-1531.
    [93]Nakamoto K. Infrared and Raman of Inorganic and Coordination Compounds [M].5th ed. New York:John Wiley & Sons Inc,1986.
    [94]Cardoso L P, Valim J B. Study of acids herbicides removal by calcined Mg-Al-CO3-LDH [J].J. Phys. Chem. Solids,2006,67:987-993.
    [95]Miyata S. Anion-exchange properties of hydrotalcite-like compounds [J]. Clays Clay Miner.,1983,31:305-311.
    [96]Ferreira 0 P, de Moraes S G, Duran N, et al. Evaluation of boron removal from water by hydrotalcite-like compounds [J]. Chemosphere,2006,62:80-88.
    [97]Triantafyllidis K S, Peleka E N, Komvokis V G, et al. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents [J]. J. Colloid Interface Sci,2010,342:427-436.
    [98]Bruna F, Celis R, Pavlovic I, et al. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA):Systems Mg-Al, Mg-Fe and Mg-Al-Fe [J].J. Hazard. Mater.,2009,168:1476-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700