甲烷无氧芳构化载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要围绕着两个方面进行了研究。第一,提高催化剂的稳定性,第二,新型载体的应用。
     1.催化剂稳定性的提高
     首先,对ZSM-5外表面进行修饰的方法。研究表明,ZSM-5的修饰减少了外表面酸量,促进更多的Mo物种向孔道内迁移。此法提高了主产物苯的选择性,抑制了积碳和萘的生成,从而增强了催化剂的稳定性。
     其次,考察了多级孔ZSM-5对甲烷无氧芳构化反应的影响。研究表明,多级孔ZSM-5表现出了较高的活性和稳定性。这是因为这种材料在扩散性能的改进能使生成的目标产物更快地从活性中心上扩散出来,进而防止积碳的生成。
     2.新型载体的考察
     考察了ITQ-13, TNU-9和IM-5对甲烷无氧芳构化的影响。研究表明,ITQ-13在甲烷无氧芳构化反应中表现出了较差的活性和稳定性。我们推测九圆环孔道不利于苯的扩散。TNU-9和IM-5在此反应中表现出了较好的活性。我们考察了SiO2/Al2O3、Mo含量和反应温度这三方面对此反应的影响。研究发现,这两种材料表现了几乎相似的变化趋势。IM-5在SiO2/Al2O3在30-50之间, TNU-9在SiO2/Al2O3为50左右时,Mo含量在6~8%时,催化剂具有较高的甲烷转化率和芳烃选择性。随着反应温度的升高甲烷的转化率和芳烃的产率都增加,但是稳定性却降低。
     3.孔道结构对甲烷无氧芳构化的影响
     考察了不同大小的超笼在甲烷无氧芳构化反应中催化性能差异,我们选择了MCM-22、ZSM-5、IM-5和TNU-9四种催化剂。研究发现,这四种催化剂的稳定性顺序与超笼的大小的顺序一致,Mo/MCM-22> Mo/TNU-9> Mo/IM-5> Mo/ZSM-5。这可能是因为超笼的存在增强了催化剂的抗积碳能力。
With the increasing scarcity of petroleum, natural gas becomes particularly important. As methane is the primary component of natural gas, its activation and conversion is the key of natual gas chemical engineering. However, the utilization of methane is facing a major test, because, from the structure point of view, methane is a very stable symmetrical molecule,so it is very difficult to be activated. Therefore, methane conversion becomes one of the most valuable and challengeable research in both academic and industrial. In the past twenty years, many researchers have been focusing on methane non-oxidative aromatization, because methane non-oxidative aromatization is an important way to methane conversion. To be able to in-depth understand methane non-oxidative aromatization mechanism, many researchers has done a lot of researches to this reaction, such as choosing catalysts, reaction mechanism, the reasons resulting in deactivation and regeneration methods, However, the stability of catalysts is still to be a problem. Because the reaction was carried out under the condition of high temperature, and the carrier should possess stronger acid, which are very prone to the formation of coke. The formed coke is the chief reason for the rapid deactivation of the catalyst. In addition, it is important to a detailed study on the role of different pore strucuture of zeolite surports in the titled reaction. The purpose of the paper focuses on the two aspects to study. Firstly, improving catalyst stability with two methods, one is to modify the external surface of HZSM-5 through changing the acidic properties of zeolites with magnesium acetate, tetraethylorthosilicate and triethoxyphenylsilane, the other is to synthesize ZSM-5 with a few mesoporous system by introducing auxiliary materials into the synthesis system. Secondly, studying novel zeolite, we synthesize three novel 10MR channel materials - ITQ-13, TNU-9 and IM-5, and study the catalytic behavior of Mo based the three catalysts for the title reaction.
     1. Improving catalyst stability
     Firstly, we modify the external surface of HZSM-5 with Magnesium acetate, tetraethylorthosilicate and triethoxyphenylsilane. The catalytic performance of methane aromatization over modified Mo/ZSM-5 with different Mg contents was investigated in detail. the results show that when MgO contents is at 5%, modified Mo/ZSM-5 shows highest selectivity to benzene While it shows the lowest selectivity to naphthalene and coke. It was found that modified Mo/HZSM-5 reduced the densities of external acid sites, and promoted Mo species disperse in the channel of catalyst, which the modified Mo/HZSM-5 showed higher shape-selectivity to major product benzene, and lower selectivity to naphthalene and coke. However, when MgO content is higher than 5%, modified Mo/ZSM-5 shows lower activity. The possible reason is that overfull MgO builds up channel of catalysts. In addition, the catalytic performance over modified Mo/ZSM-5 with different modifiers in detail, and find that modified Mo/ZSM-5 with triethoxyphenylsilane shows highest catalytic activity and yield of aromatics. In a word, modification of the external surface reduces the densities of external acid site, and improves the activity and stability of the Mo-based ZSM-5 catalyst system. So we consider that the role of external surface acid sites is to promote the formation of larger hydrocarbons.
     Secondly, hierarchical ZSM-5 was applied on the title reaction. We synthesize hierarchical ZSM-5 zeolite with three different strategies, such as adding triethoxyphenylsilane (PTEOS) into the initial sol of the synthesis system, using SBA-15 and MCM-41 as silica sources and using mesoporous carbon as meso-template. And we apply the hierarchical ZSM-5 zeolites on the title reaction. Research results showed that the crystal size of the ZSM-5 zeolites could be adjusted in a certain range by introducing different contents of PTEOS. Besides, the resultant materials possess hierarchical porosity, in addition to those micropores generated by the MFI channels. Moreover, It was found that the Mo/ZSM-5 catalyst, bearing suitable crystal size and mesoporous characteristic showed high stability for the reaction of methane aromatization. In addition, Mo/ZSM-5 zeolite synthesized by using SBA-15 as silica source shows highest catalytic activity and yield of aromatics than that of synthesized by using MCM-41 as silica source. The probable reason is that ZSM-5 zeolite synthesized by using SBA-15 as silica sources possesses more mesoporous systems. So we consider that the presence of mesopore can let methane easier access to the active sites in micropores and the products can diffuse out of catalysts much easier.
     2. Studying novel zeolite
     Firstly, Mo/ITQ-13 was applied to the title reaction. ITQ-13 is a tridirectional medium-pore zeolite containing 9-and 10-member ring pores. ITQ-13 zeolite was successfully synthesized using different silica sources (i.e., tetraethylorthosilicate (TEOS), colloidal silica and fumed silica). Research results showed that the ITQ-13 samples were synthesized using colloidal silica and fumed silica possess better crystallinity and larger crystals than those synthesized by the TEOS route. Besides, Mo/ITQ-13 was applied to methane non-oxidative aromatization. The catalytic performance of Mo/ITQ-13 is worse in comparison with Mo/ZSM-5 in the title reaction. So we consider that the presence of 9MR in ITQ-13 is disadvantageous for methane non-oxidative aromatization.
     Secondly, Mo/TNU-9 and Mo/IM-5 were applied to the title reaction. We study the two catalysts on the different synthesis conditions. Research results showed that the two catalysts begin to grow at the expense of MCM-22(P). Besides, Mo/IM-5 and Mo/TNU-9 were applied to methane non-oxidative aromatization. The catalytic performance of methane aromatization over the two catalysts with different Mo contents, SiO2/Al2O3 and reaction temperature was investigated in detail. Within the scope of our research, it was found that the two catalyts showed almost similar trend. Mo/IM-5 shows higher activity and yield of aromatics between 30 and 50 on the SiO2/Al2O3 ratio. When SiO2/Al2O3 ratio is at 50, TNU-9 shows higher activity and yield of aromatics. Mo content is between 6 and 8, Mo/TNU-9 and Mo/IM-5 shows higher catalytic activity and yield of aromatics. In addition, it is clear found that with reaction temperature increasing, catalytic activity evidently increases but stability clearly decreases.
     3. Effect of the structure of channel for the title reaction
     Mo/TNU-9, Mo/IM-5, Mo/MCM-22 and Mo/ZSM-5 are applied on the title reaction for studying the role of supercage structure. MCM-22 contains the 12 MR supercages (7.1×7.1×18.2?), TNU-9 contains the 12 MR supercages(7.2?), IM-5 contains larger cavities than ZSM-5. Research results showed that the stability of catalysts follows the trend: Mo/MCM-22 > Mo/TNU-9 > Mo/IM-5 > Mo/ZSM-5. The result is accordance with size of supercage. Therefore, we conclude that this might be interrelated with surpercages. It is well-known that MCM-22 exhibits higher activity and stability due to its surpercages.In addition, it was found that MoOx disperses in the channel: Mo/MCM-22 > Mo/TNU-9 > Mo/IM-5 > Mo/ZSM-5.The result also is accordance with the stability of catalysts. So we conclude that supercage structure and Mo specis have a positive role to the title reaction.
引文
[1]Dary Mckee Corporation,Eur.Pat.Appl,No..88307342(1989)
    [2]Grag D.,Prepr.Pap-Am.Chem.Soc.Div.Fuel chem,1988,33(3):432
    [3]Ashcroft A T, Cheetham A K, Foord J S,et al., Selective Oxidation of Methane toSynthesis Gas Using Transition Metal Catalysts [J], Nature 1990 (344) 319-321.
    [4]Keller G E, Bhasin M M, Synthesis of ethylene via oxidative coupling of methane: I.Determination of active catalysts [J], J. Catal., 1982 (73) 9-19.
    [5]Lee J S, Oyama S T, Oxidative Coupling of Methane to Higher Hydrocarbons [J],Catal. Rev. Sci. Eng., 1988 (30) 249-280.
    [6]Lunsford J H, Catal. Today, The catalytic conversion of methane to higher Hydrocarbons [J], 1990 (6) 235-259.
    [7]Qiu X Q, Wong N B, Tin K C, et al., Low temperature catalysts for oxidative coupling of methane [J], J. Chem. Technol. Biotechnol., 1996 (65) 303-308.
    [8]Gesser H D, Hunter N R, Prakash C B,The direct conversion of methane to methanol by controlled oxidation [J], Chem. Rev., 1985 (85) 235-244.
    [9]Krylov 0 V,Catalytic reactions of Partial methane oxidation [J], Catal. Today,1993 (18) 209-302.
    [10]Weissermel K, Arpe H J, Industrial Organic Chemistry, Verlag Chemie, Veinheim,(1978)
    [11]Wang L, Li T, Xie M, Xu Y, Dehydrogenation and aromatization of methane under nonoxidizing conditions [J], Catal. Lett., 1993 (21) 35-41.
    [12]Shepelev S S, Ione K G, Preparation of aromatic hydrocarbons from methane in the presence of oxygen [J], React. Kinet. Catal. Lett., 1983 (23) 3232-3251.
    [13]Khcheyah Kh, et al., Proc.–World petroleum Congr.,11th, 1983 465.
    [14]Inui T, Ishihaxa Y, Kamehi K, et al.,in“Zeolite: Facts,Figures,Future”,eds. Jacobs,P.A.,and Santen,R.A.V,Elsevier Science Publishers,B.V.,1989,1183.
    [15]Bragin O V, Vasina T V, Preobrazhskii A V,et al., IZV., Ser. Khim., 1989 (3) 750.
    [16]Murata K,Ushijima J,Chem. Commun., (1995) 1158.
    [17]Choudhary V R, Kinage A K, Choudhary T V, Low-temperature nonoxidative activation of methane over H-galloalununosilicate (MFl) zeolite [J], Science,1997 (275) 1286-1288.
    [18]Xu Y, Liu S, Wang L, et al., Methane activation without using oxidants over Mo/ZSM-5 zeolite catalysts [J], Catal. Lett., 1995 (30)135-149.
    [19]Weckhuysen B M, Wang D J, Rosynek M P, et al., Conversion of methane to benzene over transition metal ion ZSM-5 zeolites [J], J. Catal., 1998 (175) 338-346.
    [20]Wang L, Ohnishi R, Ichikawa M, Selective Dehydroaromatization of Methane towards Benzene on Re/HZSM-5 Catalysts and Effects of CO/CO2 Addition [J], J.Catal., 2000 (190) 276-283.
    [21]Solymosi F, Erdohelyi A, Szoeke A, Dehydrogenation of methane on supported molybdenum oxides-formation of benzene from methane [J], Catal. Lett., 1995 (32) 43-53.
    [22]Szoke A, Solymosi F, Selective oxidation of methane to benzene over K2MoO4/ ZSM-5 catalysts [J], Appl. Catal. A, 1996 (142) 361-374.
    [23]Solymosi F, Szoke A, Cserenyi J, Conversion of methane to benzene over Mo2C and Mo2C/HZSM-5 catalysts [J], Catal. Lett., 1996 (39) 157-161.
    [24]Solymosi F, Cserenyi J, Szoke A, et al. Aromatization of methane over supported and unsupported Mo-based catalysts [J], J. Catal., 1997 (165) 150-161.
    [25]熊智涛,曾金龙,张鸿斌等.甲烷脱氢芳构化W/HZSM-5基催化剂的制备[J],催化学报,1999 (20) 35-40.
    [26]Wang L, Xu Y, Xie M, et al., Activation and aromatization of methane and ethane over Mo(VI)/HZSM-5 and W(VI)/HZSM-5 zeolites catalysts [J], Stud. Surf. Sci. Catal., 1995 (94) 495-500.
    [27]Wang L, Xu Y, Wong S, et al., Activity and stability enhancement of Mo/HZSM-5-based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons: Effect of additives and pretreatment conditions [J], Appl. Catal. A: General, 1997 (152) 173-182.
    [28]Chen L, Lin L, Xu Z, et al., Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/ZSM-5 catalyst [J], J. Catal., 1995 (157) 190-200.
    [29]Chen L, Lin L, Xu Z, et al., Promotional effect of Pt on non-oxidative methane transformation over Mo/HZSM-5 catalysts [J], Catal. Lett., 1997 (39) 169-172.
    [30]Shu Y, Xu Y, Wong S, et al., Promotional Effect of Ru on the Dehydrogenation and Aromatization of Methane in the Absence of Oxygen over Mo/HZSM-5 Catalysts [J], J. Catal., 1997 (170) 11-19.
    [31]Wong S, Xu Y, Wang L, et al., Methane and ethane activation without adding oxygen: promotional effect of W in Mo-W/HZSM-5 [J], Catal. Lett., 1996 (38) 39-43.
    [32]Liu S, Dong Q, Ohnishi R, et al., Remarkable non-oxidative conversion of methane to naphthalene and benzene on Co and Fe modified Mo/HZSM-5 catalysts [J], Chem. Commn., 1997, 1455-1456.
    [33] Li S, Zhang C, Kan Q, et al., The function of Cu(Ⅱ) ions in the Mo/CuH-ZSM-5 catalyst for methane conversion under non-oxidative condition [J], Appl. Catal. A: General, 1999 (187) 199-206.
    [34]李爽,张春雷,袁艺等,第四期过渡金属离子交换改性的HZSM-5沸石催化剂上甲烷的无氧芳构化[J],高等学校化学学报, 1998 (19) 964-966.
    [35]李爽,王东阳,傅颖寰等,铜离子的引入对甲烷无氧芳构化催化剂Mo/CuH-ZSM-5中Mo物种化学状态的影响[J],高等学校化学学报, 2000 (21) 427-429.
    [36]Liu B, Yang Y, Sayari A, Non-oxidative dehydroaromatization of methane over Ga-promoted Mo/HZSM-5-based catalysts [J], Appl. Catal. A: General, 2001 (214) 95-102.
    [37]刘自力,林维明,林绮纯等,稀土改性Mo/HZSM-5催化剂上甲烷直接芳构化反应的研究[J],天然气化工, 1997 (22) 23-25.
    [38]王冬杰,张一平,费金华等, Ni改性Mo/HZSM-5催化剂上的芳构化反应[J],高等学校化学学报, 1996 (17) 1776-1779.
    [39]舒玉瑛,徐奕德,王林胜等,添加Ru的Mo/HZSM-5催化体系上甲烷无氧脱氢芳构[J],催化学报, 1997 (18) 392-396.
    [40]Lu Y, Ma D, Xu Z, et al., Lin L, A high coking-resistance catalyst for methane aromatization [J], Chem. Commun.,2001, 2048-2049.
    [41]Ma D, Lu Y, Su L, et al., Remarkable improvement on the methane aromatization reaction [J], J. Phys. Chem. B, 2002 (106) 8524-8530.
    [42]王红霞,钼基催化剂上水蒸气处理对甲烷无氧芳构化的影响及积碳性质的研究[D],大连化学物理研究所博士论文,2002.
    [43]Wang D, Meitzner G D, Iglesia E, The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H-ZSM-5 [J], J. Catal., 2002 (206) 14-22.
    [44]Wu P, Kan Q, Wang X, et al., Acidity and Catalytic Properties for Methane Conversion of Mo/HZSM-5 Catalyst Modified by Reacting with Organometallic Complex [J], Appl. Catal. A: General, 2005 (282) 39-44.
    [45]Bonchy C, Schimidt I, Anderson J R, et al., Metastable fccα-MoC1-x supported on HZSM-5: Preparation and catalytic performance for the non-oxidative conversion of methane to aromatic compounds [J], J. mol. Catal. A, 2000 (163) 283-296.
    [46]Sharifah B, Derouane-Abd Hamida, Ross Anderson J,et al., Effect of the activation procedure on the Performance of Mo/HMFI catalysts for the non-oxidative conversion of methane to aromatics [J], Catal. Today, 2000 (63) 461-469.
    [47]Su L, Liu L, Zhuang J, et al., Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts [J], Catal. Lett., 2003 (91) 155-167.
    [48]Wang D, Lunsford J H, Rosynek M P, Characterization of a Mo/ZSM-5 Catalyst for the Conversion of Methane to Benzene [J], J. Catal., 1997 (169) 347-358.
    [49]Ma D, Zhang W, Shu Y, et al., MAS NMR, ESR and TPD studies of Mo/HZSM-5 catalyst: evidence for the migration of Molybdenum species into the zeolite channels [J], Catal. Lett., 2000 (66)155-160.
    [50]Ma D, Deng F, Fu R, et al., MAS NMR Studies on the Dealumination of Zeolite MCM-22 [J], J. Phys. Chem. B, 2001 (105) 1770-1779.
    [51]Zhou D, Ma D, Liu X, et al., Study with density functional theory method on methane dehydro-aromatization over Mo/HZSM-5 catalysts.ⅠOptimization of activation Mo species bonded to ZSM-5 zeolite [J], J. Chem. Phys., 2001 (114) 9125-9129.
    [52]BorryⅢR W,Young Ho Kim, Huffsmith A, et al., Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM-5 Catalysts for Nonoxidative Methane Conversion [J], J. Phys. Chem. B, 1999 (103) 5787-5796.
    [53]Li W, Meitzner G D, BorryⅢR W, et al., Raman and X-Ray Absorption Studies of Mo Species in Mo/H-ZSM-5 Catalyts for Non-Oxidative CH4 Reactions [J], J. Catal., 2000 (191) 373-383.
    [54]Zhou D, Ma D, Liu X, et al., A simulation study on the absorption of molybdenurn species in the channels of HZSM-5 zeolite [J], J. Mol. Catal. A, 2001 (168) 225-232.
    [55]Ma D, Shu Y, Bao X,et al., Methane Dehydro-aromatization under Nonoxidative Conditions over Mo/HZSM-5 Catalysts: EPR Studies of the Mo Species on/in the HZSM-5 Zeolite [J], J. Catal., 2000 (189) 314-325.
    [56] Weckhuysen B M, Rosynek M P, Lunsford J H, Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts [J], Catal. Lett., 1998 (52)31-36.
    [57] Wang D, Lunsford J H, Rosynek M P, Catalytic conversion of methane tobenzene over Mo/HZSM-5 [J], Top. Catal., 1996 (3) 289-293.
    [58] Solymosi F, Cserényi J, Szóke A, et al., Aromatization of Methane over Supported and Unsupported Mo-Based Catalysts [J], J. Catal., 1997 (165) 150-161.
    [59] Solymosi F, Szóke A, Cserényi J, Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts [J], Catal. Lett., 1996 (39) 157-161.
    [60] Solymosi F, Szóke A, Study of the reactions of ethylene on supported Mo2C/ZSM-5 catalyst in relation to the aromatization of methane [J], Stud. Surf. Sci. Catal., 1998 (119) 355-360.
    [61] Schuurman Y, Mirodatos C, Uses of transient kinetics for methane activation studies [J], Appl. Catal. A, 1997 (151) 305-331.
    [62] Schuurman Y, Decamp T, Pantazidis A, et al., Transient kinetics of methane dehydrogenation and aromatization: experiments and modeling [J], Stud. Surf. Sci. Catal., 1997 (109) 351-360.
    [63] Liu H, Li T, Tian B, et al., Study of the carbonaceous deposits formed on a Mo/HZSM-5 catalyst in methane dehydro-aromatization by using TG and temperature-programmed techniques [J], Appl. Catal. A, 2001 (213) 103-112.
    [64]李爽,新型沸石分子筛催化剂上甲烷的无氧芳构化反应[D],吉林大学博士学位论文,2000.
    [65]吕元, Mo物种与HZSM-5的相互作用及甲烷无氧芳构化积碳的研究[D],大连化学物理研究所博士学位论文,1999.
    [66]谭平连, Mo/HZSM-5上甲烷非氧脱氢聚合(制苯)的研究[D],大连化学物理研究所硕士学位论文,1997.
    [67]陈文衡,甲烷催化转化制苯及积碳过程,大连化学物理研究所硕士学位论文[D], 1997.
    [68]袁山东, MoCx/HZSM-5催化剂上甲烷和丁烷的芳构化反应研究[D],大连化学物理研究所博士学位论文,2001.
    [69] Yuan S, Li J, Hao Z, et al., The effect of oxygen on the aromatization of methane over the Mo/ZSM-5 catalyst [J], Catal. Lett., 1999 (63)73-77.
    [70] Liu S, Dong Q, Ohnishi R, et al., Unique promotion effect of CO and CO2 on the catalytic stability for benzene and naphthalene production from methane on Mo/HZSM-5 catalysts [J], Chem. Commun., 1998 (11) 1217-1218.
    [71] Shu Y, Ma H, Ohnishi R, et al., Highly stable performance of catalytic methane dehydrocondensation towards benzene on Mo/HZSM-5 by a periodic switching treatment with H2and CO2 [J], Chem. Commun., 2003 86-87.
    [72]吕功煊,丁彦,潘霞等,水蒸气存在时Mo/HZSM-5催化剂上的甲烷芳构化反应性能[J],催化学报, 1999 (20) 619-622.
    [73] Honda K, Yoshida T, Zhang Z, Methane dehydroaromatization over Mo/HZSM-5 in periodic CH4-H2 switching operation mode [J], Catal. Common., 2003 (4) 21-26.
    [74]魏飞,魏彤,黄河等,甲烷无氧芳构化研究进展及其工业应用前景[J],石油学报2006 (22) 1-8.
    [75] Zhang C, Li S, Yuan Y, et al., Aromatization of methane in the absence of oxygen over Mo/based catalysts supported on different types of zeolites [J], Catal. Lett., 56 (1998) 207-213
    [76]舒玉瑛,甲烷脱氢芳构化:不同分子筛载体的影响和Mo物种表征[D],大连化学物理研究所博士学位论文, 2000.
    [77] Leonowicz M E, Lawton J A, Lawton S L, et al., MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems [J], Science, 1994 (264) 1910-1913.
    [78] Corma A, Fornes V, Forni L, et al., 2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites [J], J. Catal., 1998 (179) 451-458.
    [79] Corma A, Fornes V, Martinez J, et al., Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses [J], J. Catal., 1999 (186) 57-63.
    [80] Corma A, Diaz U, Fornés V, et al., Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2 [J], J. Catal., 2000 (191) 218-224.
    [81] Miguel Camblor A, Corma A, Diaz-Cabanas M J, et al., Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25 [J], J. Phys. Chem. B, 1998 (102) 44-51.
    [82] Corma A, Fornes V, Pergher S B, et al., Delaminated zeolite precursors as selective acidic catalysts [J], Nature, 1998 (396) 353-356.
    [83] Bennett J M, Chang C D, Lawton S L, Leonowicz M E, Lissy D N, Rubin M K,US 5236575 [P],1993.
    [84] Sena Emerson C, Fang S L A, Lawton S L, Roth W J, US 5827491 [P], 1998.
    [85] He Y J, Nivarthy G S, Eder F, et al., Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36 [J], Micropor. Mesopor. Mater., 1998 (25) 207-224.
    [86]许宁,阚秋斌,李雪梅等,低钠条件下MCM-22分子筛的动态合成及其在甲烷无氧芳构化中的催化性能,高等学校化学学报, 2000 (21) 949-951.
    [87] Shu Y, Ma D, Xu L, et al., Methane dehydro-aromatization over Mo/MCM-22 catalysts: a highly selective catalysts for the formation of benzene [J], Catal. Lett., 2000 (70) 67-73.
    [88] Ma D, Shu Y, Han X, et al., Mo/HMCM-22 Catalysts for Methane Dehydroaromatization: A Multinuclear MAS NMR Study [J], J. Phys. Chem. B, 2001 (105) 1786-1793.
    [89] Liu H, Su L, Wang H, et al., The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts [J], Appl. Catal. A: General, 2002 (236) 263-280.
    [90] Ma D, Wang D, Su L, et al., Carbonaceous Deposition on Mo/HMCM-22 Catalysts for Methane Aromatization: A TP Technique Investigation [J], J. Catal. 2002 (208) 260-269.
    [91] Huang S, Zhao Q, Chen W, et al., Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy [J], Catal. Today, 2004 (97) 25-34.
    [92] Wang D, Kan Q, Xu N, et al., Study on Methane Aromatization over MoO3/HMCM-49 Catalyst [J], Catal. Today, 2004 (93-95)75-80.
    [93] Kan Q, Wang D, Xu N, et al., Non-oxidative aromatization of methane over Mo/MCM-49 catalyst [J], Stud. Surf. Sci. Catal., 2004 (147) 631-636.
    [94] BOIX T, PUCHE M, CAMBLOR M A, et al., US: 6471941[P], 2002.
    [95] Corma A, Puche M, Rey F, et al., A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-rings [J], Angew. Chem. Int. Ed., 2003 (42) 1156-1159.
    [96] Chen T J, Keusenkothen P F, Buchanan J S, et al., USP: 20030173254[P],2003.
    [97] Buchanan J S, Dakka J M, Feng X B, et al., USP: 20040087822 [P], 2004.
    [98] Fyfe F E, Sanchez E, Baillargeon D J, et al., USP: 20040129603 [P],2004.
    [99] Bishop A R, Genette W B, Johnson J W, et al., USP: 20040072676 [P],2004
    [100]Benazzi E, Guth J L, Rouleau L., IM-5 ZEOLITE, METHOD OF PREPARATION AND CATALYTIC APPLICATIONS THEREOF, WO 9817581 [P], 1998.
    [101] Corma A, Chica A, Guil J M, et al., Determination of the Pore Topology of Zeolite IM-5 by Means of Catalytic Test Reactions and Hydrocarbon Adsorption Measurements [J], J. Catal., 189 (2000) 382-394.
    [102] Christian B, Fabian G, Lars M, et al., Structure of the Polycrystal line Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping [J], Science, 2007 (315) 1113-1116.
    [103] Corma A, Martinez-Triguero J, Valencia S, et al., IM-5: A highly thermal and hydrothermal shape-selective cracking zeolite [J], J. Catal. 2002 (206) 125-133.
    [104] Serra J M, Guillon E, Corma A, A rational design of alkyl-aromatics dealkylation-transalkylation catalysts using C-8 and C-9 alkyl-aromatics as reactants [J], J. Catal. 2004 (227) 459-469.
    [105] Serra J M, Guillon E, Corma A, Influence of zeolite structure on the performance of heavy reformate transalkylation catalysts. Molecular Sieves: From Basic Research to Industrial Applications [J], Pts a and B, 2005 (158) 1757-1762.
    [106] Hong S B, Min H K, Shin Ch H, et al., Warrender S J, Wright P A, Synthesis, crystal, structure, characterization, and catalytic properties of TNU-9 [J], J. Am. Chem. Soc., 2007 (129) 10870-10885.
    [107] Kustova M Y, Hasselriis P, Christensen C H, Mesoporous MEL-Type Zeolite Single Crystal Catalysts [J], Catal. Lett.,2004 (96) 205-211.
    [108] Christensen C H, Schmidt I, Christensen C H, Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane [J], Catal. Comm., 2004 (5) 543-546.
    [109] Ogura M, Shinomiya S, Tateno J, et al., Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites [J], Appl. Catal. A: Gen., 2001 (219) 33-43.
    [110] Schmidt I, Krogh A, Wienberg K, et al., Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J], Chem. Comm. 2000 2157-2158.
    [111] van Donk S, Broersma A, Gijzeman O L J, et al., Combined Diffusion,Adsorption, and Reaction Studies of n-Hexane Hydroisomerization over Pt/H–Mordenite in an Oscillating Microbalance [J], J. Catal., 2001 (204) 272-280.
    [112] Tromp M, van Bokhoven J A, Garriga Oostenbrink M T, et al., Influence of the Generation of Mesopores on the Hydroisomerization Activity and Selectivity of n-Hexane over Pt/Mordenite [J], J. Catal., 2000 (190) 209-214.
    [113] Corma A, Martínez A, Arroyo P A, et al., Isobutane/2-butene alkylation on zeolite beta: Influence of post-synthesis treatments [J], Appl. Catal. A, 1996 (142) 139-150.
    [114] Venuto P B, Structure-reactivity-selectivity relationships in reaction of organics over zeolite catalysts [J], Stud. Surf. Sci. Catal., 1997 (105) 811-852.
    [115] Corma A, State of the art and future challenges of zeolites as catalysts[J], J. Catal., 2003 (216) 298-312.
    [116] ven Donk S, Janssen A H, Bitter J H, et al., Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts [J], Catal. Rev., 2003 (45) 297-319.
    [117] Christensen C H, Schmidt I, Carlsson A, et al., Crystals in Crystals-Nanocrystals within Mesoporous Zeolite Single Crystals [J], J. Am. Chem. Soc., 2005 (127) 8098-8102.
    [118] Groen J C, Pérez-Ramírez J, Peffer L A A, Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-treatment [J], Chem. Lett., 2002, (31) 94-95.
    [119] Tao Y, Kanoh H, Abrams L, et al., Mesopore-modified zeolites: preparation, characterization and application [J], Chem. Rev., 2006 (106) 896-910.
    [120] Schmid I, Boisen A, Gustavsson E, et al., Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J], Chem. Mater., 2001 (13) 4416-4418.
    [121] Boisen A, Schmidt I, Carlsson A, et al., Titanate nanotube thin films via alternate layer deposition [J], Chem. Commun. 2003 (8) 958-959.
    [122] Tao Y, Kanoh H, Kaneko K, ZSM-5 Monolith of Uniform Mesoporous Channels [J], J. Am. Chem. Soc., 2003 (125) 6044-6045.
    [123] Tao Y, Kanoh H, Kaneko K, Uniform mesopore-donated deolite Y using carbon aerogel templating [J], J. Phys. Chem. B, 2003 (107) 10974-10976.
    [124] Yang Z, Xia Y, Mokaya R, Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J], Adv. Mater., 2004 (16) 727-732.
    [125] Xiao F, Wang L, Yin C, et al., Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and MesoscaleCationic Polymers [J], Angew. Chem. Int. Ed., 2006 (45) 3090-3093.
    [126] Wang H, Pinnavaia T J, MFI Zeolite with Small and Uniform Intracrystal Mesopores [J], Angew. Chem. Int. Ed., 2006 (45) 7603-7606.
    [1] Wichterlova B, Tvaruzkova Z, Sobalik Z, et al.,Determination and propertiesof acid sites in H-ferrierite A comparison of ferrierite and MFI structure[J], Microporous and Mesoporous Materials,1998 (24) 223-233.
    [2] Jiri Cejka, Andrea Krejci, Nadezda Zilkova, et al.,Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene[J],Microporous and Mesoporous Materials,2002 (53) 121–133.
    [1] Wang L, Li T, Xie M, et al., Dehydrogenation and aromatization of methane under nonoxidizing conditions [J], Catal. Lett., 1993 (21) 35-41.
    [2] Xu Y, Liu S, Wang L, et al., Methane activation without using oxidants over Mo/ZSM-5 zeolite catalysts [J], Catal. Lett., 1995 (30)135-149.
    [3] Weckhuysen B M, Wang D J, Rosynek M P, et al., Conversion of methane tobenzene over transition metal ion ZSM-5 zeolites [J], J. Catal., 1998 (175) 338-346.
    [4] Wang L, Ohnishi R, Ichikawa M, Selective Dehydroaromatization of Methane towards Benzene on Re/HZSM-5 Catalysts and Effects of CO/CO2 Addition [J], J. Catal., 2000 (190) 276-283.
    [5] Zhang C, Li S, Yuan Y, et al., Aromatization of methane in the absence of oxygen over Mo/based catalysts supported on different types of zeolites [J], Catal. Lett., 56 (1998) 207-213
    [6]舒玉瑛,甲烷脱氢芳构化:不同分子筛载体的影响和Mo物种表征[D],大连化学物理研究所博士学位论文, 2000.
    [7] Bhat Y S, Das J, Rao K V, et al., Inactivation of External Surface of ZSM-5: Zeolite Morphology, Crystal Size, and Catalytic Activity [J], J. Catal., 1996 (159) 368-374.
    [8] Kim Y H, Borry R W, Iglesia E, Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts [J], Micropor. Mesopor. Mater., 35-36 (2000) 495-509.
    [9] Melson S, Schuth F J, The Influence of the External Acidity of H-ZSM-5 on Its Shape Selective Properties in the Disproportionation of Ethylbenzene [J], J. Catal., 1997 (170) 46-53.
    [10] Liu S, Wang L, Ohnishi R, et al., Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects [J], J. Catal., 1999 (181) 175-188.
    [11] Li S, Zhang C, Kan Q, et al., The function of Cu(II) ions in the Mo/CuH-ZSM-5 catalyst for methane conversion under non-oxidative condition [J], Appl. Catal. A, 1999 (187) 199-206.
    [12] Chen L, Lin L, Xu Z, et al., Promotional effect of Pt on non-oxidative methane transformation over Mo/HZSM-5 catalysts [J], Catal. Lett., 1997 (39) 169-172.
    [13] Tan P, Xu Z, Zhang T, et al., Aromatization of Methane over Different Mo-supported Catalysts in the Absence of Oxygen [J], React. Kinet. Catal. Lett., 1997 (61)391-396.
    [14] Shu Y, Xu Y, Wong S-T,et al., Promotional Effect of Ru on the Dehydrogenation and Aromatization of Methane in the Absence of Oxygen over Mo/HZSM-5 Catalysts [J], J. Catal., 1997 (170) 11-19.
    [15] Wang D, Meitzner G D, Iglesia E, The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H-ZSM-5 [J], J. Catal., 2002 (206) 14-22.
    [16] Lu Y, Ma D, Xu Z,et al., A high coking-resistance catalyst for methane aromatization [J], Chem. Commun.,2001, 2048-2049.
    [17] Tang S, Chen H, Lin J, et al., Non-oxidative conversion of methane to aromatics over modified Mo/HZSM5 catalysts [J], Catal. Commun., 2001 (2) 31-35.
    [18] Su L, Liu L, Zhuang J, et al., Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts [J], Catal. Lett., 2003 (91) 155-167.
    [19] Shu Y, Ma D, Xu L, et al., Methane dehydro‐ aromatization over Mo/MCM‐ 22 catalysts: a highly selective catalyst for the formation of benzene [J], Catal. Lett., 2000 (70) 67-73.
    [20] WichterlováB, Tvar??kováZ, Sobalik Z, et al., Determination and propertiesof acid sites in H-ferrierite A comparison of ferrierite and MFI structure [J], Micropor. Mesopor. Mater., 1998 (24) 223-233.
    [21] Pelmenschikov A G, van Santen R A, J?nchen J, et al., Acetonitrile-d3 as a probe of Lewis and Broensted acidity of zeolites [J], J. Phys. Chem., 1993 (97) 11071-11074.
    [1] Wang L, Li T, Xie M, et al., Dehydrogenation and aromatization of methane undernonoxidizing conditions [J], Catal. Lett., 1993 (21) 35-41.
    [2] Bhat Y S, Das J, Rao K V, et al., Inactivation of External Surface of ZSM-5: Zeolite Morphology, Crystal Size, and Catalytic Activity [J], J. Catal., 1996 (159) 368-374.
    [3] Kim Y H, Borry R W, Iglesia E, Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts [J], Micropor. Mesopor. Mater., 35-36 (2000) 495-509.
    [4] Melson S, Schuth F J, The Influence of the External Acidity of H-ZSM-5 on Its Shape Selective Properties in the Disproportionation of Ethylbenzene [J], J. Catal., 1997 (170) 46-53.
    [5] Liu S, Wang L, Ohnishi R, et al., Bifunctional Catalysis of Mo/HZSM-5 in the Dehydroaromatization of Methane to Benzene and Naphthalene XAFS/TG/DTA/MASS/FTIR Characterization and Supporting Effects [J], J. Catal., 1999 (181) 175-188.
    [6] Li S, Zhang C, Kan Q, et al., The function of Cu(II) ions in the Mo/CuH-ZSM-5 catalyst for methane conversion under non-oxidative condition [J], Appl. Catal. A, 1999 (187) 199-206.
    [7] Chen L, Lin L, Xu Z, et al., Promotional effect of Pt on non-oxidative methane transformation over Mo/HZSM-5 catalysts [J], Catal. Lett., 1997 (39) 169-172.
    [8] Tan P, Xu Z, Zhang T, et al., Aromatization of Methane over Different Mo-supported Catalysts in the Absence of Oxygen [J], React. Kinet. Catal. Lett., 1997 (61)391-396.
    [9] Shu Y, Xu Y, Wong S-T, et al., Promotional Effect of Ru on the Dehydrogenation and Aromatization of Methane in the Absence of Oxygen over Mo/HZSM-5 Catalysts [J], J. Catal., 1997 (170) 11-19.
    [10] Liu B S, Jiang L, Sun H, et al., XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga–Mo/ZSM-5 catalyst [J], Appl. Surf. Sci., 2007 (252) 5092-5100.
    [11] Wu P, Kan Q, Wang X, et al., Acidity and Catalytic Properties for Methane Conversion of Mo/HZSM-5 Catalyst Modified by Reacting with OrganometallicComplex [J], Applied Catal. A., 2005 (282) 39-44.
    [12] Ding W, Meitzner G D, Iglesia E, The Effects of Silanation of External Acid Sites on the Structure and Catalytic Behavior of Mo/H–ZSM5 [J], J. Catal., 2002 (206) 14-22.
    [13] Lu Y, Ma D, Xu Z S, et al., A high coking-resistance catalyst for methane aromatization [J], Chem. Commun., 2001 2048-2049.
    [14] Dong X F, Song Y B, Lin W M, Non-oxidative conversion of methane to aromatics over modified Mo/HZSM5 catalysts [J], Catal. Commun., 2001 (2) 31-35. [16」Groen J C, Baeh T, Ziese U, Paulaime-van Donk A M, de Jong K.P, Moulijn J A, Perez-Ramirez J, Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals, J. Am. Chem. Soc., 2005 (127) 10792-10793.
    [17]Groen J C, Zhu W D, Brouwer S, et al. Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite obtained via Controlled Desilication, J. Am. Chem. Soc., 2007 (129) 355-360.
    [18]Janssen A H, Koster A J, Jong K P, On the Shape of the Mesopores in Zeolite Y:A Three Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis, J. Phys. Chem. B, 2002 (106) 11905-11909.
    [19] Jacobsen C J H, Madsen C, Houzvicka J, et al., Mesoporous Zeolite Single Crystals, J. Am. Chem. Soc.,2000 (122) 7116-7117. [20」Sehmidt I, Krogh A, Wienberg K, et al.,Catalytice Poxidation of alkenes with hydrogen Peroxide over first mesoporous titanium一containing zeolite, Chem. Commun., 2000 (21) 2157-2158.
    [21] Kustova M Y, Hasselriis P, Christensen C H, Mesoporous MEL-Type Zeolite Single Crystal Catalysts [J], Catal. Lett., 2004 (96) 205-211. [22」Sehmidt I, Boisen A, Gustavsson E, et al., Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J], Chem. Mater.,2001 (13) 4416-4418.
    [23]Janssen A H, Sehmidt I, Jaeobsen C J H, et al., Exploratory study of mesopore templating with carbon during zeolite synthesis [J], Micropore Mesopore Mater., 2003 (65) 59-75.
    [24]Yang Z, Xia Y, Mokaya R, Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a template, Adv. Mater., 2004 (16) 727-732.
    [25]Tao Y, Kanoh H, Kaneko K, ZSM-5 Monolith of Uniform Mesoporous Channels [J], J. Am. Chem. Soc., 2003 (125) 6044-6045.
    [26]Tao Y, Kanoh H, Kaneko K, Uniform mesopore-donated deolite Y using carbon aerogel templating [J], J. Phys. Chem. B, 2003 (107) 10974-10976.
    [27]Yun ming Fang, Haoquan Hu, An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure [J], J. Am. Chem. Soc., 2006 (128) 10636一10637
    [28]Tao Y S, Ilattori Y, Matumoto A, et al. Comparative Study on Pore Structure of Mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and Carbon Aerogel Templating [J], J. Phys. Chem.B, 2005 (109) 194-199.
    [29]Liu Y, Zhang W, Pinnavaia T J, Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J], J. Am. Chem. Soc., (2000) 122 8791–8794.
    [30] Zhang Z, Han Y, Xiao F S,et al., Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J], J. Am. Chem. Soc., 2001 (123) 5014–5021.
    [31] Shih P C, Lin H P, Mou C Y, Ultrastable acidic MCM-48 assembled from zeolites seeds [J], Stud. Surf. Sci. Catal., Elsevier: Amsterdam, 2003 (146) 557–560.
    [32] Di Y, Yu Y, Sun Y,et al., Synthesis, characterization and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors [J], Microporous Mesoporous Mater., 2003 (62) 221–228.
    [33]Prokes?váP, Mintova S, Cějka J, et al., Preparation of nanosized micro/mesoporous composites [J], Mater. Sci. Eng. C, 2003 (23) 1001–1005.
    [34] Prokes?váP, Mintova S, Cějka J, et al., Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases [J], Microporous Mesoporous Mater., 2003 (64) 165–174.
    [35] Xiao F S, Ordered mesoporous materials with improved stability and catalytic activity [J], Top. Catal., 2005 (35) 9–24.
    [36] Rajendra Srivastava, Nobuhiro Iwasa, Shin-ichiro Fujita, et al., Synthesis of Nanocrystalline MFI-Zeolites with Intracrystal Mesopores and Their Application in Fine Chemical Synthesis Involving Large Molecules [J], Chem. Eur. J., 2008 (14) 9507-9511.
    [37] Su L, Liu L, Zhuang J, et al., Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts [J], Catal. Lett., 2003 (91) 155-167.
    [38] WichterlováB, Tvar??kováZ, Sobalik Z, et al., Determination and propertiesof acid sites in H-ferrierite A comparison of ferrierite and MFI structure [J], Micropor. Mesopor. Mater., 1998 (24) 223-233.
    [39] Pelmenschikov A G, van Santen R A, J?nchen J, et al., Acetonitrile-d3 as a probe of Lewis and Broensted acidity of zeolites [J], J. Phys. Chem., 1993 (97) 11071-11074.
    [40] Zhang W P, Ma D, Han X W, et al., Methane Dehydro-aromatization over Mo/HZSM-5 in the Absence of Oxygen: A Multinuclear Solid-State NMR Study of the Interaction between Supported Mo Species and HZSM-5 Zeolite with Different Crystal Sizes [J], J. Catal. 188 (1999) 393-402.
    [41] Martínez A, Peris E, Sastre G, Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts [J], Catal. Today., 2005 (107-108) 676-684.
    [1] Wang L, Li T, Xie M, et al., Dehydrogenation and aromatization of methane under nonoxidizing conditions [J], Catal. Lett., 1993 (21) 35-41.
    [2] Wang L, Li T, Xie M,et al., Dehydrogenation and aromatization of methane under nonoxidizing conditions [J], Catal. Lett., 1993 (21) 35-41.
    [3] Shu Y, Ma D, Xu L, et al., Methane dehydro-aromatization over Mo/MCM-22 catalysts: A highly selective catalysts for the formation of benzene [J], Catal. Lett., 2000 (70) 67-73.
    [4] Y. Shu, D. Ma, X. Liu, et al., An MAS NMR Study on the Mo-modified Phosphoric Rare Earth (HZRP-1) Penta-Sil Zeolite Catalyst[J], J. Phys. Chem. B.,2000 (104) 8245-8249.
    [5] Liu S, Dong Q, Ohnishi R, et al., Remarkable non-oxidative conversion of methane to naphthalene and benzene on Co and Fe modified Mo/HZSM-5 catalysts [J], Chem. Commn., 1997, 1455-1456.
    [6] Wang L, Ohnishi R, Ichikawa M, Selective Dehydroaromatization of Methane towards Benzene on Re/HZSM-5 Catalysts and Effects of CO/CO2 Addition [J], J. Catal., 2000 (190) 276-283.
    [7] Zeng J, Xiong Z, Zhang H,et al., Nonoxidative dehydrogenation and aromatization of methane over W/HZSM‐ 5‐ based catalysts [J], Catal. Lett., 1998 (53) 119-124.
    [8] Weckhuysen B M, Wang D J, Rosynek M P, et al., Conversion of methane to benzene over transition metal ion ZSM-5 zeolites [J], J. Catal., 1998 (175) 338-346.
    [9] Zhang C, Li S, Yuan Y, et al., Aromatization of methane in the absence of oxygen over Mo/based catalysts supported on different types of zeolites [J], Catal. Lett., 56 (1998) 207-213
    [10] Corma A, Puche M, Rey F, et al., A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-rings [J], Angew. Chem. Int. Ed., 2003 (42) 1156-1159.
    [11] Corma A, Chica A, Guil J M, et al., Perdigón-Melón J A, Valencia S, Determination of the Pore Topology of Zeolite IM-5 by Means of Catalytic Test Reactions and Hydrocarbon Adsorption Measurements [J], J. Catal., 189 (2000) 382-394.
    [12] Christian B, Fabian G, Lars M, et al., Structure of the Polycrystal line Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping [J], Science, 2007 (315) 1113-1116.
    [13] Hong S B, Min H K, Shin Ch H, et al., Warrender S J, Wright P A, Synthesis, crystal, structure, characterization, and catalytic properties of TNU-9 [J], J. Am. Chem. Soc., 2007 (129) 10870-10885.
    [14] Gramm F, Baerlocher Ch, McCusker L B, et al., Complex zeolite structure solved by combining powder diffraction and electon microscopy [J], Nature, 2006 (444) 79-81.
    [15] Xu C, Guan J Q, Wu S J, et al., Effect of Silica Source on the Hydrothermal Synthesis of ITQ-13 Zeolite [J], Acta. Phys.–Chim. Sin., 2009 (25) 2275-2278.
    [16] WichterlováB, Tvar??kováZ, Sobalik Z, et al., Determination and propertiesof acid sites in H-ferrierite A comparison of ferrierite and MFI structure [J], Micropor. Mesopor. Mater., 1998 (24) 223-233.
    [17] Pelmenschikov A G, van Santen R A, J?nchen J, et al., Acetonitrile-d3 as a probe of Lewis and Broensted acidity of zeolites [J], J. Phys. Chem., 1993 (97) 11071-11074.
    [18] Martínez A, Peris E, Sastre G, Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts [J], Catal. Today., 2005 (107-108) 676-684.
    [19] Argauer R J, Landolt G R, US Patent 3,702, (1972) 886.
    [20] Shu Y, Ma D, Xu L, Xu Y, Bao X, Methane dehydro-aromatization over Mo/MCM-22 catalysts: a highly selective catalysts for the formation of benzene [J], Catal. Lett., 2000 (70) 67-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700