耐药结核病治疗用噬菌体干粉吸入剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是由结核杆菌感染引起的人畜共患传染病,一直以来严重威胁人类健康。多重耐药结核、广泛耐药结核的出现,以及有的超级耐药结核菌对目前已知的抗结核药物几乎全部耐药,使其感染者的病死率高达90%以上,这势必给结核病的治疗带来重大挑战。已有研究证实噬菌体D29可以在体外环境中杀灭巨噬细胞内的结核分枝杆菌,在动物试验中也证明对结核感染的豚鼠具有治疗效果,且对豚鼠无副作用,这些结果预示分枝杆菌噬菌体D29具有治疗结核病的潜在价值。肺结核是结核杆菌感染中对人类危害最大的一种临床疾病,感染的主要病灶器官为肺脏,采用肺部给药可以直接将药物输送至病灶部位,是临床治疗肺结核的较理想途径。而目前报道的噬菌体治疗结核分枝杆菌的研究中,多采用皮下注射、滴鼻给药等方式,噬菌体到达肺部的有效剂量低,因此需要在给药方式上进行改进。本文旨在研究一种可以避免传统给药方式缺陷的耐药结核病治疗用噬菌体干粉吸入剂。首先建立了噬菌体D29的培养及计数方法。噬菌体D29的增殖采用半固体双层琼脂平皿法,效价检测方法采用双层琼脂培养测定法。一般在培养后24-48h内对噬菌体斑计数统计,使用平皿计数值在30-300的结果。建立了干粉吸入剂的质量评价体系。包括振实密度、干粉形态、干粉粒径、干粉粒度分布、流动性、含水量、引湿性、含量均一性、排空率、体外沉积率。以粉体综合特性测试仪、扫描电镜、激光粒度分析仪及双层液体碰撞器等作为分析手段。选择HPLC法以荧光素钠为化学示踪剂测定噬菌体的体外沉积率。采用了不同方法来制备可吸入颗粒,对喷雾干燥法制备的可吸入颗粒的制备工艺、颗粒性质评价和保护剂的筛选进行了深入探讨。采用筛分法、研磨法、重结晶法、冷冻干燥法、喷雾干燥法来制备乳糖颗粒,以所制得颗粒的粒径大小和形态以及含水量为主要评价指标,考察处方和工艺因素对颗粒特性的影响,筛选出可吸入颗粒的制备方法和工艺;为了提高噬菌体在干粉中的生物活性,初步筛选了相应的保护剂。结果表明,采用喷雾干燥法,当入口温度(120℃)、气流速度(150L/min)、喷雾速率(100%)、喷头盖(4.0μm),溶液浓度(10%)时可得到收率达80%以上,含水量为1.17%左右,平均粒径在3.00μm左右的圆整球形颗粒,适合于吸入给药;其他方法所获得颗粒平均粒径大、形状不规则,用于吸入给药需要进一步处理。糖类、蛋白类对噬菌体喷干均有较好的保护作用,而多元醇类、NaCl的保护效果差(喷干后存活率低于1%)。各类保护剂组合配方,效果好于单一保护剂。综合考虑,以糖类和氨基酸组合保护效果最佳,优化工艺参数喷干后,可得到收率80%以上,含水量2%以下,平均粒径在3.00μm左右球形的颗粒,噬菌体活性可保持60%以上。稳定性实验表明,噬菌体以固体形式保存,在常温、4℃条件下放置3个月效价没有明显变化。噬菌体D29干粉吸入剂在加速试验条件(40℃,RH75%)下1个月内效价下降不到一个数量级。
Tuberculosis (TB) is a kind of infectious disease from which both the human being and animals suffer,caused by Mycobacterium tuberculosis. tuberculosis has been seriously threatened to human health. The prevelance of Multi-drug resistant tuberculosis (MDR-TB) and the extensively-drug resistant tuberculosis,and some of super-drug resistant tuberculosis almost resistanting to the currently known anti-TB drugs that the fatality rate of persons who infected tuberculosis is as high as90%or more.Those will pose a tremendous challenge to tuberculosis treatment.Studies have confirmed that the phage D29can kill Mycobacterium tuberculosis within macrophages in vitro environment. And the phage D29also has a therapeutic effect with guinea pigs who infected tuberculosis in animal trials. moreover,it has no side effects in guinea pigs.These results indicate Mycobacterium phage D29has a potential value of the treatment of tuberculosis.Pulmonary tuberculosis is Mycobacterium tuberculosis infection in a clinical disease which has been seriously hazarded to human beings.Lung was the infection viscera of tuberculosis so pulmonary drug delivery directly carried drugs to the lesion is the ideal way to treat tuberculosis.Currently phage D29treatment of mycobacterium tuberculosis research mainly administers by subcutaneous injection and intranasal administration, and the effective dosage of the phage to reach the infectious lung is low, therefore, we need to improve on the administration.This paper aims to research about dry powder inhalation of phage against drug-resistant tuberculosis infection disease which can avoid the defects of the traditional delivery method.Firstly we established the cultivation and counting of phage D29, using semi-solid double-layer agar and double-layer agar method for the replication and titer detection of Phage D29, respectively. And we counted phage plaques after24h to48h, used the results of the count in30to300.Then we established a series of quality evaluation systems for dry powder inhaler, including the tapped density, powder morphology, powder particle size, powder particle size distribution, flowability, moisture content, hygroscopicity, content uniformity, emitted dose, the deposition rate in vitro. We used powder comprehensive characteristic tester, scanning electron microscopy, laser particle size analyzer, twin stage impinger as analytical tools and selected a HPLC method for determination of the phage in vitro deposition with fluorescein as a chemical tracer.We use different methods to prepare respirable particles, discussing deeply in the preparation process of respirable particles by spray drying, the evaluation of the particle characteristics and screening of protective agents in this paper.The lactose particles were prepared by different methods:sieving, grinding, re-crystallization, freeze drying,spray drying. The particle size and morphology and water content were chosen as the main evaluation index to investigate the effect of formulation and process factors on them. In order to improve the biological activity of the phage D29in the dry powders, we initially screened the appropriate protective agents.The results show that, when the inlet temperature is120℃, air flow rate is150L/min, spray rate is100%, the nozzle cap is4.0μm, concentration is10%, we can obtain the particles which are spherical with the average particle size about3.0μm by spray drying process.The particles's yield is more than80%, moisture content is about1.17%, which were suitable for inhalation. All other methods prepared a larger average particle size, irregular particles, which needed further process for inhalation.The sugars, proteins on the phage D29which spray-dried have a better protective effect, polyols and NaCl have a poor protective effect (after spray-dried the survival rate is less than1%). Various types of protective agent with combination formulation, which protective effect is better than a single protective agent. By comprehensive consideration, sugars and amino acids with combination have a best protective effect. Optimizing the process parameters after the spray-dried, we can prepare the spherical particles which income rate is80%, moisture content is below2%, average particle size is about3.00μm, and the survivality of phage D29reach60%.Stability experiments showed that the phage D29stored in solid form at room temperature and4℃is stable in3months.The titer of phage D29dry-powder inhaler in the accelerated test conditions (40℃, RH75%) decrease less than an magnitude within one month.
引文
[1] Danelishvili L, Young LS, Bermudez LE. In vivo efficacy of phage therapy for mycobacterium avium infection as delivered by a
    nonvirulent mycobacterium. Microb Drug Resist,2006,12(1):1-6
    [2] Peng L, Chen BW, Luo YA, et al. Effect of mycobacteriophage to intracellular mycobateria in vitro. Chin Med J,2006,119(8):692-695
    [3]彭丽,罗永艾,陈保文等.噬菌体D29对感染敏感株结核分枝杆菌豚鼠的疗效.中国人兽共患病学报,2009,25(8):733-736
    [4]彭丽,罗永艾,陈保文等.噬菌体D29对耐药结核病豚鼠的治疗作用.第四军医大学学报,2009,30(17):1576-1759
    [5] Tam CM, Yew WW, Yuen KY. Treatment of multidrug-resistant and extensively drug-resistant tuberculosis:current status and future prospects. Expert Rev Clin Pharmacol,2009,2(4):405-421
    [6]何广学,谢艳光,任育鳞等.我国耐多药结核病高负担地区耐多药结核病人的性别和年龄分布特征.中国健康教育,2008,24(6):413-415,418
    [7] World Health Organization.2010/2011 Tuberculosis global facts. http: //www.who.int/tb/publications/2010/factsheet_tb_2010.pdf
    [8] Broxmeyer L. Bacteriophages:antibacterials with a future? Med Hypotheses,2004,62(6):889-893
    [9] Sulakvelidze A, Alavidze A, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemother,2001,45(3):649-659
    [10] Potera C. Infectious diseases:New method churns out TB mutants. Science,2002,280(5368):1350b
    [11]彭丽.噬菌体D29在结核病诊断和治疗中的应用.博士学位论文.重庆医科大学.2006
    [12]王静,程洪亮,李京京等.噬菌体D29的稳定性研究.解放军药学学报,2011,27(5):380-382,394
    [13] Wilson SM, Al-Suwaidi Z, McNerney R, et al. Evaluation of a new
    rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med,1997,3(4):465-468
    [14] Angeby KAK, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol,2002,40(2):553-555
    [15] Syre H, phyu S, Sandven P, et al. Rapid colorimetric method for testing susceptibility of Mycobacterium yuberculosis to isoniazid and rifampin in liquid cultures. J Clin Microbiol,2003,41(11):5173-5177
    [16] Broxmeyer L, Sosnowska D, Miltner E, et al. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacterio phage delivered by a nonvirulent mycobacterium:a model for phage therapy of intracellular bacterial pathogens. J Infect Dis,2002,186(8):1155-1160
    [17] Atterbury RJ, Van Bergen MAP, Ortiz F, et al. Bacteriophage therapy to reduce salmonella colonization of broiler chickens. Appl Environ Microbiol,2007,73(14):4543-4549
    [18] Smith HW, Huggins MB. Effectiveness of phages in treating experimental E. colidiarrhea in calves, piglets and lambs. J Gen Microbiol,1983,129:2659
    [19] Bretscher MT, Althaus CL, Muller V, et al. Recombination in HIV and the evolution of drug resistance:for better or for worse? Bio-Essays,2004,26(2):180-188
    [20] Capparelli R, Parlato M, Borriello G, et al. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother, 2007,51(8):2765-2773
    [21] Watanabe R, Matsumoto T, Sano G, et al. Efficacy of bacteriophage
    therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother,2007,51(2):446-452
    [22]刘克洋,杜茜,温占波等.分枝杆菌噬菌体D29气溶胶的喷雾和采样介质的初步研究.军事医学科学院院刊,2010,34(4):347-350
    [23]温占波.分枝杆菌噬菌体D29气溶胶特性和动物气溶胶暴露系统的初步研究.博士学位论文.中国人民解放军军事医学科学院.2008
    [24] Groneberg DA, Witt C, Wanger U, et al. Fundamentals of pulmonary drug delivery. Respir Med,2003,97(4):382-387
    [25]孟博宇,许向阳,王青松.干粉吸入剂的设计和发展.中国新药杂志,2010,19(19):1738-1743
    [26] Chan HK, Clark A, Gonda I, et al. Spray dried powders and powder blends of recombinant human deoxyribonuclease (rhDNase) for aerosol delivery. Pharm Res,1997,14(4):431-437
    [27] Tang Y, Zhu JB. Recombinant human interleukin-2 inhalation powders: preparation and distribution in the alveolus. Int J Pharm,2008, 360(1-2):225-227
    [28] Chen XJ, Zhu JB, Wang GJ, et al. HPLC determination of insulin and its related substances in insulin powder for inhalation. Acta Pharm Sin(药学学报),2002,37(2):131-133
    [29]邹红霞,程洪亮,李京京等.多肽和蛋白类药物的吸入给药.生物技术通讯,2011,22(6):897-900
    [30] Nazrul I, Ellen G. Dry powder inhalers(DPI)-a review of device reliability and innovation. Int J Pharm,2008,360(4):1-11
    [31] Joseph L. The inhalation of drugs-advantages and problems. Res Care, 2005,50(3):376-382
    [32] Smith IJ, Parry-Billings M. The inhalers of the future? Areview of dry
    powder devices on the market today. Pulm Pharmacol Ther,2003, 16(2):79-95
    [33] Son YJ, McConville JT. Advancements in dry powder delivery to the lung. Drug Dev Ind Pharm,2008,34(9):948-959
    [34]孟博宇,许向阳,王青松.干粉吸入给药装置的研究进展.中国医药工业杂志,2010,41(9):698-703
    [35] Plumley C, Gorman EM, El-Gendy N, et al. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm,2009,369(1-2):136-143
    [36] Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm,2006,314(1):1-8
    [37] Siekmeier R, Scheuch G. Treatment of systemic diseases by inhalation of biomolecule aerosols. Physiol Pharmacol,2009; 60(suppl 5):15-26
    [38] Albert HLC, Henry HYT, Pratibhash C, et al. Particle engineering for pulmonary drug delivery. Pharm Res,2007,24(3):411-437
    [1]彭丽.噬菌体D29在结核病诊断和治疗中的应用.博士学位论文.重庆医科大学.2006
    [2]杨文慧.分枝杆菌噬菌体D29应用于耐药结核病治疗的探索性研究.博士学位论文.中国人民解放军军事医学科学院.2009
    [1] Vanbever R, Mintzes JD, Wang J, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res, 1999,16(11):1735-1742
    [2] Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care,2000,45(6):652-666
    [3] Atkins PJ. Dry powder inhalers:an overview. Respir Care,2005,50(10): 1304-1312
    [4]王晓波,袭荣刚,杨晓波等.影响干粉吸入剂肺沉积的制剂因素.中国新药杂志,2010,19(7):580-583
    [5]国家药典委员会.中华人民共和国药典(二部).北京:中国医药科技出版社,2010.附录XIXJ
    [6]国家药典委员会.中华人民共和国药典(二部).北京:中国医药科技出版社,2010.附录XH;附录IL
    [7]江荣高,王立青,王春龙等.影响吸入粉雾剂分散性能的制剂因素.中国医药工业杂志,2006,37(1):50-53
    [8] Clarke MJ, Tobyn MJ, Staniforth JN. The formulation of powder inhalation systems containing a high mass of nedocromoil sodiumtrihydrate. J Pharm Sci,2001,90(2):213-231
    [9]缪旭,刘旭,苏建芬等.影响干粉吸入剂雾化和沉积性能的制剂因素.国际药学研究杂志,2011,38(1):42-46
    [10]赵磊磊,霍务贞,龚炜等.吸入粉雾剂的研究进展.中国药学杂志,2006,41(20):1529-1532
    [11] Davies PJ, Hanlon GW, Molvneux AJ. An investigation into the deposition of inhalation aerosol particles as a function of airflow rate in a modified "Kirk lung". J Pharm Pharmacol,1976,28(12):890-897
    [12] Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci,2006,75(5): 433-438
    [13] Visser J. Vander waals and other cohesive forces affecting powder fluidization. Powder Technology,1989,58(1):1-10
    [1]马静,王玉红,陈建峰等.反溶剂重结晶法制备硫酸沙丁胺醇颗粒.北京化工大学学报,2003,30(6):6-9
    [2]胡婷婷,乐园,降立川等.反溶剂重结晶法制备布地奈德超细颗粒及其肺部给药体外评价.高校化学工程学报,2009,23(1):99-100
    [3]李凤前,胡晋红,朱全刚.干粉末吸入给药系统.国外医学药学分册,2001,28(3):167-170
    [4] Sollihub K, Cal K. Spray drying technique:Ⅱ. Current applications in pharmacetical technology. Pharm Sci.2010,99(2):587-597
    [5] Schmid K, Arpagaus C, Friess W. Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharmaceut Dev Technol,2011, 16(4):287-294
    [1] Schmid K, Arpagaus C, Friess W. Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. Pharmaceut Dev Technol,2011, 16(4):287-294
    [2] Seville PC, Li HY, Learoyd TP. Spray-dried powders for pulmonary drug delivery. Therap Drug Carrier Sys,2007,24(4):307-360
    [3] Albert HC, Henry HT, Pratibhash C, et al. Particle engineering for pulmonary drug delivery. Pharm Res,2007,24(4):411-437
    [4] Li HY, Seville PC, Williamson IJ, et al. The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J Gene Med,2005,7:343-353
    [5]Zijlstra GS, Ponsionen BJ, Hummel SA, et al.Formulation and process development of (recombinant human) deoxyribonuclease I as a powder for inhalation. Pharm Dev,2009,14(4):358-368
    [1] Seville PC, Li H, Learoyd TP. Spray-dried powders for pulmonary drug delivery. Therap Drug Carrier Sys,2007,24(4):307-360
    [2]彭丽.噬菌体D29在结核病诊断和治疗中的应用.博士学位论文.重
    庆医科大学.2006
    [3]杨文慧.分枝杆菌噬菌体D29应用于耐药结核病治疗的探索性研究.博士学位论文.中国人民解放军军事医学科学院.2009
    [4]王静,程洪亮,李京京等.噬菌体D29的稳定性研究.解放军药学学报,2011,27(5):380-382,394
    [5]江荣高,王立青,王春龙等.影响吸入粉雾剂分散性能的制剂因素.中国医药工业杂志,2006,37(1):50-53
    [6] Seville PC, Kellaway IW, Birchall JC. Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. Gene Med.2002,4(4):428-437
    [7] Bosquillon C, Lombry C, Preat V, et al. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control release.2001,70(3): 329-339
    [8] Corrigan DO, Corrigan OI, Healy AM. Predicting the physical state of spray dried composites: salbutamol sulphate/lactose and salbutamol sulphate/polyethylene glycol co-spray dried systems. Int J Pharm.2004, 273(1-2):171-182
    [9] Corrigan DO, Corrigan OI, Healy AM. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers. Int J Pharm.2006,322(1-2):22-30
    [10] Maa YF, Costantino HR, Nguyen PA, et al. The effect of operating and formulation variables on the morphyology of spray-dried protein particles. Pharm Dev Technol,1997,2(3):213-223
    [11] Li HY, Neill H, Innocent R, et al. Enhanced dispersibility and
    deposition of spray-dried powders for pulmonary gene therapy. Drug Target,2003,11(7):425-432
    [12] Andya JD, Mae YF, Costantino HR, et al. The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonat antibody. Pharm Res,1999,16(3):350-358
    [13] Costantino HR, Andya JD, Nguyen PA, et al. Effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recmnbinant humanized anti-IgE monoclonal antibody. Pharm Sci,1998,87(11):1406-1411
    [14] Bosquillon C, Lombry C, Preat V, et al. Comparison of particle sizing techniques in the case of inhalation dry powders. Pharm Sci,2001, 90(12):2032-2041
    [15] Sham JO, Zhang Y, Finlay WH, et al. Formulation and characterization of spray-dried powders containing Nan particles for aerosol delivery to the lung. Int J Pharm,2004,269(2):457-467
    [16] Chougule MB, Padhi BK, Misra A. Nano-liposomal dry powder inhaler of Amiloride Hydrochloride Nanosci Nanotechnol,2006,6(9-10): 3001-3009
    [17] You Y, Zhao M, Liu G, et al. Physical characteristics and aerosolization performance of insulin dry powders for inhalation prepared by a spray drying method. Pharm Pharmacol,2007,59(7):927-934
    [18] Vanbever R, Mintzes JD, Wang J, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res, 1999,16(11):1735-1742
    [19] Lo YL, Tsai JC, Kuo JH. Liposomes and disaccharides as carriers in
    spray-dried powder formulations of superoxide dismutase. Control Release,2004,94(2-3):259-272
    [20] Millqvist-Fureby A, Malmsten M, Bergenstahl B. Spray-drying of trypsin-surface characterization and activity preservation. Int J Pharm, 1999,188(2):243-253
    [21] Rabbani NR, Seville PC. Influence of storage humidity on the aerosolization performance of spray-dried powders.Aerosol Med, 2005,18(9):251
    [22] Broadhead J, Rouan SK, Hau I, et al. The effect of process and formulation variables on the properties of spray-dried beta-galactosidase. Pharm Pharmacol,1994,46(6):458-467
    [23] Bosquinon C, Rouxhet PG, Ahimou F, et al. Aerosalization properties, surface composition and physical state of spray-dried protein powders. Control Release,2004,99(3):357-367
    [24] Chan HK, Clark AR, Feeley JC, et al. Physical stability of salmon calcitonin spray-dried powders for inhalation. Pharm Sci, 2004,93(3);792-804.
    [25] Yang M, Velaga S, Yamamoto H, et al. Characterization of salmon calcitonin in spray-dried powder for inhalation, Effect of chitosan. Int J Pharm,2007,331(2):176-181
    [26] Guntur VP, Dhand R. Inhaled insulin:extending the horizons of inhalation therapy. Respir Care,2007,52(7):911-922
    [27] Rabbani NR, Seville PC. The influence of formulation components on the aerosolization properties of spray-dried powders.Control Release,2005,110(1)130-140
    [28]Najafabadi AR, Gilani K, Barghi M, et al. The effect of vehicle on
    physical properties and aerosolization behaviour of disodium cromoglycate microparticles spray dried alone or with L-leucine. Int J Pharm,2004,285(1-2):97-108.
    [29] Chew NY, Shekunov BY, Tong HH, et al. Effect of amino acids on the dispersion of disodium cromoglycate powders. Pharm Sci, 2005,94(10):2289-3000
    [30] Seville PC, LearoydTP, Li H-Y, etc. Aminoacid-modified spray-dried powders with enhanced aerosolization properties for pulmonary drug delivery. Powder Technol,2007,178(1):40-50.
    [31] Garcia-Contreras L, Fiegel J, Telko MJ, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a Guinea pig model. Antimicrob Agents Chemother,2007,51(8):2830-2836
    [32] Padhi BK, Chougule MB, Misra A. Optimization of formulation components and characterization of large respirable powders containing high therapeutic payload. Pharm Dev Technol,2006,11(4):465-475
    [33] Gervelas C, Serandour AL, Geiger S, et al. Direct lung delivery of a dry powder formulation of DTPA with improved aerosolization properties: effect on lung and systemic decorporation of plutonium. Control Release,2007,118(1):78-86
    [34] Rabbani NR, Seville PC. The use of amino acids as formulation excipients in lactose-based spray-dried powders. Pharm Pharmacol, 2004,56(Suppl.):S?32-33
    [35] Ely L, Roa W, Finlay WH, et al. Effervescent dry powder for respiratory drug delivery. Eur J Pharln Biopharm,2007,65(3):346-353
    [36] Learoyd TP, Burrows JL, French E, et al. Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur J
    Pharm Biopharm.2008,68(2),224-234
    [37] Li HY, Helen N, Rebecca I, et al. Enhanced Dispersibility and Deposition of Spray-dried Powders for Pulmonary Gene Therapy. Drug Targeting,2003,11(7),425-432
    [38] Tom HJ, Eric T, Jaap G, et al. Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). Vaccine,2010,28(2010)4369-4375
    [39] Li HY, Seville PC, Williamson IJ, et al.The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. Gene Med,2005,7:343-353
    [40]国家药典委员会.中华人民共和国药典(二部).北京:中国医药科技出版社,2010,附录XH;附录IL

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700