不同抗糖尿病治疗方案对2型糖尿病患者血小板功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察不同的治疗方法(格列吡嗪、吡格列酮、胰岛素)对2型糖尿病患者血小板功能的影响。方法将新近诊断的二甲双胍治疗效果不佳的60例2型糖尿病患者随机分为3组:A组:格列吡嗪组,在原二甲双胍(1.5g/日)基础上加用格列吡嗪(5-10mg/日);B组:吡格列酮组,在原口服二甲双胍(1.5g/日)基础上加用吡格列酮(15-30mg/日);C组:注射胰岛素组,在原口服二甲双胍基础上每日注射胰岛素(给药方式、剂量个体化)。另外取R组:20例初发的2型糖尿病患者予以单纯胰岛素强化治疗,以及N组:健康对照20例。在研究开始时检测各组的FBG、HbA1C以及反映血小板活化状态的各个指标,包括血小板膜上GMP-140、PAC-1的表达率,ADP诱导的血小板的聚集率。治疗两周后再次测定R组的上述各指标,并与其0周时进行统计学比较。开始治疗后4周、24周时分别测定A、B、C组血小板的活化状态,分别与各组0周时进行统计学比较,并且进行A、B、C组组间的统计学比较。
     结果
     ①基线时A、B、C组的FBG、HbA1C、ADP诱导的血小板聚集率、血小板GMP-140、PAC-1的表达率无显著性差异(P﹥0.05)。
     ②在基线时R组FBG、ADP诱导的血小板聚集率、血小板GMP-140、PAC-1的表达率均明显高于N组,差异有统计学意义(P﹤0.01)。
     ③治疗2周后,R组FBG、ADP诱导的血小板聚集率、血小板GMP-140、PAC-1的表达率均明显低于基线时,差异有统计学意义(P〈0.01)。
     ④治疗4周后,A、C组间FBG差异无统计学意义(P﹥0.05),B组FBG高于A、C组,差异有统计学意义(P﹤0.01)。
     ⑤治疗4周后,A、B、C组间ADP诱导的血小板聚集率、血小板GMP-140、PAC-1的表达率差异无统计学意义(P>0.05)。
     ⑥治疗24周后,A、C组间FBG、HbA1C差异无统计学意义(P﹥0.05),B组FBG高于A、C组,差异有统计学意义(P﹤0.01), HbA1C高于A、C组,差异有统计学意义(P〈0.05)。
     ⑦治疗24周后,A、C组间ADP诱导的血小板聚集率、血小板GMP-140、PAC-1的表达率差异无统计学意义(P﹥0.05)。B组ADP诱导的血小板聚集率低于A、C组,差异有统计学意义(P﹤0.01)。B组血小板GMP-140的表达率低于A、C组,差异有统计学意义(P﹤0.05),B组PAC-1的表达率低于A组(P﹤0.01),亦低于C组(P﹤0.05)。
     结论不同的抗糖尿病治疗方法在降低血糖的同时均能改善2型糖尿病患者的血小板功能。其中吡格列酮降低血小板功能效果优于格列吡嗪和胰岛素,可能具有不依赖于降血糖的抑制2型糖尿病血小板功能的作用。
Objectives: To observe the influence of different therapies (glipizide,pioglitazone, insulin)on the function of type 2 diabetic patients’platelets. Methods: 60 recent diagnosed type 2 diabetic patients who had been treated ineffectively with Metformin were divided randomly into three groups:Group A: it refers to Group of Glipizide,which means to add glipizide(5-10mg/day) on the former treatment of Metformin(1.5g/day);Group B: it refers to Group of Pioglitazone,which means to add pioglitazone(15-30mg/day) on the former treatment of Metformin(1.5g/day);Group C:it stands for Group of Insulin-injection,which means to add insulin injection( with individualized dosage) on the former treatment of Metformin. Besides, to set up a Group R: this group consists of 20 newly diagnosed type 2 diabetic patients, and to give this group of patients intensified therapy with insulin. Group N: 20 matched healthy control subjects. At the beginning of the study, FBG, HbA1C, expression ratio of GMP-140,PAC-1 on the platelet membrane, and the packing fraction of the platelets derived by ADP were measured in all the subjects. Two weeks later, we detected variables above mentioned in Group R, and compared the result with the index detected in week 0 on the theory of statistics. In addition, the platelet activation of group A, group B, and group C were measured in week 4 and week 24, and compared with the results inspected in week 0 separatly, as well as to make comparison among group A, group B, and group C.
     Results:
     ①On the baseline, there no significant difference among group A, group B and group C’s FBG、HbA1C, their packing fractions of the platelets derived by ADP, and their express ratios of GMP-140、PAC-1 on the platelet membrane(P﹥0.05).
     ②At the baseline, FBG、HbA1C, its packing fraction of the platelets derived by ADP, as well as its express ratio of GMP-140、PAC-1 on the platelet membrane in group R were all obviously higher than those in Group N , and those differences were statistically significant(P﹤0.01).
     ③Two weeks after been treated, group R’s FBG、the packing fraction of the platelets derived by ADP, and the express ratio of GMP-140、PAC-1 on the platelet membrane are lower than those on the baseline,as well, with a statistical significance( P〈0.01).
     ④Four weeks after been treated,the differences of FBG between group A and group C has no statistical significance(P﹥0.05), the FBG of group B was higher than that of group A and group C with a statistical significance: P﹤0.01.
     ⑤Four weeks after been treated, the differences of the packing fraction of the blood platelets derived by ADP, and the express ratio of GMP-140、PAC-1 on the platelet membrane had no statistical meaning (P>0.05) among group A, group B and group C.
     ⑥24 weeks after been treated,the differences of FBG、HbA1 between group A and group C had no statistical significance(P﹥0.05),the FBG in group B was higher than that of group A and group C, with a statistical significance of P﹤0.01, the HbA1C was also higher than that in group A and group C, the difference had statistical meaning(P〈0.05〉.
     ⑦24 weeks after been treated,the difference of the packing fraction of the platelets derived by ADP and the express ratio of GMP-140、PAC-1 on the platelet membrane between group A and group C had no statistical meaning(P﹥0.05). The packing fraction of the platelets derived by ADP in group B was lower than that in group A and group C, with a statistical significance of P﹤0.01, the expression ratio of GMP-140 of group B was lower than that of group A and group C, with a statistical meaning of P﹤0.05, and expression ratio of PAC-1 in group B not only lower than that of group A(P﹤0.01),but also lower than that of group C(P﹤0.05).
     Conclusion Different anti-diabetes therapies can cut down the blood glucose, at the same time; they can supress the platelet function of type 2 diabetic patients. What’s more, the Pioglitazone is more effective than the Glipizide and Insulin in lowering enhanced platelet function; which is independent of its effect on lowing blood glucose.
引文
1.Trovati M, Anfossi G, Cavalot F, et al, Insulin directly reduces platelet sensitivity to aggregating agents.Studies in vitro and in vivo. Diabetes 1988;37:780–786.
    2. Kahn NN, Bauman WA, Hatcher VB, et al, Inhibition of platelet aggregation and the stimulation of prostacyclin synthesis by insulin in humans. Am J Physiol 1993;265:H2160– 7.
    3.Anfossi G, Massucco P, Mattiello L, et al, Insulin exerts opposite effects on platelet function at physiological and supraphysiological concentrations. Thromb Res 1996;82:57–68.
    4.Murer EH, Gyda MA, Martinez NJ. Insulin increases the aggregation Response of human platelets to ADP. Thromb Res 1994;73:69– 74.
    5.Yngen M, Li N, Hjemdahl P, Wallen NH. Insulin enhances platelet activation in vitro. Thromb Res 2001;104:85– 91..
    6. Hu H, Li N, Ekberg K, Johansson BL, et al,Insulin, but not proinsulin C-peptide, enhances platelet fibrinogen binding in vitro in Type 1 diabetes mellitus patients and healthy subjects. Thromb Res. 2002 Apr 15;106(2):91-95.
    7. Trovati M, Anfossi G, Massucco P, et al,Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide,increases platelet concentrations of both guanosine-3’,5’-cyclic monophosphate and adenosine-3’,5’-cyclic monophosphate. Diabetes 1997;46:742–749.
    8. Kahn NN, Sinha AK. Stimulation of prostaglandin E1 binding to human blood platelet membrane by insulin and the activation of adenylate cyclase. J Biol Chem 1990;265:4976–4981.
    9. Akbiyik F, Ray DM, Gettings KF, et al,Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004;104:1361–1368.
    10. Jokl R, Colwell JA;Arterial thrombosis and atherosclerosis in diabetes. Diabetes Metab Rev 1997; 5:1–15
    11.Halushka PV, Rogers RC, Loadholt CB,Colwell JA: Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 1981;97:87–96
    12. Mayfield RK, Halushka PV, Wohltmann HJ, et al, Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients. Diabetes 1985; 34:1127–1133
    13. Watala C, Boncer M, Golanski J, et al, Platelet membrane lipid fluidity and intraplatelet calcium mobilization in type 2 diabetes. Eur J Haematol 1998; 61:319–326
    14.Martina V, Bruno GA, Trucco F,et al, Platelet cNOS activity is reduced in patients with IDDM and NIDDM. Thromb Haemost 1998;79:520–522
    15.Sarji KE, Kleinfelder J, Brewington P, et al, Decreased platelet vitamin C in diabetes mellitus: possible role in hyperaggregation. Thromb Res 1979; 15:639–650
    16.Tschoepe D, Rauch U, Schwippert B ,Platelet-leukocyte-cross-talk in diabetes mellitus. Horm Metab Res 1997;29:631–635
    17.Leet H, Paton RC, Passa P, et al, Fibrinogen binding and ADP-induced aggregation in platelets from diabetic subjects. Thromb Res 1981;24:143–150
    18.Ferroni P, Basili S, Falco A, et al, Platelet activation in type 2 diabetes mellitus. Thromb Haemost 2004;2:1282–1291.
    19.Ferreira IA, Mocking AI, Feijge MA,et al, Platelet Inhibition by Insulin Is Absent in Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol. 2006,26(2):417-422.
    20 . Sidhu JS, Cowan D, Tooze JA, et al, Peroxisome proliferatoractivated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2004;147:e25.
    21. Bodary PF, Vargas FB, King SA,et al ,Pioglitazone protects against thrombosis in a mouse model of obesity and insulin resistance. Thromb Haemost. 2005 Oct;3(10):2149-2153.
    22.Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004;27:2654–2660.
    23. Hishinuma T, Yamazaki T, Mizugaki M. Troglitazone has a reducing effect on thromboxane production. Prostaglandins Other Lipid Mediat. 2000 Jul;62(2):135-143
    24.Li D, Chen K, Sinha N, et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res 2005;65:907–912.
    25.Calnek DS, Mazzella L, Roser S, et al, Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003;23:52–57.
    26.Cho DH, Choi YJ, Jo SA, et al, Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR)
    27.Jiang C, Ting AT, Seed B. PPAR_ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82–86.
    28.Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 2001;12:511–18.
    29.Matsuno H, Tokuda H, Ishisaki A, et al, P2Y12 Receptors Play a Significant Role in the Development of Platelet Microaggregation in Patients with Diabetes. J Clin Endocrinol Metab. 2005 Feb;90(2):920-927.
    30.University Group Diabetes Program. Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes VII:mortality and selected nonfatal events with insulin treatment. JAMA 1978; 240: 37–42.
    31.University Group Diabetes Program. A study of the effects of hypoglycemic agentson vascular complications in patients with adult-onset diabetes. Diabetes 1976; 25: 1129–1153.
    32.Westerbacka J, Yki-Jarvinen H, Turpeinen A, et al. Inhibition of platelet– collagen interaction:an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol 2002;22:167– 172.
    33.Lo′pez-Aparicio, P., Rasco′n, A., Manganiello, V. C., et al, Biochem. Biophys. Res. Commun. 1992; 186:517–523
    34.Lopez-Aparicio P, Belfrage P, Manganiello VC, et al, Stimulation by insulin of a serine kinase in human platelets that phosphorylates and activates the cGMP-inhibited cAMP phosphodiesterase. Biochem Biophys Res Commun 1993;193:1137– 1144.
    35.Degerman E, Smith CJ, Tornqvist H, et al, Evidence that insulin and isoprenaline activate the cGMPinhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci U S A 1990;87:533–537.
    36.Fulltextf Giovanni Anfossi, Paola Massucco, Luigi Mattiello, et al, Insulin exerts opposite effects on platelet function at physiological and supraphysiological concentrations, Thrombosis Research, 1996 ; 82: 57-68,
    37.Smits P, Thien T. Cardiovascular effects of sulphonylurea derivatives. Diabetologia 1995; 38: 116–121.
    38.Pogatsa G. Potassium channels in the cardiovascular system. Diabetes Res Clin Pract 1995; 28 (suppl 1): S91-S98.
    39.Stout RW. Insulin and atherosclerosis. Diabetes. 1996 Jul;45 Suppl 3:S45-46.
    40.Juhan, I., Vague, P., Buonocore, M.,et al, Abnormalities of erythrocyte deformability and platelet aggregation in insulin-dependent diabetes corrected by insulin in vivo and in vitro. Lancet i, 1982;535-537.
    41.Davi, G., Catalano, I., Averna, M. et al. Thromboxane biosynthesis and platelet function in type 11 diabetes mellitus. N. Engl. J. Med. 1990,322:1769-1774.
    42.Monnier, L.H., Rodier, M., Gancel, A. et al. Plasma lipid fatty acids and plateletfunction during continous subcutaneous insulin infusion in type I diabetes. Diab. Metab. 1987; 13: 210-216.
    43.Rodier M,Colette C, Gouzes C,et al. Effects of insulin therapy upon plasma lipid fatty acids and platelet aggregation in NIDDM with secondary failure to oral antidiabetic agents . Diabetes Res Clin Pract. 1995 Apr;28(1):19-28
    44 . Dominick J. Angiolillo,et al, Insulin Therapy Is Associated With Platelet Dysfunction in Patients with Type 2 Diabetes Mellitus on Dual Oral Antiplatelet Treatment .JACC 2006;48:298–304
    45. Platelet Dysfunction Associated With Insulin Therapy in Patients With Type 2 Diabetes: Please Do Not Throw the Baby Out With the Bathwater! *AndréJ. Scheen, MD, PhD ,Delphine Legrand, MD JACC Vol. 49, No. 5, 2007:628
    46 . American Diabetes Association. Standards of medical care in diabetes mellitus—2006. Diabetes Care 2006;29 Suppl 1:S4–S42.
    47.Siluk D, Kaliszan R, Haber P, et al, Antiaggregatory activity of hypoglycaemic sulphonylureas. Diabetologia .2002;45:1034–1037.
    48.Khanolkar MP, Morris RH, et al, Rosiglitazone produces a greater reduction in circulating platelet activity compared with gliclazide in patients with type 2 diabetes mellitus—An effect probably mediated by direct platelet PPAR_ activation。Atherosclerosis. 2008 Apr;197(2):718-724.
    1 Matsuno H, Tokuda H, Ishisaki A,et al.P2Y12 receptors play a significant role in the development of platelet microaggregation in patients with diabetes[J].Clin Endocrinol Metab. 2005,90(2):920-927.
    2 Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation.[J]. Clin Invest. 2004,113(3):340-345.
    3 Remijn JA, Wu YP, Jeninga EH,et al ,Role of ADP Receptor P2Y12 in Platelet Adhesion and Thrombus Formation in Flowing Blood[J]. Arterioscler Thromb Vasc Biol. 2002,22(4):686-691.
    4 Ferreira IA, Eybrechts KL, Mocking AI,et al, IRS-1 Mediates Inhibition of Ca2_ Mobilization by Insulin via the Inhibitory G-protein Gi*[J]. Biol Chem. 2004,279(5):3254-3264.
    5 Ferreira IA, Mocking AI, Feijge MA,et al, Platelet Inhibition by Insulin Is Absent in Type 2 Diabetes Mellitus[J].Arterioscler Thromb Vasc Biol. 2006,26(2):417-422.
    6. Trovati M, Anfossi G, Massucco P, et al, Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3', 5'-cyclic monophosphate and adenosine-3', 5'-cyclic monophosphate[J]. Diabetes. 1997,46(5):742-749
    7. Federici M, Pandolfi A, De Filippis EA, et al, G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells[J]. Circulation. 2004,109 (3):399-405.
    8 Sesti G, Federici M, Hribal ML,et al, Defects of the insulin receptor substrate (IRS) system in human metabolic disorders[J]. FASEB. 2001,15(12):2099-2111
    9 Marini MA, Frontoni S, Mineo D, et al, The Arg972 variant in insulin receptor substrate-1 is associated with an atherogenic profile in offspring of type 2 diabetic patients[J]. Clin Endocrinol Metab. 2003,88(7):3368-3371
    10 Mateos-Trigos G, Evans RJ, Heath MF, Effects of P2Y(1) and P2Y(12) receptor antagonists on ADP-induced shape change of equine platelets: comparison with human platelets[J]. Platelets. 2002,13(5-6):285-292
    11 Fabre JE, Nguyen M, Latour A, et al, Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice[J]. Nat Med. 1999,5(10):1199-1202
    12 Reséndiz JC, Feng S, Ji G, et al, Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation[J]. Mol Pharmacol. 2003,63(3):639-645
    13 Watala C, Boncler M, Gresner P, Blood platelet abnormalities and pharmacological modulation of platelet reactivity in patients with diabetes mellitus[J]. Pharmacol Rep. 2005;57 (Suppl):42-58.
    14 Fateh-Moghadam S, Pl?ckinger U, Cabeza N,et al, Prevalence of aspirin resistance in patients with type 2 diabetes[J]. Acta Diabetol. 2005,42(2):99-103.
    15 Albert SG, Hasnain BI, Ritter DG,et al, Aspirin sensitivity of platelet aggregation in diabetes mellitus[J]. Diabetes Res Clin Pract. 2005,70(2):195-199.
    16 Wihlbor.g AK, Wang L, Braun OO,et al, ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels[J]. Arterioscler Thromb Vasc Biol.2004,24(10):1810-1815.
    17 Cattaneo M, Lecchi A, Inhibition of the platelet P2Y12 receptor for adenosine diphosphate potentiates the antiplatelet effect of prostacyclin[J]. Thromb Haemost. 2007,5(3):577-582.
    18 Wang TH, Bhatt DL, Fox KA,et al, An analysis of mortality rates with dual-antiplatelet therapy in the primary prevention population of the CHARISMAtrial[J]. Eur Heart J. 2007,28(18):2200-2207.
    19 Nguyen MC, Lim YL, Walton A,et al, Combining warfarin and antiplatelet therapy after coronary stenting in the Global Registry of Acute Coronary Events: is it safe and effective to use just one antiplatelet agent?[J]. Eur Heart J. 2007,28(14):1717-1722.
    20 Matetzky S, Shenkman B, Guetta V, et,al, Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction[J]. Circulation. 2004, 109(25):3171-3175.
    21 Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al, Clopidogrel withdrawal is associated with proinflammatory and prothrombotic effects in patients with diabetes and coronary artery disease[J]. Diabetes. 2006, 55(3):780-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700