细菌基因组DNA对中华绒螯蟹(Eriocheir sinensis)免疫功能调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明,含未甲基化CpG基序的细菌基因组DNA和人工合成的CpG ODN是人和多种动物有效的免疫激活剂。但是,迄今尚未见有关细菌基因组DNA对中华绒螯蟹免疫功能影响的研究报道。
     为探讨细菌基因组DNA对中华绒螯蟹蟹免疫功能及抗病力的影响,选择富含CpG序列的对中华绒螯蟹具有益生作用的枯草芽孢杆菌和具有致病作用的嗜水气单胞菌的基因组DNA进行试验。将两种细菌的基因组DNA分别按5、20、80μg/kg体重的剂量体腔注射中华绒螯蟹,以注射0.1 mL TE缓冲液的中华绒螯蟹为对照,在注射后第1、3、5、7 d采样,进行一系列免疫学指标的测定;并在第二次采样(第3 d)时,从每个处理组中取蟹9只,以1.2×107 cfu/kg体重的剂量体腔注射致病性嗜水气单胞菌CL99920菌株,记录接种7 d后各组蟹的累积死亡率。结果显示:注射一定剂量的两种细菌的基因组DNA均能显著地增加中华绒螯蟹的血细胞总数(THC),显著地增强血细胞呼吸爆发(O2-产量)和胞内酚氧化酶(POs、POT)活性,显著地增强血清酚氧化酶(PO)、超氧化物岐化酶(SOD)、酸性磷酸酶(ACP)、溶菌酶(LSZ)、一氧化氮合酶(NOS)活性,也能显著增强肝胰腺SOD活性和肌肉中的Na+-K+-ATP酶活性(P<0.05),但对血清碱性磷酸酶(ALP)活性没有显著影响(P>0.05)。两种细菌组DNA能不同程度地提高中华绒螯蟹对致病性嗜水气单胞菌的抗感染能力。在本试验条件下,两种细菌的基因组DNA均以20μg/kg剂量对中华绒螯蟹免疫力和抗病力的刺激效果最好,枯草芽孢杆菌基因组DNA和嗜水气单胞菌基因组DNA的免疫保护率分别为100%和71.43%。
Many studies indicate that unmethylated CpG motifs of bacterial genomic DNA and synthetic CpG ODN were a powerful activator of human and animal immune. However, the bacterial genomic DNA on the immune function of Chinese mitten crab reports was not yet seen to date.
     In order to determine the immunomodulatory effects of bacterial genomic DNA in the Chinese mitten crab (Eriocheir sinensis), the experiment one was processed. Crab were coelom injected with 5, 20, 80μg genomic DNA of Bacillus substilis and genomic DNA of Aeromonas hydrophila kg?1 crab weight. A series of immunology parameters were examined at 1, 3, 5, and 7 days after administration of bacterial genomic DNA. At the same time, one group injected with 0.1mLTE was set as control. Crab were challenged at 1.2×107 colony forming units (cfu)/kg crab weight with a virulent strain of Aeromonas hydrophila (CL99920) of E. sinensis at the sencond sampling time (3d), and mortalities were recorded over a 7-day period. The results demonstrated that the groups injected with genomic DNA of Bacillus substilis and genomic DNA of Aeromonas hydrophila showed a remarkble higher number of THC than controls; while the respiratory burst (release of superoxide anion) increased significantly; also the serum parameters, including phenoloxidase (PO), superoxide dismutase (SOD), acid phosphatase (ACP), lysozyme (LSZ), Nitric oxide synthase (NOS), SOD of Hepatopancreas and Na+-K+-ATPase of muscle were assayed to be significantly increased than the controls(P<0.05). But alkaline phosphatase (ALP) was not significantly changed(P>0.05). At the same time, two kinds of bacteria genomic DNA treated crab’s ability of anti-infected by Aeromonas hydrophila were remarkably enhanced. Under this experimental condition, dose of 20μg / kg of two bacterial genomic DNA were best stimuluded in immunity and disease resistance of the Chinese mitten crab, while immune protection rate of the DNA of Bacillus substilis and genomic DNA of Aeromonas hydrophila on Chinese mitten crab was 100% and 71.43% respectively. The results showed that two bacterial genome DNAs were a new potential for mitten crab immunopotentiator. They were worth further developing and utilizing.
引文
[1] Krieg A M, Yi A K, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation [J]. Nature, 1995, 347:546~549.
    [2] Oumouna M, Jaso-Friedmann L, Evans D L. Activation of nonspecific cytotoxic cells (NCC) with synthetic oligodeoxynucleotides and bacterial genomic DNA: binding, specificity and identification of unique immunostimulatory motifs [J]. Dev Comp Immunol, 2002, 26:257~269.
    [3]孟真.新型免疫增强剂—CpGDNA对鱼类免疫活性的调节作用[D].浙江大学硕士学位论文, 2003.
    [4]黄洪敏.细菌基因组DNA对鱼类免疫活性的调节作用[D].浙江大学硕士学位论文, 2005.
    [5] Hong X T, Xiang L X, Shao J Z. The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii Lea [J]. Fish Shellfish Immunol, 2006, 21:357~364.
    [6] Cuesta A, Estebana M A, Meseguera J. The expression profile of TLR9 mRNA and CpG ODNs immunostimulatory actions in the teleost gilthead seabream points to a major role of lymphocytes [J]. Cell Mol Life Sci, 2008, 65:2091~2104.
    [7] Maier V H, Schmitt C N Z, Gudmundsdottir S, et al. Bacterial DNA indicated as an important inducer of fish cathelicidins [J]. Mol Immunol, 2008, 45:2352~2358.
    [8] Tokunaga T, Yamamoto H, Shimada S, et al. Anti-tumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. Isolation physicochemical characterization, and anti-tumor activity [J]. J Natl Cancer Inst, 1984, 72:955~962.
    [9] Messina J P, Gilkeson G S, Pisetsky D S. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA [J]. J Immunol, 1991, 147:1759~1764.
    [10] Tokunaga T, Yano O, Kuramoto E, et al. Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of Mycobacterium bovis BCG induce interferons and activate natural killer cells [J].Microbiol Immunol, 1992, 36:55~66.
    [11] Yamamoto S, Yamamoto T, Shimada S, et al. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth [J]. Microbiol Immunol, 1992, 36:983~997.
    [12] Sparwasser T, Koch E S, Vabulas R M, et al. Bacterial DNA and immunostimu- latory CpG oligonucleotides trigger maturation and activation of murine dendritic cells [J]. Eur J Immunol, 1998, 28:2045~2054.
    [13] Trevani A S, Chorny A, Salamone G, et al. 2003. Bacterial DNA activates human neutrophils by a CpG-independent pathway [J]. Eur J Immunol, 33:3164~3174.
    [14]许立新,王志刚. CpG-DNA特征结构与其免疫刺激特性的关系[J].吉林农业科技学院学报, 2007, 16(1):17~19
    [15] Klinman D M, Klaschik S, Sato T, et al. CpG oligonucleotides as adjuvant for vaccines targeting infectious diseases [J].Advanced Drug Delivery Reviews, 2009, 69:248~255.
    [16] Seung W L, Man K S, Kwan H B, et al. Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials [J]. Immunol, 2000, 165:3631~3639.
    [17] J?rgensen J B, Zou J, Johansen A, et al. Immunostimulatory CpG oligodeo- xynucleotides stimulate expression of IL-1βand interferon-like cytokines in rainbow trout macrophages via a chloroquine-sensitive mechanism [J]. Fish Shellfish Immunol, 2001, 11:673~682.
    [18] J?rgensen, J B, Johansen A, Stenersen B, et al. CpG oligodeoxynucleotides and plasmid DNA stimulate Atlantic salmon (Salmo salar L.) leucocytes to produce supernatants with antiviral activity [J]. Dev Comp Immunol, 2001, 25:313~321.
    [19] Carrington A C, Collet B, Holland J W, et al. CpG oligodeoxynucleotides stimulate immune cell proliferation but not specific antibody production in rainbow trout (Oncorhynchus mykiss) [J]. Vet Immunol Immunopathol, 2004, 101:211~222.
    [20] J?rgensen J Johansen L H, Steiro K, et al. CpG DNA induces protective antiviral immune responses in Atlantic salmon (Salmo salar L.) [J]. J Virol, 2003, 77:11471~11479.
    [21]洪旭涛.细菌基因组DNA对水产动物的免疫调节作用的研究[D].浙江大学硕士学位论文, 2006.
    [22]施海晶,胡云章,胡凝珠,等. CpG DNA中ISS数量与免疫刺激效果间的关系初探[J].中国免疫学杂志, 2001, 17 (10):531~533.
    [23] Tracey K J, Cerami A. Tumor necrosis factor, other cytokines and disease [J]. AnnuRev cell Biol, 1993, (9):317~343.
    [24] Wright S D. Toll, a newpiece in the puzzle of innate immunity [J]. Exp Med, 1999, 189:605~609.
    [25] Neujahr D C, Reich C F, Pisetsky D S. Immunostimulatory properties of genomic DNA from different bacterial species. Immunobiology [J]. 1999, 200: 106~119.
    [26]张卓然,赵静,孟庆丽,等.三种细菌DNA及CpG寡核苷酸抗肿瘤免疫的比较实验研究[J].微生物学杂志, 2005, 25(1):5~10
    [27] Dalpke A, Frank J, Peter M, et al. Activation of toll-like receptor 9 by DNA from different bacterial species [J]. Infect Immun, 2006, 74:940~946.
    [28] Krieg A M, Wu R, Weeratna S M, et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs [J]. Proc Natl Acad Sci USA, 1998, 95:12631~12636.
    [29] Yamada H, Gursel I, Takeshita F, et al. Effect of suppressive DNA on CpG- induced immune activation [J]. J Immunol, 2002, 169:5590~5594.
    [30]王沂蒙,郭设平,刘艳,等.益生菌基因组DNA作为疫苗佐剂对鸡免疫效果的影响[J].中国家禽, 2007, 29(24):19~22
    [31] Vleugels B, Ververken C, Goddeeris B M. Stimulatory effect of CpG sequences on humoral response in chickens [J]. Poult Sci, 2002, 81:1317~1321.
    [32] Carrington A C, Secombes C J. A review of CpGs and their relevance to aquaculture [J]. Vet Immunol Immunopathol, 2006, 112: 87~101.
    [33] Kanellos T S, Sylvester I D, Butler V L, et al. Mammalian granulocyte- macrophage colony-stimulating factor and some CpG motifs have an effect on the immunogenicity of DNA and subunit vaccines in fish [J]. Immunology, 1999, 96:507~510.
    [34] Tassakka A C M A R, Sakai M. Current research on the immunostimulatory effects of CpG oligodeoxynucleotides in fish [J]. Aquaculture, 2005, 246:25~36.
    [35] Shen K-Y, Hogstrand C, Davies D H. A newly identified CpG oligodeoxy- nucleotide motif that stimulates rainbow trout (Oncorhynchus mykiss) immune cells to produce immunomodulatory factors [J]. Dev Comp Immunol, 2006, 30:311~324.
    [36] Tassakka A C M A R, Sakai M. The in vitro effect of CpG Oligodeoxy-nucleotides on the innate immune response of common carp (Cyprinus carpio L) [J]. Aquaculture, 2003, 220:27~36.
    [37]张柳,曹丽萍,丁炜东,等. CpG-DNA对异育银鲫(Carassius auratus gibelio)免疫细胞活性的诱导作用[J].广东海洋大学学报, 2009, 29(3):24~28.
    [38] Cuesta A, Salinas I, Esteban Má, et al. Unmethylated CpG motifs mimicking bacterial DNA triggers the local and systemic innate immune parameters and expression of immune-relevant genes in gilthead seabream [J]. Fish Shellfish Immunol, 2008, 25: 617~624.
    [39] Chen Y, Xiang L X, Shao J Z. Construction of a recombinant plasmid containing multi-copy CpG motifs and its effects on the innate immune responses of aquatic animals [J]. Fish Shellfish Immunol, 2007, 23:589~600.
    [40] Pedersen G M, Johansen A, Olsen R L, et al. Stimulation of type I IFN activity in Atlantic salmon (Salmo salar L.) leukocytes: Synergistic effects of cationic proteins and CpG ODN [J]. Fish Shellfish Immunol, 2006, 20:503~518.
    [41] Tassakka A C M A R, Sakai M. CpG oligodeoxynucleotides enhance the non- specific immune responses on carp, Cyprinus carpio [J]. Aquaculture, 2002, 209:1~10.
    [42] Meng Z, Shao J Z, Xiang L X. CpG oligodeoxynucleotides activate grass carp (Ctenopharyngodon idellus ) macrophages [J]. Dev Comp Immunol, 2003, 27:313~321.
    [43] Nakatani M, Iwasaki T, Watarai S, et al. In vitro enhancement by CpG ODN of phagocytic activity of rainbow trout head kidney phagocytes against fish pathogen Vibrio ordalii, but not against polystyrene particles [J]. J Vet Med Sci, 2007, 69(12):1287~1290.
    [44] Lee C H, Jeong H D, Chung J K, et al. CpG motif in synthetic ODN primes respiratory burst of olive flounder Paralichthys olivaceus phagocytes and enhances protection against Edwardsiella tarda [J]. Dis Aquatic Org, 2003, 56:43~48.
    [45] Carrington A C, Secombes C J. CpG oligodeoxynucleotides up-regulate antibacterial systems and induce protection against bacterial challenge in rainbow trout (Oncorhynchus mykiss) [J]. Fish Shellfish Immunol, 2007, 23:781~792.
    [46] Tassakka A C M A R, Sakai M. Expression of immune-related genes in the common carp (Cyprinus carpio L.) after stimulation by CpG oligodeoxynucleotides [J]. Aquaculture, 2004, 242:1~12.
    [47] Tassakka A C M A R, Savan R, Watanuki H, et al. The in vitro effects of CpG oligodeoxynucleotides on the expression of cytokine genes in the common carp (Cyprinus carpio L.) head kidney cells [J]. Vet Immunol Immunopathol, 2006, 110:79~85.
    [48]陈颖.一种含多拷贝CpG基序的质粒构建及其对水产动物的免疫调节作用[D].浙江大学硕士学位论文, 2006.
    [49] Klinman D M. Immunoterapeautic uses of CpG oligodeoxynucleotides [J]. Nat Rev Immunol, 2004, 4(4):249~259.
    [50] Strandskog G, Ellingsen T, J?rgensen J B. Characterization of three distinct CpG oligonucleotide classes which differ in ability to induce IFNα/βactivity and cell proliferation in Atlantic salmon (Salmo salar L.) leukocytes [J]. Dev Comp Immunol, 2007, 31:39~51.
    [51] Yi A K, Tuetken R, Redford T, et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent gerneration of reactive oxygen specied [J]. J Immunol, 1998, 160:4755~4761.
    [52] Ishimoto Y, Savan R, Endo M, et al. Non-specific cytotoxic cell receptor (NCCRP)-1 type gene in tilapia (Oreochromis niloticus): its cloning and analysis [J]. Fish Shellfish Immunol, 2004, 16:163~172.
    [53] Rhodes L D, Rathbone C K, Corbett S C, et al. Efficacy of cellular vaccines and genetic adjuvants against bacterial kidney disease in chinook salmon (Oncorhynchus tshawytscha) [J]. Fish Shellfish Immunol, 2004, 16:461~474.
    [54] Bridle A R, Butler R, Nowak B F. Immunostimulatory CpG oligodeo- xynucleotides increase resistance against amoebic gill disease in Atlantic salmon, Salmo salar L [J]. J Fish Dis, 2003, 26:367~371.
    [55] Lee E H, Kim K H. CpG-ODN increases resistance of olive flounder (Paralichthys olivaceus) against Philasterides dicentrarchi (Ciliophora: Scuticociliatia) infection [J]. Fish Shellfish Immunol, 2009, 26:29~32.
    [56]孙梯业,颜伟. CpG ODN免疫活性及其抗肿瘤作用的研究进展[J].实用癌症杂志, 2009, 24(6):668~671.
    [57] Meijer A H, Gabby Krens S F, Medina Rodriguez I A, et al. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish [J]. Mol Immunol, 2004, 40:773~783.
    [58] Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio [J]. Mol Immunol, 2004, 40:759~771.
    [59] Oshiumi H, Tsujita T, Shida K, et al. Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome [J]. Immunogenetics, 2003, 54:791~800.
    [60] Costa M M, Prado-Alvarez M, Gestal C, et al. Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria [J]. Fish Shellfish Immunol, 2009, 26:515~523.
    [61]王冷莹. CpG寡脱氧核苷酸引发PMO细胞株免疫活性的研究:吞噬活性及其信号传导途径[D].东吴大学硕士学位论文(台湾), 2004.
    [62]陈邦鸿. The study of the signal pathway of prawn hemocyte triggered by CpG oligodeoxynucleotide [D].东吴大学硕士学位论文(台湾), 2006.
    [63] Chuo C P, Liang S M, Sung H H. Signal transduction of the prophenoloxidase activating system of prawn haemocytes triggered by CpG oligodeoxynucleotides [J]. Fish Shellfish Immunol, 2005, 18:149~162.
    [64] Lu K Y, Huang Y T, Lee H H, et al. Cloning the prophenoloxidase cDNA and monitoring the expression of proPO mRNA in prawns (Macrobrachium rosenbergii) stimulated in vivo by CpG oligodeoxynucleotides [J]. Fish Shellfish Immunol, 2006, 20:274~284.
    [65] Zhang Y, Song L S, Zhao J M, et al. Protective immunity induced by CpG ODNs against white spot syndrome virus (WSSV) via intermediation of virus replication indirectly in Litopenaeus vannamei [J]. Dev Comp Immunol, 2010, 34:418~424.
    [66] Sung H H, Yang C W, Lin Y H, et al. The effect of two CpG oligodeoxynucleotides with different sequences on haemocytic immune responses of giant freshwater prawn, Macrobrachium rosenbergii[J]. Fish Shellfish Immunol, 2009, 26: 256~263.
    [67]李义.中华绒螯蟹新型免疫调节剂及其酚氧化酶的纯化和性质研究[D].南京农业大学博士学位论文, 2007.
    [68]李红霞,李义,俞菊华,等. CpG寡脱氧核苷酸对中华绒螯蟹非特异性免疫指标的影响[J].中国水产科学, 2008, 15(5):801~807.
    [69]李红霞,李义,刘永贵,等. CpG寡脱氧核苷酸对中华绒螯蟹3种血清酶活性的影响[J].饲料工业, 2007, 28(2):42~45.
    [70] Sung H H, Chen P H, Liu C L. Initiation of signal transduction of the respiratory burst of prawn haemocytes triggered by CpG Oligodeoxynucleotides [J]. Fish Shellfish Immunol, 2008, 24:693~700.
    [71]陈文典,李义,郝向举,等.枯草芽孢杆菌微胶囊制剂对中华绒螯蟹免疫机能及抗病力的影响[J].中国饲料, 2009, (5):33~36.
    [72]刘晓侠,林建平,岑沛霖.微生物基因组DNA提取方法的比较与改进[J].嘉兴学院学报, 2007, 19(3):48~50.
    [73]唐俊妮,龙飞,史贤明,等.到金黄色葡萄球菌基因组DNA提取方法的比较研究[J].中国卫生检验杂志, 2008, 18(8):1467~1469.
    [74]蔡武城,李碧羽,李玉民.生物化学实验技术教程[M].上海:复旦大学出版社, 1983, 47
    [75] Song Y L, Hsieh Y T. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygens pecies [J]. Dev Comp Immunol, 1994, 18:201~209.
    [76] Sung H H, Huang Y T, Hsiao L T. Phenoloxidase activity of Macrobrachium rosenbergii after challenge with two pathogens: Aeromonas veronii and Lactococcus garvieae [J]. Fish Pathol, 2004, 39:1~8.
    [77] Ashida M. Purification and characterization of prophenoloxidaes from hemolymph of the silkworm Bombyx mori [J]. Archs Biochem Biophys, 1971, 144: 749~762.
    [78] Hultmark D, Seiner H. Insect immunity:Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophera cecropia [J]. Eur J Biochem, 1980, 106:7~16.
    [79] Johanssn M W, Keyser P, Sritunyahucksana K, et al. Crustacean haemcytes and haematpiesis [J]. Aquaculture, 2000, 191:45~52.
    [80]李红霞. CpG寡脱氧核苷酸对中华绒螯蟹免疫功能调节作用的研究[D].苏州大学硕士学位论文, 2007.
    [81]黄旭雄,周洪琪.甲壳动物免疫机能的衡量指标及科学评价[J].海洋科学, 2007, 31(7):90~96.
    [82] Pascual C,Zenteno E,Cuzon G,et al.Litopenaeus vannamei juvenile energetic balance and immunological response to dietary protein [J]. Aquaculture, 2004, 236: 431~450.
    [83] Cheng W, Liu C H, Kuo C H, et al. Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus [J]. Fish Shellfish Immunol, 2005, 18:1~12.
    [84] S?derh?ll K, Cerenius L, Johansson M W. The prophenoloxidaase activationg system and its role in invertebrate defence [J]. Ann N Y Acad Sci, 1994, 712:155~161.
    [85]卓哲霈. Signal transduction of prophenoloxidase activating system of prawn haemocytes triggered by CpG oligodeoxynucleotides [D].东吴大学硕士学位论文(台湾), 2003.
    [86] S?derh?ll K, Smith V J. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution [J]. Dev Comp Immunol, 1983, 7:229~239.
    [87]汪小锋,樊廷俊.几种免疫促进剂对中国对虾血细胞数量、形态结构以及酚氧化酶产量和活性的影响[J].水产学报, 2005, 29(1):66~73.
    [88]林林,丁美丽,孙舰军,等.有机污染提高对虾对病原菌敏感性实验[J].海洋学报, 1998, 20(1):90~93.
    [89]李友光.中国对虾疾病与免疫机制[J].海洋科学, 1995,(4):1~3.
    [90]徐跃飞,任凤,赵宝昌.铜绿假单胞菌DNA对荷瘤宿主LPO与SOD水平的影响[J].实用癌症杂志, 2004, 19(2):121~123.
    [91]刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究[J].海洋与湖沼,1998, 29(2):113~118.
    [92]许国焕,梁友光,吴月嫦,等.酵母葡聚糖对南美白对虾免疫功能的影响[J].饲料工业, 2003, 24(10):53~54.
    [93]艾春香,陈立侨,高露姣,等. V_C对河蟹血清和组织中超氧化物歧化酶及磷酸酶活性的影响[J].台湾海峡, 2002, 21(4):431~438.
    [94] Sulochana K N, Biswas I, Ramakrishnan S. Eales’disease increased oxidation and peroxidation products of membrane constituents chiefly lipids and decreased antioxidant enzymes and reduced glutathione in vitreous [J]. Curr Eye Res,1999, 19: 254~259.
    [95]程剑,胡宝庆,饶育才.氨氮胁迫对背角无齿蚌三种酶活性的影响[J].江西科学, 2008, 28(6):887~890.
    [96] Cheng T C. The role of lysosomal hydrolases in molluscan cellular response to immunologic challenge[J]. Comp Pathobiol , 1978, (4): 59~71.
    [97]刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J].海洋与湖沼, 1999, 30(3):278~283.
    [98]王勇军,王长法,张士璀.水产动物中一氧化氮合酶的研究概况[J].海洋水产研究, 2003, 24(2):88~94.
    [99]王天云.一氧化氮:新发现的一种信使分子[J].生物学通报, 1999, 34(12): 40.
    [100]姜国建,于仁诚,王云峰,等.中国明对虾(Fenneropenaeus chinensis)血细胞中一氧化氮合成酶的鉴定及其在白斑综合症病毒感染过程中的变化[J].海洋与湖沼, 2004, 35(4):342~350.
    [101]姜国建,于仁诚,王云峰,等.对虾血细胞中一氧化氮合成酶鉴定与分析方法研究[J].中国水产科学, 2004, 11(3):177~184.
    [102]朱宏友,王广军,余德光,等.盐度变化对凡纳滨对虾一氧化氮合酶水平及病原敏感性的影响[J].湛江海洋大学学报, 2005, 25(6):90~93.
    [103]朱宏友,邓岳松.水温变化对凡纳滨对虾溶菌活力、一氧化氮合酶活性的影响[J].内陆水产, 2005(11):39~40.
    [104] Itami T, Ohno Y, Suzuki N, et al. Shrimp hemocytes can produce superoxide and nitric oxide [J]. ITE Lett, 2001, 2:684~688.
    [105] Jiang G J, Yu R C, Zhou M J, et al. Studies on nitric oxide synthase activity in haemocytes of shrimps Fenneropenaeus chinensis and Marsupenaeus japonicus after white spot syndrome virus infection [J]. Nitric Oxide, 2006, 14:219~227.
    [106] Yeh F C, Wu S H, Lai C Y, et al. Demonstration of nitric oxide synthase activity in crustacean hemocytes and anti-microbial activity of hemocyte-derived nitric oxide [J]. Comp Biochem Physiol, 2006, 144 B:11~17.
    [107]朱宏友,余德光,王广军,等.副溶血弧菌、脂多糖和嗜酸小球菌对凡纳滨对虾血清一氧化氮合酶的影响[J].热带海洋学报, 2006, 25(1):27~32.
    [108]刘文珍,邱德全.溶藻弧菌对凡纳滨对虾血清中一氧化氮及氧自由基的影响[J].广东海洋大学学报, 2007, 27(3):60~63.
    [109]余德光,朱红友,王广军,等.嗜酸小球菌对凡纳滨对虾体液免疫因子的影响[J].海洋水产研究, 2006, 27(5):51~55.
    [110]刘永贵.中华绒螯蟹嗜水气单胞菌口服疫苗的制备及其免疫效应研究[D].苏州大学硕士学位论文, 2009.
    [111]王维娜,牛东红,商利新,等.低温对日本沼虾耗氧率、排氨率和Na+/K+-ATPase比活性的影响[J].应用与环境生物学报, 2004, 10(5):602~604.
    [112]谭树华,严芳,罗少安,等.亚硝酸钠(NaNO2)对鲫鱼肝脏Na+/K+-ATPase和Mg2+-ATPase活性的影响[J].现代渔业信息, 2007, 22(8):6~8.
    [113]王顺昌,于敏.中华绒螯蟹在不同盐度下鳃Na+-K-+ATPase和ALP活性的变化[J].安徽技术师范学院学报,2003,17(2):117~120.
    [114]吕富,潘鲁青,任加云.中华绒螯蟹鳃上皮Na+-K-+ATPase性质的研究[J].海洋湖沼通报, 2004, (3):47~52.
    [115]任加云,潘鲁青,姜令绪. 3种重金属离子对中华绒螯蟹鳃丝Na+-K-+ ATPase活性的影响[J].中国水产科学, 2004, 11(4):291~295.
    [116]杨志彪,赵云龙,周忠良.水体铜对中华绒螯蟹(Eriocheir sinensis)代谢酶活力的影响[J].海洋与湖沼, 2006, 37(2):118~122.
    [117]杨筱珍,吴旭干,李燕玮,等.大口黑鲈和中华绒螯蟹心脏组织结构及ATP酶含量的比较[J].动物医学进展, 2007, 28(11):40~45.
    [118]卓孝福,林孟戈,郭永建.冠心病患者红细胞ATP酶、超氧化物歧化酶、钠、钾、钙、镁离子和血浆脂质过氧化物的变化及其意义[J].高血压杂志, 1999, 7(1): 24~26.
    [119]齐红莉,吴垠,桂远明.功夫菊酯对鲤红细胞生理生化指标的影响[J].水利渔业, 2006, 26(1):104~107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700