青岚湖五种淡水蚌的群体遗传多样性及三角帆蚌微卫星DNA的分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用北美Epioblasma capsaeformis和中欧Margaritifera margaritifera L.两种淡水双壳类的20对微卫星引物对江西青岚湖五种淡水蚌群体的基因组DNA进行了PCR扩增,筛选出8对多态性较高的引物,并用这8个微卫星座位分别对三角帆蚌(Hyriopsis cumingii)、褶纹冠蚌(Cristaria plicata)、洞穴丽蚌(Lamprotula caveata)、射线裂脊蚌(Schistodesmus lampreyanus)和中国尖嵴蚌(Acuticosta chinensis)五种蚌类群体的等位基因频率、遗传杂合度、有效等位基因数、多态信息含量等进行了遗传多样性分析,根据标准遗传距离对这五种蚌进行了聚类分析。并进一步利用PCR法分离了三角帆蚌的微卫星标记。主要研究结果如下:
     1、五种蚌类群体的平均等位基因数为2.8750~4.000,平均观测杂合度(Ho)为0.4417~0.6333,平均期望杂合度(He)为0.4430~0.5706,平均多态信息含量(PIC)为0.368~0.498,五种蚌类群体表现出较高的遗传多样性。
     2、有多个座位在不同蚌类群体中偏离哈代—温伯格平衡。微卫星位点Ecap6和MarMa3116仅在射线裂脊蚌中扩增出单一条带,可以作为鉴定射线裂脊蚌的特异性微卫星标记。
     3、五种蚌类群体间的遗传距离在0.6228与1.4724之间,三角帆蚌和褶纹冠蚌之间的遗传距离最大,射线裂脊蚌和洞穴丽蚌之间的遗传距离最小。
     4、用PCR法从三角帆蚌基因组DNA中筛选微卫星切实可行,而且避免了同位素污染,一般实验室即可满足实验条件。
     5、运用PCR法在三角帆蚌的小片段基因组文库中能快速筛选含微卫星序列的重组阳性克隆,对筛选得到的31个阳性克隆进行测序,结果获得33个微卫星序列,其中perfect(完美型)25个,占75.8%;imperfect(非完美型)5个,占15.1%;compound(混合型)3个,占9.1%。对含微卫星的重组阳性克隆的测序结果表明,(AT/TC)_n在三角帆蚌的基因组DNA中含量比较丰富。
Freshwater mussels play an important role in many aquatic ecosystems, but little is known about their biodiversity and conservation genetics. In order to provide genetic information of freshwater mussels in China, microsatellite markers were used to investigate genetic diversity of five species of freshwater mussels (Hyriopsis cumingii, Cristaria plicata, Lamprotula caveata, Schistodesmus Iampreyanus, Acuticosta chinensis) in Qinglan Lake, Jiangxi Province.
     8 primers for polymorphic DNA microsatellite loci were sieved from 20 primers which were developed from oyster mussel (EpiobIasrna capsaeforrnis) (Bivalvia: Unionidae) in North America and freshwater pearl mussel (Margaritifera margaritifera L.) (Bivalvia: Margaritiferidae) in Central Europe. we further described the isolation and characterization of the first microsatellite markers for H.cumingii, which were obtained by screening 58 recombinant clones. The main results are as follows:
     1. Allelic richness ranged from 2 to 6 alleles per locus and averaged from 2.8750 to 4.000 alleles for five mussel populations. Heterozygosity levels varied from 0.4417 to 0.6333 for average observed heterozygosity (Ho) and 0.4430 to 0.5706 for average expected heterozygosity (He), and average polymorphism information content (PIC) ranged from 0.368 to 0.498, which revealed that all the five populations showed higher genetic diversity.
     2. Several loci deviated from Hardy Weinberg Equilibrium. Single band was amplified in S.lampreyanus by loci MarMa3116, which can be regared as the specific microsatellite markers distinguishing S.lampreyanus from other species.
     3. Genetic distance (Ds) among five mussel populations ranged from 0.6228 to 1.4724, revealed that the maximal Ds was 1.4724 between H. cumingii and C. plicata, and the minimal Ds was 0.6228 between S. lampreyanus and L. caveata.
     4. The method of PCR screening of microsatellite sequences from H. cumingii was feasible and avoided the pollution of isotopes, which can be carried out in normal labs.
     5. Thirty-three microsatellites of the H. cumingii were obtained. Among the thirty-three microsatellites, There were 25 perfect ones (75.8%), 5 imperfect ones (15.1%) and 3 compound ones (9.1%). The experiment showed that microsatellite sequences characterized by (AT)_n and (TC/AG)_n abundant in genomic DNA of H. cumingii. Primers can bedesigned according to the flanking sequences of microsatellites and used in genetic analysis.
引文
1.陈省平,包振民,潘洁,胡景杰.4种养殖扇贝的群体遗传多样性及特异性AFLP标记研究.海洋学报,2005,27(2):160-164
    2.陈微,张全启,于海洋,胡景杰,齐洁,包振民.牙鲆微卫星标记的筛选及群体多态性分析.中国水产科学,2005,12(6):682-687
    3.戴建华,殷文莉,宋平,郝广勤,杨代淑,熊全沫.鳗鲡线粒体DNA的研究.遗传,1994b,16(4):6-9
    4.戴建华,殷文莉,杨代淑,熊全沫.胡子鲇多态性及限制性酶切图谱.水生生物学报,1996a,20(2):144-149
    5.戴建华,殷文莉,杨代淑,熊全沫.鲤鱼mtDNA酶切图谱的构建.生物化学杂志,1996b,12(6):681-685
    6.戴建华,殷文莉,杨代淑,熊全沫.鲇鱼线粒体DNA的酶切图谱.水产学报,1994a,18(4):312-320
    7.丁兰,张思促.SM6的多态性及其在成人多囊肾病基因诊断中的初步应用.中华医学遗传学杂志,1997,14:199-202
    8.樊连春,赖宇鹏,朱蓝菲,梁绍昌,桂建芳.雌核发育银鲫两个不同品系线粒体DNA比较.海洋与湖沼,2000,31(4):370-377
    9.方耀林,余来宁,许映芳,姚雁鸿.长江水系青鱼遗传多样性的研究.湖北农学院学报,2004,24(1):26-29
    10.甘西.佛耳丽蚌的生物学研究.江西水产科技,1996,4:17-23
    11.顾万春.统计遗传学.北京:科学出版社,2004,179-183
    12.胡文革,王金富,盛金良,段子渊,马润林.新疆三种雅罗鱼属鱼类mtDNA D-loop多态性及起源分化分析.遗传,2003,25(4):414-418
    13.华丹,顾若波,白云飞,闻海波.RAPD分析野生和养殖三角帆蚌的遗传多样性.水产学报,2003,27(6):541-545
    14.黄惟灏,李章来,刘月英,张文珍,王耀先.曹娥江流域的淡水贝类.湛江水产学院学报,1995,15(2):17-24
    15.黄惟灏,李章来,刘月英,张文珍,王耀先.飞云江、鳌江流域的淡水贝类.湛江海洋大学学报,1999,19(3):24-32
    16.黄惟灏,李章来,刘月英,张文珍,王耀先.甬江流域的淡水贝类.水产科技情报,2002,29(2):51-55
    17.黄晓明,胡向阳.二核苷酸重复多态性的非同位素检测及其在基因诊断中的应用.遗传学报,1995,22,(2):81-85
    18.黄艳艳,欧阳珊,吴小平,刘焕章.中国蚌科线粒体16S rRNA序列变异及系统发育.水生生物学报,2003,27(3):258-253
    19.黄周英,陈怀宇,陈朝阳.鄱阳湖三角帆蚌(Hyriopsis cumingii)核型研究.泉州师范学院学报(自然科学),2004,22(2):100-102
    20.焦思权,丁玉芳.三角帆蚌人工繁育技术简介.淡水渔业,1995,25(1):44-45
    21.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,4:19-22
    22.李霞,白俊杰,吴淑勤,叶星,劳海华,简清.剑尾鱼微卫星DNA的筛选.中国水产科学,2004,11(3):196-201
    23.李家乐,钱荣华,鲍宝龙,汪桂玲,戚鸟定.中国五大湖三角帆蚌群体遗传多样性的RAPD分析.上海水产大学学报,2005,14(1):1-5
    24.李思发,吕国庆.长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析.动物学报,1998,44(1):82-93
    25.林能锋,许斌福,曾红.PCR法筛选大黄鱼微卫星DNA.福建畜牧兽医,2005,27(2):7-8
    26.刘必谦,戴继勋.巨蛎属牡蛎遗传多样性研究.青岛海洋大学学报,1998,22(3):193-197
    27.刘萍,孟宪红,何玉英,孔杰,李健,王清印.中国对虾(Fenneropenaeus chinensis)黄、渤海3个野生地理群遗传多样性的微卫星DNA分析.海洋与湖沼,2004,35(3):252-257
    28.刘小明.淡水贝类贝壳多层构造形成研究.动物学报,1994,40(3):221-225
    29.刘月英,王耀先,张文珍.三峡库区的淡水贝类.动物分类学报,1991,16(1):1-14
    30.刘月英.中国经济动物志—淡水软体动物.北京:科学出版社,1979
    31.鲁翠云,孙效文,曹洁,梁利群.磁珠富集法筛选白鲢的微卫星分子标记.农业生物技术学报,2005a,13(6):772-776
    32.鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选.中国水产科学,2005b,12(2):192-196
    33.鲁双庆,刘少军,刘红玉,刘臻,刘筠.黄鳝微卫星引物筛选及其在保护遗传学上的应用.水产学报,2005,29(5):612-618
    34.吕慎金,马月辉,耿社民,杨燕.运用标记对畜禽遗传距离分析方法的探讨.黄牛杂志,2002,28(5):20-24
    35.栾会妮,姚维志,孙志明.分子标记技术在水产育种与种质鉴定中的应用.水利渔业,2004,24(4):4-7
    36.钱荣华,李家乐,董志国,郑汉丰,李应森,袁伟康.中国五大湖三角帆蚌形态差异分析.海洋与湖沼,2003,34(4):436-443
    37.萨姆布鲁克.分子克隆实验指南(第三版).北京:科学出版社,2002
    38.尚占环,姚爱兴.生物遗传多样性研究方法及其保护措施.宁夏农学院学报,2002,23(1):66-69
    39.沈浩,刘登义.遗传多样性概述.生物学杂志,2001,18(3):5-7
    40.石安静,邱安东,唐敏,余燕萍.圆背角无齿蚌血细胞培养.水生生物学报,2001,25(2):116-112
    41.孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1-5
    42.孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.2005,29(4):482-486
    43.汪晓晶,王亚军,石安静,王喜忠.三角帆蚌(Hyriopsis cumingii)核型分析.四川大学学报(自然科学版),2000,37(2):252-256
    44.王静,洪一江,王军花,徐毛喜.不同年龄池蝶蚌(贝)与三角帆蚌同工酶的比较.科学技术与工程,2005,5(4):204-209
    45.王丽娟.微卫星DNA及其PCR技术的进展.国外医学分子生物学分册,1996,18(4):169-173
    46.王伟,尤锋,高天翔,张培军.山东近海牙鲆(Paralichthys olivaceus)自然和养殖群体10个微卫星基因座位的遗传多态分析.海洋与湖沼,2004,35(6):530-537
    47.王晓鸿,樊哲文,崔丽娟.鄱阳湖湿地生态系统评估.北京:科学出版社.2004
    48.王晓梅,宋文芹,李秀兰,陈瑞阳.鲫鱼种群的随机扩增多态DNA与遗传多样性分析.水产科学,1999,6(2):26-28
    49.王昕,曹红鹤,耿社民,李宏滨,马月辉,郑友民.利用微卫星标记对中国4种小型猪的遗传多样性研究.畜牧兽医学报,2002,33(6):530-532
    50.王玉凤,魏青山.刻裂丽蚌的繁殖生物学.华中农业大学学报,1994,13(2):170-174
    51.魏东旺,楼允东,孙效文,沈俊宝.鲤鱼微卫星分子标记的筛选.动物学研究,2001,22(3):238-241
    52.魏青山,傅彩红,王玉凤,傅小飞.珠蚌科六种蚌的钩介幼虫形态比较研究.水生生物学报,1994,18(4):303-308
    53.谢绍河,蔡英亚,胡启明,谭惠贤.三角帆蚌室内流水育苗.湛江水产学院学报,1995,15(2):4-8
    54.徐鹏,周岭华,相建海.用PCR法快速筛选中国对虾含微卫星的重组阳性克隆.水产学报,2001a,25(1):127-130
    55.徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.2001b,32(3):255-259
    56.许云华,沈洁.DNA分子标记技术及其原理.连云港师范高等专科学校学报,2003(3):78-52
    57.阎冰,叶力,邓凤娇,张锡元,王爱民.马氏珠母贝与解氏珠母贝的随机扩增多态DNA分析.广西科学,2001,8(4):287-290
    58.杨文新,苏秀榕,杨志彪,李太武,宁淑香.鲍基因组DNA提取新方法研究.水产科学,2003,22(1):14-16
    59.余燕萍,石安静.贝类血细胞研究进展.动物学杂志,1998,33(5):40-44
    60.喻红,彭芳芳,刘芳.医学生物化学与分子生物学实验技术.武汉:武汉大学出版社,2003
    61.张洪渊,石安静,刘克武,龚由斌,罗胜清.河蚌培养组织的几种生化成分分析.动物学杂志,1994,29(4):8-12
    62.张继全,陈幼春,王毓英,曹红鹤,张跃.根据个体间蛋白质多位点基因型的比较分析中 国黄牛的遗传关系.畜牧兽医学报,1996,27(2):119-124
    63.张继全,邵春荣,王毓英,陈幼春.Nei氏标准遗传距离的估测精度.畜牧兽医学报,1998a,29(1):27-32
    64.张继全,邵春荣,王毓英,陈幼春.多位点基因型遗传距离的估测精度.畜牧兽医学报,1998b,29(2):128-131
    65.张亮,黄艳艳,刘焕章.利用mtDNA16SrRNA序列差异鉴定江西青岚湖的河蚌物种.水生生物学报,2004,28(3):294-299
    66.周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探.动物学研究,2001,22(4):257-264
    67.朱海虹,张本等.鄱阳湖—水文·生物·沉积·湿地·开发整治.合肥:中国科学技术大学出版社,1997
    68. Avise J C, Hamrick J L. Conservation Genetics: Case Histories from Nature. New York: Chapman & Hall, 1996. 1-9
    69. Banks M A, Blouin M S, Baldwin B A, Rashbrook V K, Fitzgerald H A, Blankenship dgecock D. Isolation and inheritance of novel microsatellites in Chinook Salmon (Oncorhynuchus tschawytscha). J Heredity, 1999, 90(2): 281-288
    70. Bardakci F, Skibinski D O. Application of RAPD technique in tilapia fish: species and subspecies identification. Heredity, 1994, 73(2): 117-123
    71. Barker J. S F. A global protocol for determining genetic distances among domestic livestock breeds. Proc. 5th Word Genet Appl Livest Prod, 1994, 21:501-508
    72. Bassam B J, Caetano A G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196(1): 80-83.
    73. Berg W, Ferris S D. Restriction endonuclease analysis of salmonid mitochondrial DNA. Can J Fish Aquat Sci, 1984, 41:1041-1047
    74. Bierne N, Launey S, Naciri-Graven Y, Bonhomme F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics, 1998, 148:1893-1906
    75. Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum genet, 1980, 32:314-331
    76. Brooker A L, Cook D. Organization of microsatellites differs between mammals and coldwater teleost fishes. Canadian J Fish Aquat Sci, 1994, 51:1959-1966
    77. Brooker A L, Cook D. Organization of microsatellites differs between mammals and coldwater teleost fishes. Canadian J Fish Aquat Sci, 1994, 51:1959-1966
    78. Brown S M, Hoplins M S. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolour (L.) Moench). Theoretic Appl Genet, 1996, 93:190-198
    79. Crooijmans R P M A, Bierbooms V A F, Komen J, Poel J J V, Groenen M A M. Microsatellite markers in common carp (Cyprinus carpio). Anal Genet, 1997,28:129-134
    80. Cruz F, Perez M, Presa P. Distribution and abundance of microsatellites in the genome of bivalves. Gene, 2005,346:241-247
    81. Davis G M, Fuller S L H. Genetic relationships among recent Unionacea (Bivalvia) of North America. Malacologia, 1981a, 20:217-253
    82. Davis G M, Heard W H, Fuller S L H, Hesterman C. Molecular genetics and speciation in Elliptio and its relationships to other taxa of North American Unionidae (Bivalvia). Biol J Linnean Soc, 1981b, 15:131-150
    83. Deka R, Shriver M D. Conservation of human chromosome 13 polymorphic microsatellite (CA)n repeats in Chimpanzees. Genomics, 1994, 22: 226-230
    84. Eackles M S and King T L. Isolation and characterization of microsatellite loci in Lampsilis abrupta (Bivalvia: Unionidae) and cross-species amplification within the genus. Mol Ecol Notes, 2002, 2 (4): 559-562
    85. Edwards K J, Barker J H A. Microsatellite libraries enriched for several microsatellite sequences in plant. Biotechniques, 1996, 20: 759—760.
    86. Fisher P J, Gardner R C, Richardso T E. Single locus microsatellites isolated using 5' anchored PCR. Nucleic Acids Res, 1999, 24: 4369-4371
    87. Gajardo G, Cancino J M, Navarro J M. Genetic variation and population structure in the marine snail Chorus giganteus (Gastropod: Muricidae), an overexploited endemic resource from Chile. Fisheries Res, 2002,55: 329-333
    88. Garica D K, Alcivar W A. Identification and organization of microsatellites in Penaeus vannamei shrimp. Prceedings of 25th International Conference on Animal Genetics, 21-25 July, 1996, Tours, France
    89. Geist J and Kuehn R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: implications for conservation and management. Mol. Ecol. 2005,14(2): 425-439
    90. Geist J, Rottmann O, Schroeder W, Kuehn R. Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia: Unionoidea). Mol Ecol Notes, 2003(3): 444-446
    91. Giovannim C. Optimisation of a microsatellite enrichment technique in Saccharum spp. Plant Mol Bio Reporter, 1999,17: 225-229
    92. Hines H C, Zikakis J P, Haenlein G F, Kiddy C G, Trowbridge C L. Linkage relationships among Loci of polymorphisms in blood and milk of cattle. J Dairy Sci. 1981, 64(1): 71-76.
    93. Johnson S L, Midson C N, Ballinger E W, Postlethwait JH. Identification of RAPD primers that reveal extensive polymorphisms between laboratory strains of zebrafish. Genomics, 1994, 19(1): 152-156
    94. Jones J W, Culver M, David V, Struthers J, Johnson N A, Neves R J, O'Brien S J, Hallerman E M. Development and characterization of microsatellite loci in the ehdangered oyster mussel Epioblasma capsaeformis (Bivalvia: Unionidae). Mol Ecol Notes, 2004(4): 649-652
    95. Kim D H, Heber D, Still D W. Genetic diversity of Echinacea species based upon amplified fragment length polymorphism markers. Genome, 2004,47(2): 102-111
    96. Kocher T D, Lee W J, Sobolewska H, Penman D, McAndrew B. A genetic linkage map of cichid Fish, the Tilapia (Oreochromis niloticus). Genetics, 1998,148:1225-1232
    97. Liu Z W, Biyashev R M, MA S M. Development of simple sequence repeat DNA markers and their integration into a barly linkage map. Theoretic Appl Genet, 1996,93: 869-876
    98. Lunt D H. An efficient method for PCR based isolation of microsatellite arrays (PIMA). Mol Ecol, 1999, 8: 891-894
    99. Moore S S, Stethen S. The development and application of genetic markers for the kuruma prawn Penaeus japonicus. Aquaculture, 1999,173:19-32
    100. Murray V, Chutima M. The determination of the Sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res, 1993,21(10): 2395-2398
    101. Neff B D. Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). J Heredity, 2001, 92:111-119
    102. Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonueleases. Proceedings of the National Academy of Sciences, 1979,76: 5269-5273
    103. Nei M. F-statistic and analysis of gene diversity in subdivided populations. Ann. Human Genet, 1977,41: 225-233
    104. Nei M. Genetic distance between populations. Amer Naturalist, 1972,106: 283-292
    105. Norris A T, Bradley D G, Cunningham E P. Microsatellite genetic variation between and within fanned and wild Atlantic salmon (Salmo salar) populations. Aquaculture, 1999,180: 247-264
    106. Paetgkau D. Microsatellites obtained using strand extension: an enrichment protocol. Biotechniques, 1999, 26: 690-697
    107. Patric T O. Isolation and characterization of tetranucleotide microsatellites from Atlantic Haddock (Melanogrammus aeglefinus). Marine Biotech, 2002,4:418-422
    108. Postlethwait J H, Johnson S L, Midson C N, Talbot W S, Gates M, Ballinger E W, Africa D, Andrews R, Carl T, Eisen J S. A genetic linkage map for the zebrafish. Science, 1994, 264: 699-703
    109. Rossetto M. Sourcing of SSR markers from related plant species. In: Henry R (ed). Plant Genotyping: the DNA Fingerprinting of Plant. CAB International, Wallingford, UK. 2001, 211-224
    110. Rowe D J, Rinderer T E. Seven polymorphic microsatellite loci in honeybees (Apis mellifera). Insects Soc, 1997,44: 85-93
    111. Roy M S, Geffen E. Pattern of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol Bio Evol, 1994,11: 553-570
    112. Sathe G M, O'Brien S, McLaughlin M M, Watson F, Iivi G P. Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucleic Acid Res., 1991,19(17): 4775
    113. Stein B A, Master L L, Morse L E. Taxonomic bias and vulnerable species. Science, 2002, 297: 1807
    114. Stephan W, Cho S. Possible role of natural selection in the formation of tandem repetive noncoding DNA. Genetics, 1994,136(1): 333-341
    115. Suwit W, Prajuab L. Development of microsatellite markers in black tiger shrimp (Penaeus monodon Fabricius). Aquaculture, 2003, 224: 39-50
    116. Tassanakajon A, Tiptawonnukul A, Supungul P, Rimphanitchayakit V, Cook D, Jarayabhand P, Klinbunga S, Boonsaeng V. Isolation and characterization of microsatellite markers in the black tiger prawn Penaeus monodon. Mol Marine Biol Biotech, 1998, 7(1): 55-61
    117. Thorpe J P. The molecular clock hypothesis: biochemical evolution, genetic differentiation, and systematics. Annu Rev Ecol Syst, 1982,13(1): 139-168
    118. Ueno S. Development and characterization of microsatellite markers in Camellia japonica L. Mol Ecol, 1999, 8:335-346
    119. Wang G L, Wang J J, Li J L Preliminary study on applicability of microsatellite primers developed from Crassostrea gigas to genomic analysis of Hyriopsis cumingii. J Fisheries China, 2006, 30(1): 15-20
    120. Weber J L. Informativeness of human (dC2dA) (dG2dT) polymorphisms. Genomics, 1990, 7: 524-530
    121. Wei K J, Xiong B X, Zhang G R. Genetic diversity of five freshwater mussels in genus Anodonta (Mollusca: Bivalvia) revealed by RAPD analysis. Acta Hydrobiologia Sinica, 2006, 30 (6): 684-691
    122. Williams J D, Cummins M L, Harrism K S, Neves R J. Conservation status of the freshwater mussels of the United States and Canada. Fisheries, 1993,18: 6-22
    123. Williams J D, Melvin J, Warren L, Cummings K S, Harris J L, Neves R J. Conservation status of freshwater mussels of the United States and Canada. Fisheries, 1992,18: 6-22
    124. Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990,18(22): 6531-6535
    125. Xu Z, Dhar A K, Wyrzykowski J, Warren A A. Identification of abundant and informative microsatellites from shrimp (Penaeus monodon) genome. Anim Genet, 1999, 30(2): 150-156
    126. Young W P, Wheeler P A, Coryell V H, Keim P, Thorgaard GH.A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 839-850
    127. Zhang Q, Allen S K J, Reece K S. Genetic variation in wild and hatchery stocks of suminoe oyster (Crassostrea ariakensis) assessed by PCR-RFLP and microsatellite markers. Marine biotech, 2005,7:588-599
    128. Zouros E, Foltz D W. Possible explanations of heterozygote deficiency in bivalve mollusks. Malacologia, 1984, 25: 583-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700