长江流域二倍体泥鳅野生群体遗传多样性的微卫星分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用12对微卫星引物对来自我国长江流域的夹江群体(JIA)、洞庭湖群体(YUE)、武汉群体(WUH)、鄱阳湖群体(XIN)、太湖群体(WUX)以及淮河下流的灌南群体(GUA)等6个二倍体泥鳅野生群体进行了遗传多样性分析。首先对采集来的6个群体共计291尾泥鳅个体进行倍性检测,结果显示:洞庭湖群体和武汉群体中分别有40尾和38尾泥鳅是四倍体(2n=100),其余213尾为二倍体(2n=50)。其中二倍体泥鳅用于遗传多样性和遗传结构分析,结果表明:
     1.12个微卫星位点在这6个泥鳅群体中共检测到64个等位基因,平均每个位点5.33个,数目最多的位点是Mac425,为11个,最少的位点是Mac576和Mac627,均为2个。每个位点的等位基因在不同群体中的分布规律不同。
     2.Hardy-Weinberg平衡检验结果显示:6个泥鳅群体整体上在4个微卫星位点(Mac49、Mac229、Mac425和Mac456)偏离Hardy-Weinberg平衡,各泥鳅群体整体上均偏离Hardy-Weinberg平衡。
     3.12个微卫星位点在6个泥鳅群体中的平均多态信息含量(PIC)在0.052~0.757之间,平均观察杂合度(H_O)在0.050~0.968之间,平均期望杂合(H_E)在0.056~0.791之间。6个泥鳅群体的平均PIC为0.192~0.465,平均H_O为0.333~0.517,平均H_E在0.240~0.501之间。6个泥鳅群体的遗传多样性处于中等水平,其中以洞庭湖群体的遗传多样性最高,鄱阳湖群体、灌南群体次之,而夹江群体的遗传多样性最低。
     4.6个群体在各位点上的平均F_(ST)值为0.228。群体间的遗传分化系数G_(ST)为0.185,群体遗传变异的22.85%来自群体之间的变异(P<0.001),表明6个群体间存在高度遗传分化。
     5.长江上游夹江群体与长江中下游以及淮河下游群体间成对固定指数F_(ST)(0.282~0.399>0.25)较大,基因流(N_m)较小(0.376~0.637<1),表明存在高度遗传分化;长江中下游的四个群体间F_(ST)(0.093~0.195)和N_m(1.000~2.431)处于中等水平,说明存在中度遗传分化;淮河下游的灌南群体与长江流域的太湖群体间F_(ST)(0.020)最小,N_m最大(12.021),表明它们间的遗传分化最小。
     6.6个泥鳅群体间Nei's遗传相似度(I)为0.707~0.979,遗传距离(D)为0.021~0.346。夹江群体和太湖群体间遗传距离最大(0.346),灌南群体和太湖群体间遗传距离最小(0.021)。根据遗传距离构建的UPGMA和N-J系统树将这6个泥鳅群体分为2支:灌南群体、太湖群体、鄱阳湖群体、洞庭湖群体和武汉群体5个群体聚为一支,夹江群体单独聚为一支。其中,鄱阳湖群体和洞庭湖群体聚为一个亚支,灌南群体、太湖群体以及武汉群体聚成另一个亚支。
Twelve microsatellite markers from loach(Misgurnus anguillicaudatus) were used to investigate genetic diversity among five diploid loach natural populations originating from the Yangtze River Basin(JIA,YUE,WUH,XIN,WUX) and one from Huai River Basin(GUA).The ploidy of each specimen was determined by relative DNA content of erythrocytes based on flow cytometric analysis,and revealed that 40 individuals from YUE and 38 individuals from WUH were tetraploid,the other 213 specimens were diploid which were used for microsatellite DNA analysis.The results were as follows:
     1.64 alleles were tested at the 12 microsatellite loci in six loach populations and the mean allelic number per locus was 5.33.The most was 11 at locus Mac425,the least was 2 at loci Mac576 and Mac627.
     2.The Hardy-Weinberg equilibrium analysis revealed that genetic disequilibrium was observed at four loci(Mac49、Mac229、Mac425 and Mac456) across six loach populations and in each population across 12 loci.
     3.Average Polymorphic Information Content(PIC) at 12 loci across six populations was between 0.052 and 0.757,average observed heterozygosity and average expected heterozygosity ranged from 0.050 to 0.968 and from 0.056 to 0.791,respectively.For six loach populations at all loci,Average Polymorphic Information Content,average observed heterozygosity and average expected heterozygosity ranged from 0.192 to 0.465,from 0.333 to 0.517 and from 0.240 to 0.501,respectively.It indicated that there were moderate genetic variability among the six loach populations.The highest genetic variability was found in YUE population,and the lowest was in JIA population.
     4.The F-statistic analysis indicated that the total F_(IS) value at twelve microsatellite loci across six loach populations was -0.095,the total F_(IT) value was 0.154 and the total F_(ST) value(the fixation indices of subpopulation relative to the total population) was 0.228. The F_(ST) value revealed that the six loach populations were at a moderate genetic differentiation level.The total coefficient of differentiation(G_(ST)) was 0.185,indicated that only 18.5%of the total genetic diversity was partitioned among populations and 81.5% was within populations,which was supported by results of Analysis of Molecular Variance(AMOVA).
     5.The pair-wise fixation index F_(ST) value and number of migrants N_m value between JIA and the other five populations respectively ranged from 0.282 to 0.399 and from 0.376 to 0.637,which showed that the genetic variance between JIA and the other five populations was at high level;the value of pair-wise F_(ST) and N_m between YUE,WUH, XIN and WUX populations was respectively ranged from 0.093 to 0.195 and from 1.000 to 2.431,which indicated that the genetic difference between the four populations was at moderate level;the maximum values of F_(ST) and N_m were observed between WUX and GUA populations,which meant that the genetic variance between them was at low level. All the values of pair-wise F_(ST) were at significant level.
     6.The Nei's standard genetic distance(D) among populations ranged from 0.021 to 0.346,the maximum occurred between JIA and WUX populations,and the minimum occurred between GUA and WUX populations.The cluster analysis showed that the six loach populations were clustered into two branches.WUX and GUA populations were clustered into one sub-branch at first and WUH population joined them later,YUE and XIN populatins were clustered into another sub-branch,the two sub-branches grouped a branch.Finally,JIA population grouped a branch alone.
     The present research on the genetic diversity of diploid loach natural populations provide some important information for natural resources conservation and genetic breeding of M.anguillicaudatus.
引文
1.常重杰,杜启艳,余其兴.泥鳅的Ag-NORs带和C带研究.河南师范大学学报(自然科学版),2000a,28(2):71-73
    2.常重杰,周荣家,余其兴.两种泥鳅中PdSox8和PdSox9的RFLP分析.遗传,2000b,22(3):153-156
    3.常重杰,周荣家,余其兴.两种泥鳅不同群体遗传变异的RAPD分析.动物学报,2001,47(1):89-93
    4.陈红菊,岳永生.变性与非变性聚丙烯酰胺凝胶电泳分析微卫星标记的差别.第十三次全国动物遗传育种学术讨论会论文集,2005
    5.杜启艳,常重杰,谢龙旭.泥鳅和大鳞副泥鳅酯酶同工酶的比较研究.河南科学,2000,18(4):396-398
    6.杜启艳,常重杰,南萍,燕帅国.两种泥鳅RAPD标记遗传稳定性分析.动物学杂志,2005,40(6):9-13
    7.高泽霞,王卫民,周小云.2种鉴定泥鳅多倍体方法的比较.华中农业大学学报,2007,26(4):524-527
    8.龚鹏,杨效文,谭声江,陈晓峰.分子遗传标记技术以其在昆虫科学中的应用.昆虫知识,2001,38(2):86-91
    9.何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42-47
    10.何忠效,张树政主编.电泳.北京:科学出版社,1990,143-155
    11.李殿香,李传印,戎茜,王金星.泥鳅线粒体DNA限制性酶切图谱.动物学研究,1999,20(2):153-155
    12.李殿香,王金星王来元南四湖泥鳅和大鳞副泥鳅随机扩增多态DNA分析初报.四川动物,2003,22(1):6-8
    13.刘静霞,周莉,赵振山,桂建芳.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23:97-105
    14.龙良启,汤宝贵,赵振山,简运华.泥鳅与大鳞副泥鳅群体RAPD分析.华中农业大学学报,1998,17(6):566-569
    15.钱惠荣,郑康乐.DNA标记和分子育种.生物工程进展,1998,18(3):12-18
    16.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,13-36
    17.施立明.遗传多样性及其保护.生物科学信息,1990,(2):158-164
    18.孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1-5
    19.杨承泰,王卫民,曹玲,姬伟.二倍体泥鳅线粒体细胞色素b基因的序列分析.水产科学,26(12):625-655
    20.印杰,赵振山,陈小奇,李艳秋,朱丽亚.二倍体和四倍体泥鳅染色体组型比 较.水生生物学报,2005,29(4):469-472
    21.曾柳根,甘云飞,王军花,洪一江.鄱阳湖区泥鳅的微卫星DNA多态性分析.南昌大学学报,理科版,2008,32(1):84-88
    22.张继全,邵春荣,王毓英,陈幼春.Nei氏标准遗传距离的估测精度.畜牧兽医学报,1998,29(1):27-32
    23.张继全,邵春荣,王毓英.多位点基因型遗传距离的估测精度.畜牧兽医学报,1998,29(2):128-131
    24.周小云,李明云,方礼豹,王卫民.基于形态特征的泥鳅染色体倍性分析.华中农业大学学报,2008,27(2):644-647
    25.朱滨,常剑波,谭细畅,虞功亮,吴志强,肖从学.湖鲟微卫星DNA引物应用于中华鲟亲子关系分析的初步研究.水生生物学报,1999,23:547-553
    26.朱翠兰,余为一,杨启超.分布稻田的三种不同体色泥鳅组织LDH同工酶的研究.安徽农业大学学报,1996,23(2):155-159
    27.王伟,尤锋,高天翔,张培军.山东近海牙鲆(Paralichthys olivaceus)自然和养殖群体10个微卫星基因座的遗传多态分析.海洋与湖沼,2004,35(6):530-537
    28.Aliah R S,Takagi M,Dong S,Teoh C T,Taniguchi N.Isolation and Inheritance of Microsatellite Markers in the Common Carp Cyprinus carpio.Fisheries Sci,1999,65(2):235-239
    29.Appleyard S A,Grewe P M,Innes B H,Ward R D.Population structure of yellowfin tuna(Thunnus albacares) in the western Pacific Ocean,inferred from microsatellite loci.Mar Biotechnol,2001,139:383-393
    30.Arai K.Genetics of the loach,Misgurnus anguillicaudatus:Recent progress and perspective.Folia Bio(Krakow),2003,51(Suppl):107-117
    31.Arias R L,Morishima K,Arai K.Genetically diversified populations in the loach Misgurnus anguillicaudatus inferred from newly developed microsatellite markers.Mol Ecol Notes,2007,7:82-85
    32.Barker J S F.A global protocol for determining genetic distance among domestic livestock breeds.Proc.5~(th) World Congr Genet Appl Livest Prod,1994,21:501-508
    33.Balloux F,Logon-Moulin N.The estimation of population differentiation with microsatellite markers.Mol Ecol,2002,11:155-165
    34.Botstein D,White R L,Skolnick M.Construction of a genetic linkage map in man-using restriction fragment length polymorphisms.Am J Hum Genet,1980,32(3):314-331
    35.Cagigas M E,Vazquez E,Blanco G;Sanchez J m.Combined assessment of genetic variability in populations of Brown Trout(Salmo trutta L.) based on allozymes,microstellites,and RAPD markers.Mar Biotechnol,1999,1:286-296
    36.Carleton K L,Streelman J T,Lee B Y,Garnhart N,Kidd M,Kocher T D.Rapid isolation of CA microsatellites from the tilapia genome.Anim Genet,2002,33: 140-144
    37. Chistiakov D A, Hellemans B, Tsigenopoulos C S, Law A S, Bartley N, Bertotto D, Libertini A, Kotoulas G, Haley C S, Volckaert F A M. Development and linkage relationships for new microsatellite markers of the sea bass (Dicentrarchus labrax L). Anim Genet, 2004, 35: 53-57
    38. Clisson I, Lathuilliere M, Crouau-Roy B. Conservation and Evolution of Microsatellite Loci in Primate Taxa. Am J Primatol, 2000, 50: 205-214
    39. Crawford A M, Kappes S M, Paterson K A, De Gortari M J, Dodds K G, Freking B A, Stone R T, Beattie V W. Microsatellite evolution: testing the ascertainment bias hypothesis. J Mol Evol, 1998, 46 (2): 256-260
    40. Crooijmans R P M A, Bierbooms V A F, Komen J, der Poel J J, Groenen M A M. Microsatellite markers in common carp (Cyprinus carpio L.). Anim Genet, 1997, 28: 129-134
    41. Coppieters W, Van de Weghe A, Peelman L, Zeveren van A, Bouquet Y. Characterization of porcinrphic microsatellite loci. Anim Genet, 1993,24: 163-170
    42. Desvignes J F, Laroche J, Durand J D, Bouver Y. Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 2001, 1994: 291-301.
    43. DeWoody J A, Avise J C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol, 2000, 56 (3): 461-473
    44. Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R. (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L.(brown trout). Heredity, 1993, 71: 488-496
    45. Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online, 2005, 1: 47-50
    46. Garcia de Leon F J, Cannone M, Quillet E, Bonhomme F, Chatain B. The application of microsatellite markers to breeding programmes in the sea bass. Aquaculture, 1998, 159:303-316
    47. Goff D J, Galvin K, Katz H, Westerfield M, Lander E S, Tabin C J. Identification of polymorphic simple sequence repeats in the genome of the zebrafish. Genomics, 1992, 14:200-202.
    48. Goldstein D B, Ruiz Linares A, Cavalli Sforza L L, Feldman M W. An Evaluation of Genetic Distances for use with microsatellite loci. Genetics ,1995, 139: 463-471
    49. Goldstein D B, Roemer G W, Smith D A, Reich D E, Bergman A, Wayne R K. The use of Microsatellite Variation to Infer Population Structure and Demographic History in a Natural Model System. Genetics, 1999, 151: 791-801
    50. Goudet J. FSTAT, version 2.9.3: a program to estimate and test gene diversities and fixation indices, 2002
    51. Garza J C, Slatkin M, Freimer N B. Microsatellite allele frequencies in human and chimpanzees, with implications for constraints on allele size. Mol Biol Evol, 1995, 12 (4): 594-603
    52. Han K, Li L, Leclerc GM, Hays AM, Ely B. Isolation and characterization of microsatellite loci for Striped Bass (Morone saxatilis). Mar Biotechnol, 2000, 2 (5): 405-408
    53. Heather L S, Jeremy S, Ian G W, Caleb C H, Mark C D, Peter D K, Richard M M, William S T. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res, 2002, 12 (12): 1929-1934
    54. Henderson A A, King T L. Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Mol Ecol Notes, 2002, 2: 437-439
    55. Hines H C, Zikakis J P, Haenlein G F, Kiddy C G, Trowbridge C L. Linkage relationships among loci of polymorphisms in blood and milk of cattle. J Dairy Sci, 1981, 64(1): 71-76
    56. Istvan L, Istvan M, Csaba H, Steven W. Preliminary studies on the genetic variability of six Hungarian common carp strains using microsatellite DNA markers. Hydrobiologia, 2005, 533: 223-228
    57. Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol, 2007, 16: 1099-1106
    58. Khan M R, Arai K. Allozyme variation and genetic differentiation in the loach Misgurnus anguillicaudatus. Fish Sci, 2000, 66: 211-222
    59. Kocher T D, Lee W J, Sobolewska H, Penman D, McAndrew B. A genetic linkage map of cichid Fish, the Tilapia Oreochromis niloticus. Genetics, 1998, 142: 1225-1232
    60. Lee W J, Kocher T D. Microsatellite DNA markers for genetic mapping in Oreochromis niloticus. J Fish Biol, 1996, 49: 169-171
    61. Lundrigan T A, Reist J D, Ferguson M M. Microsatellite genetic variation within and among Arctic charr (Salvelinus alpinus) from aquaculture and natural populations in North America. Aquaculture, 2005, 244: 63-75
    62. Mantel N A. The detection of disease clustering and a generalized regression approach. Cancer Res, 1967, 27: 209-220
    63. Masashi S, Norimasa T, Motoyuki H, Hideaki T. Analysis of microsatellite DNA polymorphisms in Rockfish Sebastes thompsoni and application to population genetics studies. Mar Biotechnol, 2001, 3: 45-52
    64. Moore S S, Sargeant L L, King T J, Mattick J S, Georges M, Hetzel J S. The conservation of dinucleotide microsatellite among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 1991, 10: 654-660
    65. Morishima K, Nakayama I, Arai K. Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). Genetica, 2008, 132: 227-241
    66. Murray V, Monchawin C, England P R. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids Res. 1993, 21 (10): 2395-2398
    67. Nechiporuk Alex, Finney J E, Keating M T, Johnson S L. Assessment of polymorphism in zebrafish mapping strains. Genome Res, 1999, 9 (12): 1231-1238
    68. Nei M. Genetic distance between populations. Amer Naruralist, 1972,106: 283-293
    69. Nei M. F-statistics and analysis of genediversity in subdivided populations. Ann. Hum. Genet. 1977, 41: 225-233
    70. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590
    71. Nei M. Molecular evolutionary genetics. New York: Columbia University Press, 1987
    72. O'Connell M, Wright J M. Microsatellite DNA in fishes. Rev Fish Biol Fisher, 1997, 7:331-363
    73. Pasteur N, Pasteur G, Bonhmme F. Practical Isozyme Genetics. Chichester, UK: Ellis Horwood Limited, 1988
    74. Postlethwait J H, Johnson S L, Midson C N, Talbot W S, Gates M, Ballinger E W, Africa D, Andrew R, Carl T, Eisen J S. A genetic linkage map for the zebrafish. Science, 1994, 264: 699-703
    75. Rice W R. Analyzing tables of statistical tests. Evolution, 1989, 43: 223-225
    76. Rossetto M. Sourcing of SSR markers form related plant species. Plant Genotyping: the DNA Fingerprinting of Plant. Wallingford UK: CABI Publishing, 2001, 211-224
    77. Rousset F. GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resources, 2008, 8: 103-106
    78. Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu E P. Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res, 1998, 8 (9): 901-915
    79. Sumantadinata K, Taniguchi N. Comparison of electrophoretic allele frequencies and genetic variability of common carp stocks from Indonesia and Japan. Aquaculture, 1990, 88: 263-271
    80. Tachida H, Iizuka M. Persistence of Repeated Sequences That Evolveb y Replication Slippage. Genetics, 1992, 131: 471-478
    81. Tamura K, Dudley J, Nei M, Kumar S. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599
    82. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12 (10): 4127-4138
    83. Thorpe J P. The molecular clock hypothesis: biochemical evolution, genetic differentiation, and systematics. Annu Rev Ecol Evol S, 1982, 13 (1): 139-168
    84. Waldbieser G C, Bosworth B G, Nonneman D J and Wolters W R. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001, 158: 727-734
    85.Wang G L,Wang J J,Li J L.Preliminary Study on Applicability of Microsatellite Primers Developed from Crassostrea gigas to Genomic Analysis of Hyriopsis cumingii.J Fisheries China,2006,30(1):15-20
    86.Weir B S,Cockerham C C.Estimating F-statistics for the analysis of population structure.Evolution,1984,38:1358-1370
    87.Wright S.Evolution and the genetics of populations.Vol.3:Experimental results and evolutionary deductions.Chicago:University of Chicago Press,1977
    88.Yeh F C,Yang R C,Boyle T B J,Ye Z H,Mao J X.POPGENE 32,The User-Friendly Shareware for Population Genetic Analysis.Molecular Biology and Biotechnology Centre,University of Alberta,Edmonton,Alberta,Canada,1999
    89.Young W P,Wheeler P A,Croyell V H,Keim P,Thorgaard G H.A detailed linkage map of rainbow trout produced using doubled haploids.Genetics,1998,148:839-850
    90.Yu H T,Lee Y J,Huang S W,Chiu T S.Genetic analysis of the populations of Japanese anchovy(Engraulidae:Engraulis japonicus) using microsatellite DNA.Mar Biotechnol,2002,4:471-479
    91.Yue G H,Orban L.Polymorphic microsatellites from silver crucian carp(Carassius auratus gibelio Bloch) and cross-amplification in common carp(Cyprinus carpio L.).Mol Ecol Notes,2002,2:534-536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700