大面积矩形表面波等离子体源的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面波等离子体(SWP)是由沿着介质-等离子体交界面传播的表面波电场产生和维持的等离子体。从上个世纪90年代以来,随着大规模集成电路、太阳能电池、平板显示器、微电子机械系统等领域的迅速发展,可用于大面积材料处理的SWP源受到了前所未有的关注。和其他的传统的等离子体源相比,SWP源有诸多优点,如不需要外磁场,无须电极,等离子体密度高,容易实现大面积等。由于SWP源复杂的天线阵列-表面波-等离子体耦合机制,迫切需要通过计算机数值模拟对相关物理问题进行研究以及对实体装置进行优化设计。
     本文数值模拟的研究对象是大面积矩形SWP源,主要工作包括:
     1、采用时域有限差分(FDTD)方法结合麦克斯韦方程组和冷等离子体模型模拟了任意天线激发的表面波传播。分别研究了等离子体密度、电子碰撞频率、石英玻璃厚度及介电常数、石英和天线之间有无空气间隙等对表面波传播的影响。结果显示,不同天线激发的表面波具有线性叠加性质,受到天线的影响表面波模式和本征模不一致;石英玻璃太厚、上方有空气间隙都不利于表面波的激发;当介质的相对介电常数在3.7左右时天线可以激发较强的表面波。
     2、基于等离子体空间均匀分布和沉积功率水平面均匀分布两个假设模拟了SWP源均匀稳态工作时候的装置电磁场分布、等离子体密度和温度分布。分析了不同天线阵列对波导内电磁场、激发的表面波传播和微波功率沉积的影响。数值模拟发现,在1.0×10~(18) m~(-3)的等离子体密度附近,装置的微波功率反射率小于20%。当天线激发的表面波模式紧凑、强度大时微波功率反射率也较小。当装置均匀稳态工作时,在距离石英大约2-4 cm会出现电子密度峰值,且密度峰值位置随着气压增大而靠近石英。气压比较大时,会出现等离子体密度饱和现象。
     3、用准稳态时间步进模型模拟了等离子体在表面波“推动”下的自发扩展过程,获得了自洽的等离子体电子密度、温度空间分布,分析了不同天线阵列、微波输入功率、气压、空气间隙等对等离子体自发扩展以及均匀性的影响。提出可以通过表面波行波而非驻波产生大面积表面波等离子体的观点。
     4、用粒子模拟(PIC+MCC)方法研究了微波功率共振吸收问题。模拟得出的局部共振宽度和共振电场时空分布与解析理论计算完全吻合。根据模拟结果推算出SWP源共振宽度小于0.1 mm,且气压越大共振点越靠近石英玻璃。用二维PIC模拟了不同电子温度下的表面波传播,得出的表面波模式与基于流体的冷等离子体模型模拟结果完全相同。
Surface wave plasma(SWP) is produced and sustained by the electric field of surfacewave propagating along the dielectric-plasma interface. With the rapid development ofultra-large-scale integrated(ULSI) devices, solar cells, flat panel displayer,microelectromechanical systems ere, SWP source, as a potential large-scale plasmaprocessing tool, has received unprecedented attention since the 90's of last century.Compared with conventional plasma source, SWP source has many advantages such asfree from the use of electrodes and external magnet field, permits the generation oflarge-scale high-density and uniform plasmas. Due to the complex coupling mechanismsbetween antenna array, surface wave and plasma in the SWP source, it urgently needscomputer numerical simulation to study relevant physical problems and as well as tooptimize the design of the device.
     The large-scale rectangular SWP source is the research object of numerical simulationin this dissertation. The main works are described as follows:
     1. The propagation of surface wave excited by arbitrary slot antenna is simulated bythe finite difference time domain(FDTD) method combined with the Maxwell's equationsand the cold plasma model. The dependences of surface wave propagation on variousfactors such as plasma density, electron collision frequency, quartz thickness, quartzpermittivity, and the air gap below antenna are investigated separately. The results showthat surface waves excited by different antennas have the nature of linear superposition,and the mode is inconsistent with eigen mode because of the influence of antennas. Thickquartz and the existence of air gap are not conducive to the excitation of surface wave.When the permittivity of dielectric is around 3.7, the antenna can excite more intensivesurface wave.
     2. The distributions of electromagnetic fields, electron density and temperature whendevice working at uniform and stable states are simulated based on two assumptions:plasma is uniform distributed in the chamber and deposited power is uniform distributedin horizontal plane. The influences of different antenna arrays on the electromagneticfields in the waveguide, the propagation of surface wave and the microwave depositedpower are analyzed. It is found that when plasma density is at around 1.0×10~(18)m~(-3), thereflection rate of microwave power can be lower than 20%. The more compact andintensive the surface wave is, the less reflection rate would be. At around 2-4 cm from the quartz there appears a peak of electron density and the peak position moves towards thequartz as the increase of gas pressure. When the gas pressure increases to a certain value,plasma density will saturate.
     3. The spontaneous outspread of plasma under the "push" of surface wave issimulated using a quasi-steady-state time-stepping model. Self-consistent generatedelectron density and temperature spatial distributions are presented. The impacts ofdifferent antenna arrays, microwave input power, gas pressure, air gap on the spontaneousoutspread of plasma are analyzed. The viewpoint that producing large-scale SWP bytraveling surface wave rather than standing surface wave is proposed.
     4. Microwave resonant absorption is studied using the particle-in-cell plus MonteCarlo collision(PIC+MCC) method. Simulated local resonant width and Spatial andtemporal distribution of resonant electric field are in coincidence with theoreticalcalculations. The resonance occurred in SWP source must be not more than 0.1 mm wideaccording to the simulation results, and resonant point moves towards quartz as gaspressure increases. Surface wave propagations under different electron temperature aresimulated using two-dimensional PIC method, the modes are identical to the resultobtained by the fluid based cold plasma model.
引文
[1] A.W. Trivelpiece and R. W. Gould. "Space charge waves in cylindrical plasma columns,"J. Appl. Phys., 1959, 30(11): 1784-1793
    [2] D.R. Tuma. "A quiet uniform microwave gas discharge for lasers," Rev.Sci. Instrum., 1970, 44(10): 1519-1520
    [3] M. Moisan, C. Beaudry, and P. Leprince. "A new device for the production of long plasma columns at a high electron density," Phys. Lett., 1974, 50 A(2): 125-126
    [4] M. Moisan. "Description and properties of an RF plasma used for the study of parametric interaction of a strong E-M field with plasma". Plasma Phys., 1974, 16(1): 1-17
    [5] M. Moisan, C. Beaudry, and P. Leprince, "A small microwave plasma source for long column production without magnetic field," IEEE Trans. Plasma Sci., 1975, PS-3:55-59
    [6] Z. Zakrzewski, M. Moisan, V. M. N. Glaude, C. Beaudry, and P. Leprince, "Attenuation of a surface wave in an unmagnetized RF plasma column," Plasma Phys., 1977, 19: 77-83
    [7] A. Shivarova and I. Zhelyazkov, "Surface waves in a homogeneous plasma sharply bounded by a dielectric," Plasma Phys., 1978, 20(10): 1049-1073
    [8] M. Moisan, Z. Zakrzewski, and R. Pantel, "The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns," J. Phys. D, Appl. Phys., 1979, 12(2): 219-237
    [9] M. Moisan, A. Shivarova, and A. W. Trivelpiece, "Experimental investigations of the propagation of surface waves along a plasma column," Plasma Phys., 1982, 24(11): 1331-1440
    [10] M. Moisan, Z. Zakrzewski, R. Pantel, and P. Leprince, "A waveguide based launcher to sustain long plasma columns through the propagation of a electromagnetic surface wave," IEEE Trans. Plasma Sci., 1984, PS-12: 203-214
    [11] M. Moisan, "New surface wave launchers for sustaining plasma columns at submicrowave frequencies (1-300 MHz)," Rev Sci. Instrum., 1987, 58(10): 1895-1900
    [12] M. Moisan and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface waves," J. Phys. D, Appl. Phys., 1991,24(7): 1025-1048
    [13] J. Margot and M. Moisan, "Characteristics of surface-wave propagation in dissipative cylindrical plasma columns," J. Plasma Phys., 1993,49: 357-374
    [14] F Werner, D Kotzec and J Engemann. "Slot antenna 2.45 GHz microwave plasma source," Plasma Sources Sci. Technol. 1994,3:473-481
    [15] D Korzec, F Werner, R Winter and J Engemann, "Scaling of microwave slot antenna (SLAN): a concept for efficient plasma generation," Plasma Sources Sci.Technol. 1996,5:216-234
    [16] I. Ganashev, M. Nagatsu, and H. Sugai, "Surface wave eigenmodes in a finite-area plane microwave plasma," Jpn. J. Appl. Phys., 1997,36: 337-344
    [17] H. Sugai, I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves," Plasma Sources Sci. Technol., 1998,7: 192-205
    [18] I. Ghanashev, M. Nagatsu, S. Morita, and H. Sugai. "Large-area high-density plasma excitation using standing pure and hybrid surface waves," J. Vac. Sci.Technol. A. 1998,16(3): 1537-1541
    [19] H. Sugai, I. Ghanashev, and K. Mizuno. "Transition of electron heating mode in a planar microwave discharge at low pressures," APPLIED PHYSICS LETTERS.2000, 77(22): 3523-3525
    [20] Igor Odrobina, Jozef K' udela and Masashi Kando. "Characteristics of the planar plasma source sustained by microwave power," Plasma Sources Sci. Technol. 1998, 7: 238-243
    [21] M Nagatsu, S Morita, I Ghanashev et al. "Effect of slot antenna structures on production of large-area planar surface wave plasmas excited at 2.45 GHz," J. Phys. D: Appl. Phys. 2000, 33: 1143-1149
    [22] Ivan Ghanashev, Masaaki Nagatsu, and Hideo Sugai. "Surface wave eigenmodes in a finite-area plane microwave plasma," Jpn. J. Appl. Phys. 1997, 36: 337-344
    [23] M Nagatsu, G Xu, I Ghanashev et al. "Mode identification of surface waves excited in a planar microwave discharge," Plasma Sources Sci. Technol. 1997, 6:427-434
    [24] Ivan Ghanashev, Masaaki Nagatsu, Ge Xu et al. "Mode jumps and hysteresis in surface-wave sustained microwave discharges," Jpn. J. Appl. Phys. 1997, 36:4704-4710
    [25] Hiroyuki Kousaka and Kouichi Ono. "Numerical analysis of the electromagnetic fields in a microwave plasma source excited by azimuthally symmetric surface wave," Jpn. J. Appl. Phys. 2002, 41: 2199-2206
    [26] Masaaki Nagatsu, Ge Xu, Masashi Yamage et al. "Optical emission and microwave field intensity measurements in surface wave-excited planar plasma," Jpn. J. Appl. Phys.1996, 35:341-344
    [27] H. Kousaka, K. Ono, N. Umehara et al. "Plasma distribution in a planar-type surface wave-excited plasma source," Thin Solid Films. 2006, 506-507:503-507
    [28] LIANG Yi-Zi, OU Qiong-Rong, LIANG Bo et al. "Large Volume and High Density Surface Wave Plasmas Sustained by Two Microwave Launchers," CHIN.PHYS.LETT. 2008, 25(2): 1761-1763
    [29] 欧琼荣,梁荣庆.大面积平面表面波等离子体的研究,真空与低温.2002,8(1):28-33
    [30] 詹如娟,吴丛凤,温小辉.Waveguide-surfatron型表面波等离子体源的特性研究,真空科学与技术,2001,21(1):30-33
    [31] 房芳.表面波等离子体内表面波的模式变换和SiO2/PET薄膜淀积的研究.硕士学位论文,中国科学院等离子体物理研究所,2001
    [32] 欧琼荣.平面大面积表面波等离子体机理及应用研究.硕士学位论文,中国科学院等离子体物理研究所,2002
    [33] Q. Chen, P. H. Aoyagi, and M. Katsurai, "Numerical analysis of surface wave excitation in a planar-type nonmagnetized plasma processing device," IEEE Trans. Plamsa Sci., 1999, 27:164-170
    [34] T.J. Wu, W. J. Guan, C. M. Tsai. "Experimental study of the plasma resonance in a planar surface wave plasma," PHYSICS OF PLASMAS. 2001, 8(7): 3195-3198
    [35] M Nagatsu, I Ghanashev and H Sugai. "Production and control of large diameter surface wave plasmas," Plasma Sources Sci. Technol. 1998, 7:230-237
    [36] M Nagatsu, K Naito, A Ogino et al. "Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher," Plasma Sources Sci. Technol. 2006, 15:37-41
    [37] Yasuyoshi Yasaka and Kazuya Koga. "Planar microwave discharges with active control of plasma uniformity," PHYSICS OF PLASMAS. 2002, 9(3): 1029-1035
    [38] Tetsuya Yamamoto, Mitsuhiro Ono, Makoto Ando, "Near-Field Distribution of Radial Line Slot Antenna for Surface-Wave-Coupled Plasma Generation," Jpn. J. Appl. Phys. 2001, 40:380-387
    [39] Jozef Kudela, Tibor Terebessy, Igor Odrobina et al. "T-junction tuning system for large-area surface-wave plasma sources," APPLIED PHYSICS LETTERS. 2002, 80(7): 1132-1134
    [40] I. Ghanashev and H. Sugai, "Multiple eigenmode analysis and density jumps in planar surface-wave plasmas with slot-antenna excitation," Phys. Plasmas, 2000, 7: 3051-3061
    [41] Ivan Ghanashev, Masaaki Nagatsu, and Hideo Sugai. "Surface wave eigenmodes in a finite-area plane microwave plasma," Jpn. J. Appl. Phys. 1997, 36:337-344
    [42] T. Yamauchi, K. Aoki, and M. Kanoh. "Large-area plasma produced by surface waves on a metal wall with periodic grooves," J. Vac. Sci. Technol. A. 2001, 19(5): 2433-2440
    [43] I. Ganachev, H. Sugai. "Advanced large-area microwave plasmas for materials processing," Surface and Coatings Technology. 2003, 174-175: 15-20
    [44] 菅井秀郎编著.等离子体电子工程学.张海波,张丹译.北京:科学出版社,2002:126-128
    [45] I Ghanashev, H Sugai, S Morita et al. "Local resonant excitation of plasma oscillations in a planar surface-wave plasma device," Plasma Sources Sci. Technol. 1999, 8: 363-369
    [46] Hiroyuki Kousaka and Kouichi Ono. "Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source," Plasma Sources Sci. Technol. 2003, 12: 273-286
    [47] Takayuki Toba and Makoto Katsurai. "Modeling of Argon Discharge Characteristics of Planar-Type Surface Wave Plasmas in an Electron Fluid Model," IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30(6): 2095-2101
    [48] Elena Tatarova, Francisco M. Dias, J(?)lio Hendques et al. "A Large-Scale Ar Plasma Source Excited by a TM330 Mode", IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33(2): 866-875
    [49] J. Hendques, E. Tatarova, F. M. Dias. "Spatial structure of a slot-antenna excited microwave N2-Ar plasma source," J. Appl. Phys. 2008, 103: 103304
    [50] Y. Kabouzi and D. B. Graves. "Modeling of atmospheric-pressure plasma columns sustained by surface waves," PHYSICAL REVIEW E. 2007, 75:016402
    [51] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., 1966, AP14: 302-307
    [52] A. Taflove, Computational Electrodynamics-The Finite-Difference Time-Domain Method. Norwood, MA: Artech, 1995
    [53] 王长清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994
    [54] R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. Standler, and M. Schneier, "A frequency-dependent finite-difference time-domain formulation for dispersive material," IEEE Trans. Electromagn. Compat., 1990, 32: 222-227
    [55] R. J. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propagat., 1991,39:29-34
    [56] R.J. Luebbers and F. Hunsberger, "FDTD for N th-order dispersive media," IEEE Trans. Antennas Propagat., 1992, 40: 1297-1301
    [57] R. J. Luebbers, D. Steich, and K. Kunz, "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. Antennas Propagat., 1993, 41: 1249-1257
    [58] D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., 1996, 44: 792-797
    [59] D. M. Sullivan, "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas Propagat., 1992,40: 1223-1230
    [60] T. Kashiwa, N. Y. Yoshida, and I. Fukai, "Transient analysis of a magnetized plasma in three-dimensional space," IEEE Trans. Antennas Propagat., 1988, 36:1096-1105
    [61] T. Kashiwa and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization," Microwave Opt. Technol.Lett., 1990, 3: 203-205
    [62] T. Kashiwa and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with orientation polarization," IEEE Trans. Inst. Electron.,Inform., Commun. Eng., 1990, 73: 1326-1328
    [63] Y. Takayama and W. Klaus, "Reinterpretation of the auxiliary differential equation method for FDTD," IEEE Microwave Wireless Components Lett., 2002, 12:102-104
    [64] M. D. Bui, S. S. Stuchly, and G. I. Costache, "Propagation of transients in dispersive dielectric media," IEEE Trans. Microwave Theory Technol., 1991,39: 1165-1171
    [65] Q. Chen, M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propagat., 1998, 46:1739-1745
    [66] S. Liu, N. Yuan, and J. Mo, "A novel FDTD formulation for dispersive media," IEEE Microwave Wireless Compon. Lett., 2003,13: 187-189
    [67] Chen Zhaoquan, Liu Minghai, Zhou Peiqin et al. "A Novel Structure of Slot-Antenna Array for Producing Large-Area Planar Surface-Wave Plasmas,"Plasma Science and Technology. 2008,10(6): 655-660
    [68] S. Ashida, C. Lee, and M. A. Lieberman, "Spatially averaged (global) model of time modulated high density argon plasmas," J. Vac. Sci. Technol. A, 1995, 13:2498-2507
    [69] Jozef Kudela, Tibor Terebessy and Masashi Kando. "Hot-electron flux observation in large-area microwave sustained plasmas," APPLIED PHYSICS LETTERS. 2000,76(10): 1249-1251
    [70] Birdsall C K, Langdon A B. Plasma Physics Via Computer Simulation [M]. McGraw Hill Book Company,1985
    [71] R.W. Hockney and J. W. Eastwood, Computer Simulation Using Particles. New York McGraw-Hill, 1981
    [72] C. K. Birdsall, "Particle-in-Cell Charged-Particle Simulations,Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC," IEEE TRANSACTIONS ON PLASMA SCIENCE. 1991, 19(2): 65-85
    [73] Harlow F H. Hydrodynamic problems involving large fluid distortions. J. Assoc Comp. mach, 1957, 4:137
    [74] F.H. Harlow, "The particle-in-cell computing method for fluid dynamics," Meth. Comput. Phys.. 1964, 4: 319
    [75] Dawson J M. One-Dimensional plasma model. Phy Fluids, 1962, 5:445
    [76] Birdsall C K. Clouds-in-Clouds, Cloud-in-Cells physics for many-body plasma simulation. J Comput Phy., 1969, 3: 494
    [77] R. Boswell and I. J. Morey, "Self-consistent simulation of a parallel plate RF discharge," Appl. Phys. Lett., 1988, 52: 21-23
    [78] M. Tanaka, Macroscale implicit electromagnetic particle simulation of magnetized plasmas, J. Comput. Phys. 1988, 79:209
    [79] M. Tanaka, The macro-EM particle simulation method and a study of collisionless magnetic recormection, Comput. Phys. Commun. 1995, 87: 117-138
    [80] David W. Walker. "Particle-in-cell plasma simulation codes on the connection machine," Computer Systems in Engineering. 1991, 2(2/3): 307-319
    [81] J. Wang, P. Liewer, and E. Huaug. "Three-Dimensional Electromagnetic Particle-in-Cell with Monte Carlo Collision Simulations on Three MIMD Parallel Computers," Journal of Supercomputing, 1997, 10: 331-348
    [82] Wang J, Liewer P, Decyk V. 3D electromanetie plasma particle simulations on a MIMD parallel computer[J]. Computer Physics Communications, 1995,87:35
    [83] 马燕云,常文蔚,银燕.“三维面向对象的并行粒子模拟程序PLASIM3D,”计算物理,2004,21(3):305-311
    [84] 曹莉华,刘大庆,常文蔚.“二维粒子模拟的多时标法,”国防科技大学学报,1996,18(3):133-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700