铁电薄膜与隧道结存储器件性能模拟及失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文重点研究了铁电薄膜与隧道结存储器件的性能模拟及失效机理。从铁电薄膜的制备、最基本的电极化性能测量进行展开,详细讨论了极化开关相关理论及其在存储器件方面的应用,如铁电薄膜及其存储器件的印记、疲劳失效分析,超薄薄膜铁电、多铁性隧道结在新型多逻辑存储器件方面的应用等。建立了铁电电容模型,并用来分析铁电薄膜的电学性能以及与应用相关的失效性能;还提出了新型八逻辑器件的概念,该种器件有望成为存储器件领域的终极目标。具体工作主要包含以下六个方面:
     1、采用化学溶液沉积方法(CSD)在Pt/Ti/SiO2/Si基片上制备出Nd3+/V5+复合掺杂钛酸铋薄膜(Bi4-xNdx)(Ti3-yVy)O12,简记为BNTV,研究了钕掺杂含量对BNTV薄膜铁电性及其电学性能的影响。用X射线衍射确定薄膜样品的成分及结晶程度,分别测量了BNTV薄膜的电滞回线(P-E)、漏电流特性(I-V)和电滞回线-频率依赖关系。结果表明退火温度为7500C时制备的BNTV薄膜在钕含量x=0.25处,得到了较大的剩余极化强度(2Pr=56μC/cm2)。但是过量或不足钕掺杂含量都使剩余极化强度明显降低。分析了BNTV铁电薄膜的漏电流机理,发现随着钕含量的增加薄膜漏电流呈现数量级的减少,而且薄膜样品的导电机制也发生了明显的变化。由于钕含量的变化会改变薄膜的空间电荷、氧空位数量或引起晶格畸变,因此控制适度的钕掺杂量可制备出具有优良电学性能的BNTV薄膜。
     2、基于偶极子开关理论,通过对薄膜中偶极子沿着外加电场的统计分布函数进行积分,建立了一个可以用来描述钙钛矿型铁电薄膜的电滞回线的解析模型。该模型改进了经典的Preisach方法,并修正了由积分近似值引起的分布函数蝴蝶曲线的缺陷。采用分布函数积分(DFIM)方法进行数值计算,仅用较少的几个参数,方便、准确地模拟了不同测试条件下测得的BaTiO3 (BTO), Pb(Zrx,Ti1-x)O3 (PZT)-基,(Bax,Sr1-x)TiO3 (BST)和铋层状钙钛矿(bismuth layer structured ferroelectric, BLSF)等多种铁电薄膜的电滞回线,且与实验测量数据符合得非常好。该模型还可以预测在非传统测量条件下测得的非对称电滞回线。该模型的数学描述简单较容易与电子设计软件相结合,可用于铁电电容的小信号模拟,对铁电存储及可调性器件的电路模拟与理论研究具有较好的应用价值。
     3、发展了一个适用于ABO3钙钛矿型铁电膜的非线性本构模型,该模型可以给出连续光滑的电位移曲线和应变蝴蝶曲线。该模型基于改进的Preisach理论,采用分布函数积分方法(DFIM),并且通过使用tanh函数替代了arctan函数将其改进。改进的模型呈现了非常完美的电位移曲线和应变蝴蝶回线的形状,并且与实验进行对比证明了该模型的正确性。该模型考虑了历史电场效应,使用它可以非常方便地定量地模拟电位移曲线和纵向、横向应变蝴蝶曲线。另外,加入本征缺陷和注入电荷的影响,该模型详细模拟了在正电荷、负电荷和没有空间电荷时的镧掺杂锆钛酸铅(PLZT)铁电膜中电学属性,成功再现了实验上观察到的疲劳和印记效应。该模型抓住了铁电滞回线和应变蝴蝶曲线非线性响应的主要特征,对分析铁电薄膜的疲劳和印记等失效行为具有一定的指导意义。
     4、结合氧空位电迁移理论、电荷注入机制和局部相分解模型,我们提出了用来解释钙钛矿结构铁电薄膜介电疲劳和极化疲劳的解析模型。该模型再现了不同电压、温度和载荷频率作用下多种钙钛矿结构铁电薄膜的疲劳行为。基于该模型,我们认为铁电薄膜中电疲劳的本质原因是因为铁电薄膜内发生了局部相分解,产生了杂质相而引起的。而局部相分解与较早发表的文献中提到的各种各样的疲劳因素存在着直接或间接的关系。通过分析,我们初步总结了铁电薄膜疲劳现象的本质原因。
     5、基于考虑了场效应晶体管铁电存储器件栅极结构中近栅电极界面死层的多层模型,我们模拟了MFIS-FET器件中ID-VG关系回线的不规则偏移和变形。该模型给出的结果与实验中观察到的结果相吻合,从某种程度上反映出了该现象背后的物理机制。随后基于第三章发展的Preisach模型及电流连续条件,我们分析了铁电薄膜电容极化强度的印记失效。值得一提的是薄膜内空间电荷区域的存在也可以通过等效为界面死层的方法来分析。铁电薄膜与电极之间相互作用形成的非铁电界面层与空间电荷区等效界面层统称为有效死层,该层及其厚度比的变化是与薄膜的失效以及介电分布的不均匀性相关联的。通过本文的模拟和讨论,指出该有效死层效应能够解释器件中ID-VG关系回线以及薄膜的极化曲线的电压偏移效应,这是印记失效产生的重要原因之一。
     6、基于多铁性材料隧道结的概念,首次提出了八逻辑态存储器件的概念并通过组合一多铁性材料隧道结和磁电薄膜,设计了新型存储器件结构。器件中的磁电薄膜可以通过施加外电场控制其内部的磁极化结构。采用了格林函数方法进行计算,结果显示在磁电薄膜中可以实现电场控制磁极化开关,这种磁电效应可以考虑弹性耦合相互作用来进行解释。通过组合自旋滤波效应和电极屏蔽电荷效应,该模型能够给出八个不同的逻辑阻态。使用一考虑了自旋滤波效应和极化电荷屏蔽效应的单电子隧穿模型,我们计算了该存储器件的八个隧穿电阻态,并且总结了控制八逻辑态的规律:电导率对电极化强度、交换分裂能、势垒宽度和偏置电压的依赖关系。我们的模型和计算都证明了极有可能实现八进制逻辑数据存储,即用八个不同的逻辑态来进行八进制编码。这将极大地增加存储器单位面积的存储容量。
In this dissertation, we have mainly studied the application of thin films and tunnel junctions on ferroelectric memories. From the preparation of ferroelectric samples to the measurement of basic electric properties of thin films, and we also discussed the failure mechanism of ferroelectric thin films and devices in detail; investigated some theoretical model for polarization switching or failure mechanism; then discussed the physics of ferroelectric memory divices, fatigue failure of thin films and imprint of current-voltage loops of the transistor memory devices, the application of ultra thin ferroelectric or multiferroic films on new-type multilogic memory devices and so on. We have established the ferroelectric capacitance model, and used it to analyze the electrical properties of ferroelectric thin films and application-related failure of performance. We have established a ferroelectric capacitor model based on dipole switching and Preisach thoery, and used it to analyze the electrical properties of ferroelectric thin films and application-related failure of performance; we also proposed a new concept of multilogic memory devices, this type of device is expected to be one of ideal memory devices. Our work mainly focuses on the following six aspects:
     1. Thin films of Nd3+/V5+-cosubstituted bismuth titanate, i.e., (Bi4-xNdx) (Ti2.95V0.05)O12 (x=0,0.25 and 0.5), were fabricated by a chemical solution deposition technique. We have investigated the saturated and unsaturated hysteresis loop of the thin films with different Nd3+ contents. We found that excessive or insufficient Nd3+-content would decrease the remanent polarization. The frequency dependence of the remanent polarizations following a Curievon-Schweidler law satisfactorily was also investigated. The study enabled us deeply understood the bismuth titanate thin films with different Nd3+ contents.
     2. In the second section, a model has been developed for the P-E hysteresis behavior. It is based on the dipole switching theory and Preisach model that uses the DFIM approach. Hysteresis loops have been reproduced with the model to agree reasonably well with the experimental data measured from various ferroelectric thin films, such as BaTiO3 (BTO), Pb(Zr,,Ti1-x)O3 (PZT)-based, (Bax,Sr1-x)TiO3 (BST) and Bismuth Layer structured Ferroelectric (BLSF) thin films, have been simulated by our model. The model can also predict asymmetric hysteresis loop measured under unconventional situation. Additionally, the mathematical description can be easily combined with electronic design automation software in circuit simulation of ferroelectric capacitor or ferroelectric field effect transistor.
     3. Models for the electric displacement hysteresis and strain butterfly loops of ferroelectric films under electrical loading are proposed based on an improved Preisach model for nonlinear remanent polarization. Compared to the previous model, the current model, including the history-dependent electric field effect, which is always neglected in the conventional model, provides electric displacement and strain loops with a full and symmetric shape. The models show improved displacement and strain versus electric field loops that agree reasonably well with the experimental data. In addition, both the loops of electric displacement and strain under intrinsic defects and injected charges have also been investigated by our model.
     4. Incorporating the vacancy electromigration theory into the switching-induced charge-injection mechanism into the local phase decomposition model has led to an analytical model for the dielectric fatigue behavior and the remnant polarization in perovskite structured ferroelectric thin films. The model has allowed us to reproduce the fatigue behavior in various ferroelectric thin films measured under different voltages, temperatures, and frequencies. We concluded the essential reason for electrical fatigue in ferroelectrics is the local phase separation induced directly or indirectly by other fatigue mechanisms proposed in previous papers.
     5. Considering the thin nonswitching interface layer between the top electrode and ferroelectric thin film which is used as the gate dielectric, we introduce an improved device model, which is based on the physics of semiconductor devices, to describe the channel (or drain-source) current of the metal-ferroelectric-insulator field-effect transistor (MFIS-FET). In our model, the thickness ratio v of the nonswitching interface layer varies for different failure mechanisms or external applied electric voltage. Theoretical prediction based on this approach agree well with the recent experiments showed by Tabuchi et al. [Integrated Ferroelectrics 79,211 (2006)]. The results displayed the effect of interface layer thickness-ratio on the imprint of the channel current vs electric field loops. Finaly, we discussed the cause of imprint for both ferroelectric thin films and MFIS-FET devices.
     6. Based on the multiferroic tunnel junction, We firstly proposed the concept of octal data storage, and established a theoretical model, which is capable of producing the logic states by combining the spin-filter effect and the screening of polarization charges between two electrodes through a general spintronic tunneling. In order to make the octal data storage come true, we proposed two types of practical device structures combining a multiferroic tunnel junction with a magnetoelectric (ME) film in which the magnetic configuration is controlled by the electric field. Calculations embodying the Green's function approach show that the magnetic polarization can be switched on and off by an electric field in the ME film due to the effect of elastic coupling interaction. Using the spintronic tunneling model, we have produced eight logic states of tunnelling resistance in the tunnel junction and have obtained corresponding laws that control them. The dependence of the conductance ratio with very large magnitude on electric polarization, exchange splitting, barrier width, and bias voltage is investigated. The result may provide some insights into the realization of octal data storage (namely, the eight different logic states are used as octal code), which could lead to the tremendous increase of memory storage density.
引文
[1]J. F. Scott and C. A. Paz de Araujo. Ferroelectric memories [J]. Science,1989,246:1400-1405.
    [2]J. F. Scott. Data storage:Multiferroic memories [J]. Nature Materials,2007,6:256-257.
    [3]J. F. Scott. Ferroelectric memories [M]. Verlag:Springer,2000.
    [4]L. Geppert. The new indelible memories [J]. IEEE Spectrum,2003,40:48-54.
    [5]G. F. Derbenwick and A. F. Isaacson. Ferroelectric memory:on the brink of breaking through [J]. IEEE Circuits and Devices,2001,17:20-30.
    [6]T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8O3 thin films [J]. Physical Review Letters,2002,89:097601.
    [7]R. Zambrano. Applications and issues for ferroelectric NVMs [J]. Materials Science in Semiconductor Processing,2002,5:305-310.
    [8]F. Jona and G. Shirane. Ferroelectric Crystals [M]. New York:Dover Publications,1993.
    [9]J. Frenkel. On the electrical resistance of contacts between solid conductors [J]. Physical Review,1930, 36:1604.
    [10]I. Giaever. Electron tunneling between two superconductors [J]. Physical Review Letters,1960,5:147.
    [11]P. M. Tedrow and R. Meservey. Spin-dependent tunneling into ferromagnetic nickel [J]. Physical Review Letters,1971,26:192.
    [12]P. M. Tedrow and R. Meservey. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd [J]. Physical Review B,1973,7:318.
    [13]M. Julliere. Tunneling between ferromagnetic films [J]. Physical Review A,1975,54:225-226.
    [14]J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions [J]. Physical Review Letters,1995,74: 3273-3276.
    [15]J. M. De Teresa Agnes Barthelemy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions [J]. Science, 1999,286:507-509.
    [16]S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and Y. See-Hun. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers [J]. Nature Materials, 2004,3:862-867.
    [17]S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nature Materials,2004, 3:868-871.
    [18]J. Valasek. Piezo-electric and allied phenomena in rochelle salt [J]. Physical Review,1921,17:475.
    [19]L. Esaki, R. B. Laibowitz, and P. J. Stiles. Polar Switch [J]. IBM Tech. Discl. Bull.,1971,13:2161.
    [20]M.Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E.Y. Tsymbal. Giant electroresistance in ferroelectric tunnel junctions [J]. Physical Review Letters,2005,94:246802.
    [21]D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak, and E. A. Stern. Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron X-ray scattering measurements [J]. Physical Review B, 2005,71:144112.
    [22]G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3 [J]. Physical Review Letters,2006,96:107603.
    [23]H. Kohlstedt, N. A. Pertsev, Rodr, iacute, J. guez Contreras, and R. Waser. Theoretical current-voltage characteristics of ferroelectric tunnel junctions [J]. Physical Review B,2005,72:125341.
    [24]T. Tybell, C. H. Ahn, and J. M. Triscone. Ferroelectricity in thin perovskite films [J]. Applied Physics Letters,1999,75:856-858.
    [25]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson. Ferroelectricity in ultrathin perovskite films [J]. Science,2004,304:1650-1653.
    [26]J. Junquera and P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films [J]. Nature, 2003,422:506-509.
    [27]A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin. Two-dimensional ferroelectric films [J]. Nature,1998,391:874-877.
    [28]M. Dawber, K. M. Rabe, and J. F. Scott. Physics of thin-film ferroelectric oxides [J]. Reviews of Modern Physics,2005,77:1083-1130.
    [29]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh. Multiferroic BaTiO3-CoFe2O4 nanostructures [J]. Science,2004,303:661-663.
    [30]G. A. Smolenskii and I. E. Chups. Ferroelectromagnets [J]. Sov. Phys. Usp.,1982,25:475.
    [31]N. A. Spaldin and M. Fiebig. The renaissance of magnetoelectric multiferroics [J]. Science 2005,309: 391-392.
    [32]M. Gajek, M. Bibes, Barth, eacute, eacute, A. my, K. Bouzehouane, S. Fusil, M. Varela, J. Fontcuberta, and A. Fert. Spin filtering through ferromagnetic BiMnO3 tunnel barriers [J]. Physical Review B,2005, 72:020406.
    [33]H. Bea, M. Bibes, M. Sirena, G. Herranz, K. Bouzehouane, E. Jacquet, S. Fusil, P. Paruch, M. Dawber, J. P. Contour, and A. Barthelemy. Combining half-metals and multiferroics into epitaxial heterostructures for spintronics [J]. Applied Physics Letters,2006,88:062502.
    [34]P. Borisov, A. Hochstrat, X. Chen, W. Kleemann, and C. Binek. Magnetoelectric switching of exchange bias [J]. Physical Review Letters,2005,94:117203.
    [35]C. Binek and B. Doudin. Magnetoelectronics with magnetoelectrics [J]. Journal of Physics:Condensed Matter,2005,17:L39-L44.
    [36]H. Jaffe. Piezoelectric ceramics [J]. Journal of the American Ceramic Society,1958,41:494-498.
    [37]钟维烈,铁电体物理学[M].北京:科学出版社,1996.
    [38]T.-C. Chen, T. Li, X. Zhang, and S. B. Desu. The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin films [J]. Journal of Materials Research,1997,12:1569-1575.
    [39]B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim, and W. Jo. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12 [J]. Applied Physics Letters,1999,74:1907.
    [40]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-substituted bismuth titanate for use in non-volatile memories [J]. Nature,1999,401:682-684.
    [41]J. Valasek. Piezoelectric and allied phenomena in Rochelle salt [J]. Physical Review,1920,15:537-538.
    [42]N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich. Magnetically mediated superconductivity in heavy fermion compounds [J]. Nature,1998, 394:39-43.
    [43]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura. Magnetic control of ferroelectric polarization [J]. Nature,2003,426:55-58.
    [44]J. F. Scott. Phase transitions in BaMnF4 [J]. Reports on Progress in Physics,1979,42:1055-1084.
    [45]D. L. Fox and J. F. Scott. Ferroelectrically induced ferromagnetism [J]. Journal of Physics C,1977,10: L329-L331.
    [46]N. A. Hill. Why are there so few magnetic ferroelectrics? [J]. J. Phys. Chem. B,2000,104:6694-6709.
    [47]H. Schmid. Multiferroic magnetoelectrics [J]. Ferroelectrics,1994,162:665-685.
    [48]B. K. Ponomarev et al. Magnetoelectric properties of some rare earth molybdates [J]. Ferroelectrics, 1994,161:43-48.
    [49]M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert. Tunnel junctions with multiferroic barriers [J]. Nature Materials,2007,6:296-302.
    [50]H. Schmid. On a magnetoelectric classification of materials [J]. Int. J. Magn.,1973,4:337-361.
    [51]E. Ascher, H. Rieder, H. Schmid, and H. Sto"ssel. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O3 [J]. Journal of Applied Physics,1966,37:1404-1405.
    [52]E. Fatuzzo and W. J. Merz. Switching mechanism in triglycine sulfate and other ferroelectrics [J]. Physical Review,1959,116:61.
    [53]E. Fatuzzo. Theoretical considerations on the switching transient in ferroelectrics [J]. Physical Review, 1962,127:1999.
    [54]W. J. Merz. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals [J]. Physical Review,1954,95:690.
    [55]Y. Ishibashi and Y. Takagi. Note on ferroelectric domain switching [J]. Journal of the Physical Society of Japan,1971,31:506.
    [56]A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films [J]. Physical Review B,2002,66:214109.
    [57]J. F. Scott. Applications of modern ferroelectrics [J]. Science,2007,315:954-959.
    [58]C. Zhou and D. M. Newns. Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors [J]. Journal of Applied Physics,1997,82:3081-3088.
    [59]M. Stengel and N. A. Spaldin. Origin of the dielectric dead layer in nanoscale capacitors [J]. Nature, 2006,443:679-682.
    [60]F. Yang, M. H. Tang, F. Liu, Y. C. Zhou, X. J. Zheng, J. X. Tang, and J. J. Zhang. The nonswitching dielectric layer thickness dependence of the channel current in MFIS-FET [C]. in IEEE Press, in the 7th International Conference on ASIC Proceeding,2007:1054-1057.
    [61]M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser. I. The interface screening model as origin of imprint in PbZrxTi1-xO3 thin films. I. Dopant, illumination, and bias dependence [J]. Journal of Applied Physics,2002,92:2680-2687.
    [62]Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu. Modeling of imprint in hysteresis loop of ferroelectric thin films with top and bottom interface layers [J]. Applied Physics Letters,2007,90:42902.
    [63]J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Relche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom. Room-temperature ferroelectricity in strained SrTiO3 [J]. Nature,2004,430:758-761.
    [64]T. Taylor, P. Hansen, B. Acikel, et al. Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films [J]. Applied Physics Letters,2002,80:1978.
    [65]K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom. Enhancement of ferroelectricity in strained BaTiO3 thin films [J]. Science,2004,306:1005-1009.
    [66]S. Pruvost, G. Sebald, L. Lebrun, D. Guyomar, and L. Seveyrat. Micro-macro correlation in ferroelectric materials:depolarization mechanism for different excitations [J]. Acta Mater.,2008,56: 215-221.
    [67]H. Schmid. Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2 [J]. Ferroelectrics 1994,161:1-28.
    [68]J. P. Rivera. On definition, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite [J]. Ferroelectrics,1994,161:165-180.
    [69]S. Y. Wu. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor [J]. Electron Devices, IEEE Transactions on 1974,21:499-504.
    [70]M. Fitsilis. Scaling of the ferroelectric field effect transistor and programming concepts for non-volatile memory applications [D]. aus Karditsa, Griechenland:thesis (PHD),2005.
    [71]唐明华.MFIS结构铁电薄膜场效应晶体管的制备及其性能表征[D]湘潭大学:博士论文,2007.
    [72]E. Y. Tsymbal and H. Kohlstedt. Tunneling across a ferroelectric [J]. Science,2006,313:181-183.
    [73]V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J]. Nature,2009,460: 81-84.
    [74]P. Zubko and J. M. Triscone. A leak of information [J]. Nature,2009,46:45-46.
    [75]P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf, and S. V. Kalinin. Polarization control of electron tunneling into ferroelectric surfaces [J]. Science,2009,324:1421-1425.
    [76]M. Bibes and A. Barthelemy. Multiferroics:towards a magnetoelectric memory [J]. Nature Materials, 2008,7:425-426.
    [77]F. Yang, M. H. Tang, Z. Ye, Y. C. Zhou, X. J. Zheng, J. X. Tang, J. J. Zhang, and J. He. Eight logic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions [J]. Journal of Applied Physics,2007,102:044504.
    [78]H. Ishiwara, M. Okuyama, and Y. Arimoto. Ferroelectric random access memories:fundamentals and application [J]. Top. Appl. Phys.,2004,93:73.
    [79]X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott. Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films [J]. Physical Review Letters,2006,97:177601.
    [80]W. L. Warren, B. A. Tuttle, D. Dimos, G. E. Pike, H. N. Al-Shareef, R. Ramesh, and J. T. Evavs. Imprint in ferroelectric capacitors [J]. Japanese Journal of Applied Physics,1996,35:1521-1524.
    [81]T. Mihara, H. Watanabe, Carlos A. Paz De Araujo. Evaluation of imprint properties in sol-gel ferroelectric Pb(Zr,Ti)O3 thin-film capacitors [J]. Japanese Journal of Applied Physics,1993,32: 4168-4174.
    [82]C. A. P. de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott. Fatigue-free ferroelectric capacitors with platinum electrodes [J]. Nature,1995,374:627-629.
    [83]T. Watanabe, A. Saiki, K. Saito, and H. Funakubo. Film thickness dependence of ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition [J]. Journal of Applied Physics,2001,89:3934-3938.
    [84]U. Chon, H. M. Jang, M. G. Kim, and C. H. Chang. Layered perovskites with giant spontaneous polarizations for nonvolatile memories [J]. Physical Review Letters,2002,89:087601.
    [85]H. Uchida, H. Yoshikawa, I. Okada, H. Matsuda, T. lijima, T. Watanabe, T. Kojima, and H. Funakubo. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution [J]. Applied Physics Letters,2002,81:2229-2231.
    [86]Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu. Electrical properties of V-doped Bi3.15Nd0.85Ti3O12 thin films with different contents [J]. Applied Physics Letters,2007,90: 082905.
    [87]L. Pintilie, I. Vrejoiu, D. Hesse, and M. Alexe. Polarization fatigue and frequency-dependent recovery in Pb(Zr,Ti)O3 epitaxial thin films with SrRuO3 electrodes [J]. Applied Physics Letters,2006,88: 102908.
    [88]D. S. Fu, K. Suzuki, and K. Kato. Frequency dependence of polarization hysteresis loop in CaBi4Ti4O14 ferroelectric thin films [J]. Integrated Ferroelectrics,2004,61:19-23.
    [89]X. S. Gao and J. Wang. Thickness dependences of ferroelectric and dielectric properties in (Bi3.15Nd0.85)Ti3O12 thin films [J]. Journal of Applied Physics,2006,99:074103.
    [90]X. L. Zhong, J. B. Wang, X. J. Zheng, Y. C. Zhou, and G. W. Yang. Structure evolution and ferroelectric and dielectric properties of Bi3.5Nd0.5Ti3O12 thin films under a moderate temperature annealing [J]. Applied Physics Letters,2004,85:5661.
    [91]S. B. Desu and A. I. Kingon. Ferroelectric thin films [C]. MRS 1997 Fall Meeting Tutorial Program, 1997.
    [92]周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社:183-195,1998.
    [93]RT66A standard ferroelectric test system V2.1 operating manual [M]. Radiant Technologics.
    [94]X. S. Wang and H. Ishiwara. Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3.35Lao.75Ti3012 thin films [J]. Applied Physics Letters,2003,82:2479-2481.
    [95]A. Z. Simoes, M. A. Ramirez, N. A. Perruci, C. S. Riccardi, E. Longo, and V. J. A.. Retention characteristics in Bi3.25La0.75Ti3O12 thin films prepared by the polymeric precursor method [J]. Applied Physics Letters,2005,86:112909,.
    [96]H. Uchida, I. Okada, H. Matsuda, T. Iijima, T. Watanabe, and F. H.. Fabrication of ion-cosubstituted bismuth titanate thin films by chemical solution deposition method [J]. Integrated Ferroelectrics,2003, 52:41-54.
    [97]J. S. Kim, C. W. Ahn, H. J. Lee, S. Y. Lee, I. W. Kim, J. S. Bae, and J. H. Jeong. Retention characteristics of V-doped Bi3.25Lao.75Ti3O12 thin film [J]. Ceramics International,2004,30:1565-1568.
    [98]J. Frenkel. On pre-breakdown phenomena in insulators and electronic semi-conductors [J]. Physics Review,1938,54:647-648.
    [99]W. Y. Hsu, J. D. Luttmer, R. Tsu, S. Summerfelt, M. Bedekar, T. Tokumoto, and J. Nulman. Direct current conduction properties of sputtered Pt/(Ba0.7Sr0.3)TiO3/Pt thin films capacitors [J]. Applied Physics Letters,1995,66:2975-2977.
    [100]Y. P. Wang and T. Y. Tseng. Electronic defect and trap-related current of (Ba0.4Sr0.6)Ti03 thin films [J]. Journal of Applied Physics,1997,81:6762-6766.
    [101]J. G. Simmons. Conduction in thin dielectric films [J]. Journal of Physics D:Applied Physics,1971,4: 613-657.
    [102]Y.-H. Lee, Y.-S. Kim, D.-H. Kim, B.-K. Ju, and M.-H. Oh. Conduction mechanisms in barium tantalates films and modification of interfacial barrier height [J]. IEEE Trans. Electron Devices,2000, 47:71-76.
    [103]A. S. Riad. Infuence of dioxygen and annealing process on the transport properties of nickel phthalocyanine Schottky-barrier devices [J]. Physica B,1999,270:148-156.
    [104]B. H. Park, T. W. Noh, J. Lee, C. Y. Kim, and W. Jo. Effects of interface charges on imprint of epitaxial Bi4Ti3O12 thin films [J]. Applied Physics Letters,1997,70:1101-1103.
    [105]F. Preisach. Uber die magnetische Nachwirkung (On theMagnetic Aftereffect) [J]. Zeitschrift fur Physik,1935,94:277-302.
    [106]T. Tsurumi, Y.-K. Choi, S.-M. Nam, Y. Kubota, H. Kakemoto, and S. Wada. Computer simulation of polarization vs. electric-field curves of non-linear dielectrics and macromodel for SPICE simulator [J]. Japanese Journal of Applied Physics,2003, Part 142:6983.
    [107]G. Pauls and T. S. Kalkur. Parameterized ferroelectric capacitor macromodel suitable for mixed signal circuit design applications [J]. Integr. Ferroelectr.,2006,81:165,.
    [108]S. L. Miller, J. R. Schwank, R. D. Nasby, and M. S. Rodgers. Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions [J]. Journal of Applied Physics,1991,70:2849-2860.
    [109]V. Meyer, J.-M. Sallese, P. Fazan, D. Bard, and F. Pecheux. Modeling the polarization in ferroelectric materials:a novel analytical approach [J]. Solid-State Electron,2003,47:1479.
    [110]O. G. Vendik, S. V. Razumov, A. V. Tumarkin, M. A. Nikol'Skii, M. M. Gaidukov, and A. G. Gagarin. Experimental evidence of correctness of improved model of ferroelectric planar capacitor [J]. Applied Physics Letters,2005,86:022902.
    [111]S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer. Device modeling of ferroelectric capacitors [J]. Journal of Applied Physics,1990,68:6463-6471.
    [112]L. Wang, J. Yu, Y. Wang, G. Peng, F. Liu, and J. Gao. Modeling ferroelectric capacitors based on the dipole switching theory [J]. Journal of Applied Physics,2007,101:104505.
    [113]A. K. Tagantsev and I. A. Stolichnov. Injection-controlled size effect on switching of ferroelectric thin films [J]. Applied Physics Letters,1999,74:1326-1328.
    [114]L. Zhang and X. Yao. Dielectric physics [M]. Xi'an:Xi'an Jiaotong University Publishing House, 1991,30:Chap.1.
    [115]A. Kingon, P. Muralt, N. Setter, R. Waser, and R. E. Buchanan (Eds.). Ceramic materials for electronics [M]. New York:Dekker:465-526,2004.
    [116]M. Krasnosel' skii. A.Pokrovskii. Systems with hysteresis [M]. New York:Springer,1989.
    [117]I. Mayergoyz. Mathematical models of hysteresis [M]. New York:Springer,1991.
    [118]A. Visintin. Differential models of hysteresis [M]. New York:Springer,1994.
    [119]M. Brokate and J. Sprekels. Hysteresis and phase transitions [M]. New York:Springer-Verlag,1996.
    [120]A. V. Turik. Theory of polarization and hysteresis of ferroelectrics [J]. Sov. Phys. Solid State,1963,5: 885.
    [121]I. D. Mayergoyz. Mathematical models of hysteresis [J]. Physical Review Letters,1986,56:1518.
    [122]V. Basso and G. Bertotti. Description of magnetic interactions and Henkel plots by the Preisach hysteresis model [J]. IEEE Transactions on Magnetic,1994,30:64-72.
    [123]E. Della Torre. Energy considerations in hysteresis models [J]. IEEE Transactions on Magnetics,1992, 28:2608-2610.
    [124]Z. Ye, M. H. Tang, C. P. Cheng, Y. C. Zhou, X. J. Zheng, and Z. S. Hu. Simulation of polarization and butterfly hysteresis loops in bismuth layer-structured ferroelectric thin films [J]. Journal of Applied Physics,2006,100:094101.
    [125]D. Hughes and J. T. Wen. Preisach modeling of piezoceramic and shape memory alloy hysteresis [J]. Smart Mater. Struct.,1997,6:287-300.
    [126]G. Robert, D. Damjanovic, N. Setter, and A. V. Turik. Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics [J]. Journal of Applied Physics,2001,89:5067-5074.
    [127]I. Schultz, H. Goebel, and M. Ullmann. Modelling polarisation of ferroelectric SBT capacitors including temperature dependence [J]. Electronics Letters,2001,37:1216-1217.
    [128]F. Yang, M. H. Tang, Y. C. Zhou, X. J. Zheng, F. Liu, J. X. Tang, J. J. Zhang, J. Zhang, and C. Q. Sun. A model for the polarization hysteresis loops of the perovskite-type ferroelectric thin films [J]. Applied Physics Letters,2007,91:142902-.
    [129]Y. Wang, K. F. Wang, C. Zhu, T. Wei, J. S. Zhu, and J.-M. Liu. Fatigue suppression of ferroelectric Pb1-xBax(Zr0.52Ti0.48)O3 thin films prepared by sol-gel method [J]. Journal of Applied Physics,2007, 101:046104.
    [130]S.-H. Kim, D. J. Kim, J. Im, C. E. Kim, and A. I. Kingon. Ferroelectric properties of new chemical solution derived SBT thin films for non-volatile memory devices[J]. Journal of Sol-Gel Science and Technology,1999,16:57-63.
    [131]D. Y. Wang, Y. Wang, X. Y. Zhou, H. L. W. Chan, and C. L. Choy. Enhanced in-plane ferroelectricity in Ba0.7Sr0.3TiO3 thin films grown on MgO (001) single-crystal substrate [J]. Applied Physics Letters, 2005,86:212904.
    [132]S. T. Zhang, X. J. Zhang, H. W. Cheng, Y. F. Chen, Z. G. Liu, N. B. Ming, X. B. Hu, and J. Y. Wang. Enhanced electrical properties of c-axis epitaxial Nd-substituted Bi4Ti3O12 thin films [J]. Applied Physics Letters,2003,83:4378.
    [133]F. Yang, Y. C. Zhou, M. H. Tang, F. Liu, Y. Ma, X. J. Zheng, W. F. Zhao, H. Y. Xu, and Z. H. Sun. Eight-logic memory cell based on multiferroic junctions [J]. Journal of Physics D:Applied Physics, 2009,42:072004.
    [134]S. C. Hwang, C. S. Lynch, and R. M. McMeeking. Ferroelectric/ferroelastic interactions and a polarization switching model [J]. Acta metal. mater.,1995,43:2073-2084.
    [135]L. Yu, S. W. Yu, and X. Q. Feng. a simple constitutive model for ferroelectric ceramics under electrical/mechanical loading [J]. Acta Mech. Solida Sin.,2007,20:1-12.
    [136]A. Picinin, M. H. Lente, J. A. Eiras, and J. P. Rino. Theoretical and experimental investigations of polarization switching in ferroelectric materials [J]. Physical Review B,2004,69:064117.
    [137]W. Lu, D. N. Fang, C. Q. Li, and K. C. Wang. Nonlinear electric-mechanical behavior and micromechanics modelling of ferroelectric domain evolution [J]. Acta Materialia,1999,47:2913-2926.
    [138]X. Chen, D. Fang, and K.-C. Hwang. Micromechanics simulation of ferroelectric polarization switching [J]. Acta Materialia,1997,45:3181-3189.
    [139]W. Chen and C. S. Lynch. A micro-electro-mechanical model for polarization switching of ferroelectric materials [J]. Acta Materialia,1998,46:5303-5311.
    [140]F. Yang, Y. C. Zhou, M. H. Tang, and F. Liu. Simulation of electric displacement hysteresis and strain butterfly loops in perovskite ferroelectric films [J]. Journal of Applied Physics,2009,106:014110.
    [141]F. Yang, M. H. Tang, Y. C. Zhou, F. Liu, Y. Ma, X. J. Zheng, J. X. Tang, H. Y. Xu, W. F. Zhao, Z. H. Sun, and J. He. Fatigue mechanism of the ferroelectric perovskite thin films [J]. Applied Physics Letters,2008,92:022908.
    [142]L. Yu, S. W. Yu, and X. Q. Feng. Constitutive relations of ferroelectric ceramics with electric fatigue effects [J]. Chin. Phys. Lett.,2006,23:1911-1914.
    [143]S. Yu and L. Yu. Effects of fatigue and damage on the hysteresis loops of ferroelectric ceramics [J]. Microsyst Technol.,2009,15:33-38.
    [144]M. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials [M]. Clarendon:Oxford,1977.
    [145]D. C. Lupascu and C. Verdier. Fatigue anisotropy in lead-zirconate-titanate [J]. J. Eur. Ceram. Soc., 2004,24:1663-1667.
    [146]C. S. Lynch. The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT [J]. Acta Mater.,1996,44:4137-4148.
    [147]L. Yu, S.-W. Yu, and X.-Q. Feng. Effects of electric fatigue on the butterfly curves of ferroelectric ceramics [J]. Materials Science and Engineering A,2007,459:273-277.
    [148]J. Li and G. J. Weng. A micromechanics-based hysteresis model for ferroelectric ceramics [J]. J. Intell. Mater. Syst. Struct.,2001,12:79-91.
    [149]I. K. Yoo and S. B. Desu. Mechanism of fatigue in ferroelectric thin films [J]. Phys. Stat. sol. (a),1992, 133:565-573.
    [150]J. Nuffer, D. C. Lupascu, and J. Rodel. Damage evolution in ferroelectric PZT induced by bipolar electric cycling [J]. Acta Mater.,2000,48:3783-3794.
    [151]M. Ozgul, S. Trolier-McKinstry, and C. A. Randall. Influence of electrical cycling on polarization reversal processes in Pb(Zn1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals as a function of orientation [J]. Journal of Applied Physics,2004,95:4296-4302.
    [152]A. Gruverman, O. Auciello, and H. Tokumoto. nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films [J]. Applied Physics Letters,1996,69:3191-3193.
    [153]Y. Zhang, D. C. Lupascu, E. Aulbach, I. Baturin, A. Bell, and J. Rodel. Heterogeneity of fatigue in bulk lead zirconate titanate [J]. Acta Materialia,2005,53:2203-2213.
    [154]A. Gruverman, D. Wu, and J. F. Scott. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale [J]. Physical Review Letters,2008,100:097601.
    [155]I. I. Naumov and H. Fu. Phase transformation path in Pb(Zr,Ti)O3 nanoparticles under homogeneous electric fields [J]. Physical Review Letters,2007,98:077603.
    [156]A. Gruverman, D. Wu, H. J. Fan, I. Vrejoiu, M. Alexe, R. J. Harrison, and J. F. Scott. Vortex ferroelectric domains [J]. Journal of Physics:Condensed Matter,2008,20:342201.
    [157]P. K. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. van Veldhoven. Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness:Blocking layer model [J]. Journal of Applied Physics,1994,76:2405-2413.
    [158]A. M. Bratkovsky and A. P. Levanyuk. Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films [J]. Physical Review Letters,2000,84:3177.
    [159]M. Dawber and J. F. Scott. A model for fatigue in ferroelectric perovskite thin films [J]. Applied Physics Letters,2000,76:1060-1062.
    [160]J. F. Scott and M. Dawber. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics [J]. Applied Physics Letters,2000,76:3801-3803.
    [161]E. L. Colla, D. V. Taylor, A. K. Tagantsev, and N. Setter. Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes [J]. Applied Physics Letters,1998,72:2478.
    [162]A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter. Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features [J]. Journal of Applied Physics,2001,90:1387-1402.
    [163]Q. Y. Jiang, W. W. Cao, and L. E. Cross. Electric fatigue in lead zirconate titanate ceramics [J]. J. Am. Ceram. Soc.,1994,77:211-215.
    [164]W. J. Merz and J. R. Anderson. Ferroelectric storage device [J]. Bell Lab. Rec.,1955,33:335-342.
    [165]X. J. Lou. Polarization fatigue in ferroelectric thin films and related materials [J]. Journal of Applied Physics,2009,105:024101.
    [166]T. Mihara, H. Watanabe, and C. Araujo. Polarization fatigue characteristics of Sol-Gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors [J]. Japanese Journal of Applied Physics,1994,33:3996.
    [167]M. Grossmann, D. Bolten, O. Lohse, U. Boettger, S. Tiedke, and R. Waser. Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films [J]. Applied Physics Letters,2000,77:1894.
    [168]B. G. Chae, C. H. Park, Y. S. Yang, and M. S. Jang. Asymmetry in fatigue and recovery in ferroelectric Pb(Zr,Ti)O3 thin-film capacitors [J]. Applied Physics Letters,1999,75:2135.
    [169]K. Amanuma, T. Hase, and Y. Miyasaka. Fatigue characteristics of Sol-Gel derived Pb(Zr,Ti)O3 Thin Films [J]. Japanese Journal of Applied Physics,1994,33:5211.
    [170]P. J. Schorn, D. Bruhaus, U. Bttger, R. Waser, G. Beitel, N. Nagel, and R. Bruchhaus. Fatigue effect in ferroelectric PbZ1-xTixO3 thin films [J]. Journal of Applied Physics,2006,99:114104.
    [171]K. Tominaga, A. Shirayanagi, T. Takagi, and M. Okada. Switching and fatigue characteristics of (Pb,La)(Zr,Ti)O3 thin films by metalorganic chemical vapor deposition [J]. Japanese Journal of Applied Physics,1993,32:4082-4085.
    [172]E. L. Colla, A. K. Tagantsev, A. L. Kholkin, and N. Settera. DC-voltage and cycling induced recovery of switched polarisation in fatigued ferroelectric thin films [J]. Integrated Ferroelectrics,1995,10: 289-294.
    [173]C. Pawlaczyk, A. K. Tagantsev, K. Brooks, I. M. Reaney, R. Klissurska, and N. Setter. Fatigue, rejuvenation and self-restoring in ferroelectric thin films [J]. Integrated Ferroelectrics,1995,9: 293-316.
    [174]D. Wang, Y. Fotinich, and G. P. Carman. Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics [J]. Journal of Applied Physics,1998,83:5342-5350.
    [175]C. Verdier, D. C. Lupascu, and J. Rodel. Unipolar fatigue of ferroelectric lead-zirconate-titanate [J]. J. Eur. Ceram. Soc.,2003,23:1409-1415.
    [176]V. Chikarmane, C. Sudhama, J. Kim, J. Lee, A. Tasch, S. Novak. Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors [J]. Journal of Vacuum Science and Technology,1992,10: 1562-1568.
    [177]Q. Y. Jiang, E. C. Subbarao, and L. E. Cross. Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics [J]. Journal of Applied Physics,1994,75:7433-7443.
    [178]A. Y. Kudzin, T. V. Panchenko, and S. P. Yudin. Behaviour of 180 degrees domain walls of barium titanate single crystals during the 'fatigue' and recovery of switching properties [J]. Soviet Physics-Solid State,1975,16:1589-1590.
    [179]D. J. Taylor, P. K. Larsen, G. J. M. Dormans, et al.. Pulse switching characterization of organometallic chemical vapor deposited PbZrxTi1-xO3 thin films for high-density memory applications [J]. Integrated Ferroelectrics,1995,7:123-128.
    [180]H. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillan. Fatigue and switching in ferroelectric memories:theory and experiment [J]. Journal of Applied Physics,1990,68:5783-5791.
    [181]C. J. Brennan, R. D. Parrella, and D. E. Larsen. Temperature dependent fatigue rates in thin-film ferroelectric capacitors [J]. Ferroelectrics,1994,151:33-38.
    [182]E. Paton, M. Brazier, S. Mansour, and A. Bement. A critical study of defect migration and ferroelectric fatigue in lead zirconate titanate thin film capacitors under extreme temperatures [J]. Integrated Ferroelectrics,1997,18:29-37.
    [183]G. L. Yuan, J. M. Liu, Y. P. Wang, D. Wu, S. T. Zhang, Q. Y. Shao, and Z. G. Liu. Temperature-dependent fatigue behaviors of ferroelectric ABO3-type and layered perovskite oxide thin films [J]. Applied Physics Letters,2004,84:3352.
    [184]M. H. Lente and J. A. Eiras. Interrelationship between self-heating and ferroelectric properties in PZT ceramics during polarization reorientation [J]. Journal of Physics:Condensed Matter,2000,12: 5939-5950.
    [185]A. Morimoto, Y. Yamanaka, and ShimizuTatsuo. Fatigue behavior in lead-zirconate-titanate thin-film capacitors prepared by pulsed laser ablation on Ni-alloy electrodes [J]. Japanese Journal of Applied Physics,1995,34:4108-4113.
    [186]R. Ramesh, W. K. Chan, B. Wilkens, T. Sands, J. M. Tarascon, V. G. Keramidas, and J. T. Evans, Jr.. Fatigue and aging in ferroelectric PbZr0.2Ti0.8O3/YBa2Cu3O7 heterostructures [J]. Integrated Ferroelectrics,1992,1:1-15.
    [187]K. B. Lee, B. R. Rhee, and C. K. Lee. Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers [J]. Applied Physics Letters,2001,79:821.
    [188]S. B. Majumder, Y. N. Mohapatra, and D. C. Agrawal. Fatigue resistance in lead zirconate titanate thin ferroelectric films:effect of cerium doping and frequency dependence [J]. Applied Physics Letters, 1997,70:138-140.
    [189]M. Brazier, S. Mansour, and M. McElfresh. Ferroelectric fatigue of Pb(Zr,Ti)O3 thin films measured in atmospheres of varying oxygen concentration [J]. Applied Physics Letters,1999,74:4032.
    [190]L. F. Schloss, H. Kim, and P. C. McIntyre. Oxygen permeability of ferroelectric thin film top electrodes and its effect on detectable fatigue cycling-induced oxygen isotope motion [J]. Journal of Materials Research,2004,19:1265-1272.
    [191]W. L. Warren, B. A. Tuttle, and D. Dimos. Ferroelectric fatigue in perovskite oxides [J]. Applied Physics Letters,1995,67:1426-1428.
    [192]W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike. Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue [J]. Applied Physics Letters,1994,65:1018-1020.
    [193]W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre. Polarization suppression in Pb(Zr,Ti)O3 thin films [J]. Journal of Applied Physics,1995,77: 6695-6702.
    [194]C. Brennan. Model of ferroelectric fatigue due to defect/domain interactions [J]. Ferroelectrics,1993, 150:199-208.
    [195]U. Robels, J. H. Calderwood, and G. Arlt. Shift and deformation of the hysteresis curve of ferroelectrics by defects:an electrostatic model [J]. Journal of Applied Physics,1995,77:4002-4008.
    [196]U. Robels and G. Arlt. Domain wall clamping in ferroelectrics by orientation of defects [J]. Journal of Applied Physics,1993,73:3454-3460.
    [197]R. Lohkamper, H. Neumann, and G. Arlt. Internal bias in acceptor-doped BaTiO3 ceramics:numerical evaluation of increase and decrease [J]. Journal of Applied Physics,1990,68:4220-4224.
    [198]G. Arlt and H. Neumann. Internal bias in ferroelectric ceramics:origin and time dependence [J]. Ferroelectrics,1988,87:109-120.
    [199]R. Waser, T. Baiatu, and K. H. Hardtl. DC electrical degradation of perovskite-type titanates. Ⅰ. Ceramics [J]. Journal of the American Ceramic Society,1990,73:1645-1653.
    [200]R. Waser, T. Baiatu, and K. H. Hardtl. DC electrical degradation of perovskite-type titanates. Ⅱ. Single crystals [J]. Journal of the American Ceramic Society,1990,73:1654-1662.
    [201]T. Baiatu, R. Waser, and K. H. Hardtl. DC electrical degradation of perovskite-type titanates. Ⅲ. A model of the mechanism [J]. Journal of the American Ceramic Society,1990,73:1663-1673.
    [202]X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott. Fatigue as a local phase decomposition:A switching-induced charge-injection model [J]. Physical Review B,2007,75:224104.
    [203]L. J. Sinnamon, M. M. Saad, R. M. Bowman, and J. M. Gregg. Exploring grain size as a cause for "dead-layer" effects in thin film capacitors [J]. Applied Physics Letters,2002,81:703.
    [204]S. Y. Chen and I. W. Chen. Temperature-time texture transition of Pb(Zr1-xTix)O3 thin films:Ⅱ, heat treatment and compositional effects [J]. Journal of the American Ceramic Society,1994,77: 2337-2344.
    [205]R. N. Castellano and L. G. Feinstein. Ion-beam deposition of thin films of ferroelectric lead zirconate titanate (PZT) [J]. Journal of Applied Physics,1979,50:4406-4411.
    [206]H. C. Wang and W. A. Schulze. The role of excess magnesium oxide or lead oxide in determining the microstructure and properries of lead magnesium niobate [J]. J. Am. Cerum. Soc.,1990,73:825-32.
    [207]A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Coexisting depinning effect of domain walls during the fatigue in ferroelectric thin films [J]. Applied Physics Letters,2006,89:032906.
    [208]D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S. Lee, J.-G. Yoon, T. K. Song, and T. W. Noh. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors [J]. Physical Review Letters,2005,95:237602.
    [209]J. Maier. Chemical diffusion of oxygen in perovskites [J]. Phase Transitions,1996,58:217-234.
    [210]S. M. Sze. Physics of semiconductor devices [M]. New York:Wiley,1981.
    [211]H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle. A model for optical and electrical polarization fatigue in SrBi2Ta209 and Pb (Zr,Ti)O3 [J]. Integr. Ferroelectr,1997,15:53.
    [212]D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz. Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics [J]. Journal of Applied Physics, 1994,76:4305-4315.
    [213]Y. Wang, Q. Y. Shao, and J. M. Liu. Enhanced fatigue-endurance of ferroelectric Pb1-xSrx(Zr0.52Ti0.48)O3 thin films prepared by sol-gel method [J]. Applied Physics Letters,2006,88: 122902.
    [214]H. N. Al-Shareef, O. Auciello, and A. I. Kingon. Electrical properties of ferroelectric thin-film capacitors with hybrid (Pt,RuO2) electrodes for nonvolatile memory applications [J]. Journal of Applied Physics,1995,77:2146-2154.
    [215]R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures [J]. Applied Physics Letters,1992,61:1537-1539.
    [216]C. B. Eom, R. B. van Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork. Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes [J]. Applied Physics Letters,1993,63:2570-2572.
    [217]R. Ramesh, J. Lee, T. Sands, V. G. Keramidas, and O. Auciello. Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer [J]. Applied Physics Letters,1994,64:2511-2513.
    [218]T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu. Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2 [J]. Applied Physics Letters,1994,65:1522-1524.
    [219]D. Wu, Y. Xia, A. Li, Z. Liu, and N. Ming. Electrical properties of chemical-solution-derived Bi3.54Nd0.46Ti3O12 ferroelectric thin films [J]. Journal of Applied Physics,2003,94:7376-7378.
    [220]X. B. Hu, A. Garg, and Z. H. Barber. Growth and characterization of pulsed-laser-deposited polycrystalline Bi3.33SM0.67Ti3O12 ferroelectric thin films [J]. Materials Letters 2005,59:2583-2587.
    [221]H. Matsuda, S. Ito, and T. Iijima. Design and ferroelectric properties of polar-axis-oriented polycrystalline Bi4-xPrxTi3O12 thick films on Ir/Si substrates [J]. Applied Physics Letters,2003,83: 5023-5025.
    [222]S. Thakoor. Enhanced fatigue and retention in ferroelectric thin-film memory capacitors by post-top-electrode anneal treatment [J]. Journal of Applied Physics,1994,75:5409-5414.
    [223]Q. Y. Jiang, C. Wenwu, and L. E. Cross. Effects of surface layers on the physical properties of lanthanum doped lead zirconate titanate ceramic [J]. Ferroelectrics,1994,160:293-304.
    [224]W. Y. Pan, C. Q. Dam, Q. M. Zhang, and L. E. Cross. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.2)(Ti,Zr,Sn)O3 family of ceramics [J]. Journal of Applied Physics,1989,66:6014-6023.
    [225]X. Du and I. W. Chen. Fatigue of Pb(Zr0.53Ti0.47)O3 ferroelectric thin films [J]. Journal of Applied Physics,1998,83:7789-7798.
    [226]D. H. Kang, Y. J. Maeng, S. H. Shin, J. H. Park, and K. H. Yoon. Crystal structure, microstructure and ferroelectric properties of PZT(55/45) and PZT(80/20) thin films due to various buffer layers [J]. Ferroelectrics,2001,260:125.
    [227]D. Bao, N. Wakiya, K. Shinozaki, and N. Mizutani. Ferroelectric properties of sandwich structured (Bi,La)4Ti3O12/Pb(Zr,Ti)O3/(Bi,La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates [J]. Journal of Physics D:Applied Physics,2002,35:L1-L5.
    [228]J. K. Yang, W. S. Kim, and H.-H. Park. Enhanced fatigue property through the control of interfacial layer in Pt/PZT/Pt structure [J]. Japanese Journal of Applied Physics,2000,39:7000-7002.
    [229]H. Z. Jin and J. Zhu. Size effect and fatigue mechanism in ferroelectric thin films [J]. Journal of Applied Physics,2002,92:4594-4598.
    [230]J. J. Lee, C. L. Thio, and S. B. Desu. Electrode contacts on ferroelectric Pb(ZrxTi1-x)O3 and SrBi2Ta209 thin films and their influence on fatigue properties [J]. Journal of Applied Physics,1995,78: 5073-5078.
    [231]W. J. Lin, T. Y. Tseng, S. P. Lin, S. L. Tu, H. Chang, and S. J. Yang. Influence of Crystal Structure on the Fatigue Properties of Pb1-xLax(Zry,Tiz)O3 Thin Films Prepared by Pulsed-Laser Deposition Technique [J]. J. Am. Ceram. Soc,1997,80:1065.
    [232]Q. Y. Jiang, E. C. Subbarao, and L. E. Cross. Grain size dependence of electric fatigue behavior of hot pressed PLZT ferroelectric ceramics, Acta Metall. Mater.,1994,42:3687.
    [233]F. Yan, P. Bao, H. L. W. Chan, C. L. Choy, and Y. Wang. The grain size effect of Pb(Zr0.3Ti0.7)O3 thin films [J]. Thin Solid Films,2002,406:282-285.
    [234]J. S. Lee, C. S. Kim, and S. K. Joo. Fatigue and data retention characteristics of single-grained Pb(Zr,Ti)O3 thin films [C]. Applications of Ferroelectrics,2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium,2000,2:595-598.
    [235]M. Shimizu, H. Fujisawa, and T. Shiosaki. Effects of La and Nb modification on the electrical properties of Pb(Zr,Ti)O3 thin films by MOCVD [J]. Integr. Ferroelectr,1997,14:69.
    [236]K. Aoki and Y. Fukuda. The effects of La and Nb modification on fatigue and retention properties of Pb(Ti,Zr)O3 thin-film capacitors [J]. Japanese Journal of Applied Physics, Part 2,1997,36: L1195-L1197.
    [237]R. D. Klissurska, K. G. Brooks, and N. Setter. Acceptor dopant effects on endurance of PZT thin films [J]. Ferroelectrics,1999,225:977.
    [238]S. L. Miller and P. J. McWhorter. Physics of the ferroelectric nonvolatile memory field effect transistor [J]. Journal of Applied Physics,1992,72:5999-6010.
    [239]H. T. Lue, C. J. Wu, and T. Y. Tseng. Device modeling of ferroelectric memory field-effect transistor (FeMFET) [J]. IEEE Transactions on Electron Devices,2002,49:1790-1798.
    [240]H. T. Lue, C. J. Wu, and T. Y. Tseng. Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2003,50:5-14.
    [241]C. K. Wong and F. G. Shin. A possible mechanism of anomalous shift and asymmetric hysteresis behavior of ferroelectric thin films [J]. Applied Physics Letters,2005,86:42901.
    [242]C. T. Black and J. J. Welser. Electric-field penetration into metals:consequences for high-dielectric-constant capacitors [J]. IEEE Transactions on Electron Devices,1999,46:776-780.
    [243]K. Natori, D. Otani, and N. Sano. Thickness dependence of the effective dielectric constant in a thin film capacitor [J]. Applied Physics Letters,1998,73:632.
    [244]Y. Tabuchi, K. Aizawa, T. Tamura, K. Takahashi, H. Hoko, K. Kato, Y. Arimoto, and H. Ishiwara. Characterization of (Bi, Nd)4Ti3O12/HfO2/p-type Si structures for MFIS-FeRAM application [J]. Integrated Ferroelectrics,2006,79:211.
    [245]J. A. Geurst. Theory of insulated-gate field-effect transistors near and beyond pinch-off [J]. Solid-State Electronics,1966,9:129-142.
    [246]H. W. Loeb, R. Andrew, and W. Love. Application of 2-dimensional solutions of the Shockley-Poisson equation to inversion-layer m.o.s.t. devices [J]. Electronics Letters,1968,4:352-354.
    [247]J. R. Brews. A charge-sheet model of the MOSFET [J]. Solid-State Electronics,1978,21:345-355.
    [248]Y. P. Tsividis. Operation and modeling of the MOS transistor [M]. New York:McGraw-Hill,1999.
    [249]Y. Taur and T. H. Ning. Fundamentals of modern VLSI devices [M]. Cambridge, U.K.:Cambridge Univ. Press, cha.3,1998.
    [250]K. Abe, N. Yanase, T. Yasumoto, et al. Nonswitching layer model for voltage shift phenomena in heteroepitaxial barium titanate thin films [J]. Japanese Journal of Applied Physics,2002,41: 6065-6071.
    [251]K. Abe and S. Komatsu. Ferroelectric properties in epitaxially grown BaxSr1-xTiO3 thin films [J]. Journal of Applied Physics,1995,77:6461-6465.
    [252]Y. Zhou, H. K. Chan, C. H. Lam, and F. G. Shin. Mechanisms of imprint effect on ferroelectric thin films [J]. Journal of Applied Physics,2005,98:024111.
    [253]W. L. Warren, B. A. Tuttle, D. Dimos, G. E. Pike, H. N. Al-Shareef, R. Ramesh, and J. T. Evavs. Imprint in ferroelectric capacitors [J]. Japanese Journal of Applied Physics,1996,35:1521-1524.
    [254]M. Drougard and R. Landauer. On the dependence of the switching time of barium titanate crystals on their thickness [J]. Journal of Applied Physics,1959,30:1663-1668.
    [255]R. Miller and A. Savage. Motion of 180°domain walls in metal electroded barium titanate crystals as a function of electric field and sample thickness [J]. Journal of Applied Physics,1960,31:662-669.
    [256]D. Dimos, W. Warren, M. Sinclair, B. Tuttle, and R. Schwartz. Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics [J]. Journal of Applied Physics,2002,76: 4305.
    [257]W. L. Warren, G. E. Pike, B. A. Tuttle, and D. Dimos. Polarization-induced trapped charge in ferroelectrics [J]. Applied Physics Letters,1997,70:2010-2012.
    [258]E. G. Lee, D. J. Wouters, G. Willems, and H. E. Maes. Voltage shift and deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film by defects [J]. Applied Physics Letters,1996,69:1223-1225.
    [259]曾华荣,余寒峰,初瑞清,李国荣,殷庆瑞,唐新桂.PZT铁电薄膜纳米尺度铁电畴的场致位移特性[J].物理学报,2005,54:1437-1441.
    [260]Y. Xiao. The influence of oxygen vacancies on domain patterns in ferroelectric perovskites [D] California:Thesis (Ph.D.)--California Institute of Technology, Pasadena,2004.
    [261]W. Eerenstein, N. D. Mathur, and J. F. Scott. Multiferroic and magnetoelectric materials [J]. Nature, 2006,442:759-765.
    [262]M. Fiebig. TOPICAL REVIEW:Revival of the magnetoelectric effect [J]. Journal of Physics D: Applied Physics,2005,38:R123-R152.
    [263]M. Gajek, M. Bibes, M. Varela, J. Fontcuberta, G. Herranz, S. Fusil, K. Bouzehouane, A. Barthelemy, and A. Fert. La2/3Sr1/3MnO3-La0.1Bi0.9MnO3 heterostructures for spin filtering [J]. Journal of Applied Physics,2006,99:08E504.
    [264]H. Bea, M. Bibes, S. Cherifi, F. Nolting, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Deranlot, E. Jacquet, K. Bouzehouane, and A. Barthelemy. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films [J]. Applied Physics Letters,2006,89: 242114.
    [265]S. W. Cheong and M. Mostovoy. Multiferroics:a magnetic twist for ferroelectricity [J]. Nature Materials,2007,6:13-20.
    [266]S. Lee, A. Pirogov, M. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park. Giant magneto-elastic coupling in multiferroic hexagonal manganites [J]. Nature,2008,451:805-808.
    [267]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures [J]. Science,2003,299:1719-1722.
    [268]Y. H. Chu, L. W. Martin, M. B. Holcomb, and R. Ramesh. Controlling magnetism with multiferroics [J]. Materials Today,2007,10:16-23.
    [269]S. Ju, T. Y. Cai, G. Y. Guo, and Z. Y. Li. Electrically controllable spin filtering and switching in multiferroic tunneling junctions [J]. Physical Review B,2007,75:064419.
    [270]M. Fiebig, T. Lottermoser, M. K. Kneip, and M. Bayer. Correlations between magnetic and electrical orderings in multiferroic manganites (invited) [J]. Journal of Applied Physics,2006,99:08E302.
    [271]N. A. Spaldin. Materials science:fundamental size limits in ferroelectricity [J]. Science,2004,304: 1606-1607.
    [272]H. Bea, S. Fusil, K. Bouzehouane, M. Bibes, M. Sirena, G. Herranz, E. Jacquet, J. P. Contour, and A. Barthelemy. Ferroelectricity down to at least 2nm in multiferroic BiFeO3 epitaxial thin films [J]. Japanese Journal of Applied Physics,2006,45:L187-L189.
    [273]I. Zcaronuticacute, J. Fabian, and S. Das Sarma. Spintronics:fundamentals and applications [J]. Reviews of Modern Physics,2004,76:323.
    [274]E. Y. Tsymbal, A. Sokolov, I. F. Sabirianov, and B. Doudin. Resonant Inversion of Tunneling magnetoresistance [J]. Physical Review Letters,2003,90:186602.
    [275]J. S. Moodera, T. S. Santos, and T. Nagahama. The phenomena of spin-filter tunnelling [J]. Journal of Physics:Condensed Matter,2007,19:24.
    [276]D. Jin, Y. Ren, Z. Z. Li, M. W. Xiao, G. Jin, and A. Hu. Spin-filter tunneling magnetoresistance in a magnetic tunnel junction [J]. Physical Review B,2006,73:012414.
    [277]P. Leclair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M. de Jonge. Large magnetoresistance using hybrid spin filter devices [J]. Applied Physics Letters,2002,80:625.
    [278]G. Papp and F. M. Peeters. Spin filtering in a magnetic-electric barrier structure [J]. Applied Physics Letters,2001,78:2184-2186.
    [279]X. Hao, J. S. Moodera, and R. Meservey. Spin-filter effect of ferromagnetic europium sulfide tunnel barriers [J]. Physical Review B,1990,42:8235-8243.
    [280]M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal. Giant electroresistance in ferroelectric tunnel junctions [J]. Physical Review Letters,2005,94:246802.
    [281]R. R. Mehta, B. D. Silverman, and J. T. Jacobs. Depolarization fields in thin ferroelectric films [J]. Journal of Applied Physics,1973,44:3379-3385.
    [282]S. Zhang. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions [J]. Physical Review Letters,1999,83:640.
    [283]C. W. Nan, G. Liu, Y. Lin, and H. Chen. Magnetic-field-induced electric polarization in multiferroic nanostructures [J]. Physical Review Letters,2005,94:197203/1-197203/4.
    [284]C. W. Nan. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases [J]. Physical Review B,1994,50:6082.
    [285]J. C. Slonczewski. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier [J]. Physical Review B,1989,39:6995.
    [286]C. B. Duke. Tunneling in solids[M]. Academic, New York,1969.
    [287]E. Burstein. Tunneling phenomena in solids [M]. Plenum, New York,1969.
    [288]M. Abramowitz and I. A. Stegun. Handbook of mathematical functions[M]. Dover, New York,1965.
    [289]K. H. Gundlach. Zur berechnung des tunnelstroms durch eine trapezfomige potentialstufe [J]. Solid-State Electronics,1966,9:949-957.
    [290]J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev. Resistive switching in metal-ferroelectric-metal junctions [J]. Applied Physics Letters,2003,83:4595-4597.
    [291]M. Y. Zhuravlev, S. S. Jaswal, E. Y. Tsymbal, and R. F. Sabirianov. Ferroelectric switch for spin injection [J]. Applied Physics Letters,2005,87:222114.
    [292]J. Nowak and J. Rauluszkiewicz. Spin dependent electron tunneling between ferromagnetic films [J]. Journal of Magnetism and Magnetic Materials,1992,109:79-90.
    [293]Y. Li, B. Z. Li, W. S. Zhang, and D. S. Dai. Tunneling conductance and magnetoresistance of ferromagnet/ferromagnetic insulator (semiconductor)/ferromagnet junctions [J]. Physical Review B, 1998,57:1079.
    [294]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature [J]. Nature Materials,2006, 5:823-829.
    [295]F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh. Electric field-induced magnetization switching in epitaxial columnar nanostructures [J]. Nano Letters,2005,5:1793-1796.
    [296]W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures [J]. Nature Materials,2007,6: 348-351.
    [297]N. Hur, S. Park, P. L. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields [J]. Nature,2004,429:392-395.
    [298]Y. Bodenthin, U. Staub, M. Garcia-Fernandez, M. Janoschek, J. Schlappa, E. I. Golovenchits, V. A. Sanina, and S. G. Lushnikov. Manipulating the magnetic structure with electric fields in multiferroic ErMn2O5 [J]. Physical Review Letters,2008,100:027201.
    [299]S. D. Yoon, C. Vittoria, Y. N. Srivastava, A. Widom, and V. G. Harris. Magnetoelectric effects in composite of nanogranular Fe/TiO2 films [J]. Applied Physics Letters,2008,92:042508.
    [300]T. K. Chung, G. P. Carman, and K. P. Mohanchandra. Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film [J]. Applied Physics Letters,2008,92:112509.
    [301]C. W. Nan. Effective-medium theory of piezoelectric composites [J]. Journal of Applied Physics,1994, 76:1155-1163.
    [302]Y. Y. Liu, S. H. Xie, and J. Y. Li. The effective medium approximation for annealed magnetoelectric polycrystals [J]. Journal of Applied Physics,2008,103:023919.
    [303]Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. U. Yang, A. F. Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J]. Nature Materials,2008,7:478-482.
    [304]J. H. Huang and W. S. Kuo. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions [J]. Journal of Applied Physics,1997,81:1378-1386.
    [305]Y. M. Jia, F. F. Wang, X. Y. Zhao, H. S. Luo, S. W. Or, and H. L. W. Chan. Converse magnetoelectric effects in piezoelectric-piezomagnetic layered composites [J]. Composites Science and Technology, 2008,68:1440-1444.
    [306]C. W. Nan, M. Li, and J. H. Huang. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers [J]. Physical Review B,2001,63:144415.
    [307]T. Lu and W. Cao. Generalized continuum theory for ferroelectric thin films [J]. Physical Review B, 2002,66:024102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700