采集凝固热热泵系统的形式与工况分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严峻的能源与环境问题,世界各国正积极推进各类热泵技术的应用与发展。江河、湖泊等地表水和城市污水是两类数量巨大、极引人注目的水源热泵冷热源。然而,在接触这些水源过程中,经常遇到地表水冬季水温过低或者建筑物附近污水干渠水量不足等状况,本文根据推广热泵技术、深入挖掘环境低位能源与实现节能减排的实际需要,提出了采集环境水的凝固热为建筑物供热的采集凝固热热泵系统,对这一新思路与新系统的研究兼有理论和实用价值。
     采集凝固热热泵系统的关键设备是凝固换热器。本文开发了两种螺旋刮削式凝固换热器,即螺旋绞龙型与螺旋钢刷型凝固换热器,阐述了凝固换热器的除冰原理与系统的安全排冰的参数条件。进行了紊流条件下的地表水和层流条件下的城市污水在凝固换热器中发生全管长凝固时的换热理论分析研究并模拟得出了相应拟合公式。通过搭建实验台、制造螺旋钢刷型凝固换热器试件,并对该试件进行实验研究,验证了凝固换热装置的有效性与凝固换热理论计算的准确性。
     地表水源采集凝固热热泵系统的重要参数是地表水的水温。论文通过对水温经验公式作气象参数敏感性分析,建立了江河类和湖泊类两类地表水的夏季简化水温模型。根据冬季水温变化趋势,结合实测手段提出了供热期分时段地表水温模型。根据定性分析,采用供冷设计日水温逐时预测方法对湖泊水冷热源取、排水口位置进行了设计与预测。
     采集凝固热热泵系统的形式是系统安全供热与高效运行的前提。根据不同水源种类、水源特点的差异,本文提出了三种采集凝固热热泵系统:清洁地表水源采集凝固热热泵系统,非清洁地表水源采集凝固热热泵系统以及城市污水源采集凝固热热泵系统。文中建立了各系统的设计优化方法,预测了系统的全年运行特性,综合考察了系统的经济、节能、环保性能。算例表明:各类系统节能与环保优势突出;清洁地表水源采集凝固热热泵系统经济优势良好,系统初投资合理;非清洁地表水源采集凝固热热泵系统有一定优势,但系统初投资偏高;城市污水源采集凝固热热泵系统具有明显优势,系统初投资稍高。
     总之,虽然采集凝固热时热泵机组的制热性能系数COPh值较低,但供热期机组大部分时间处在部分负荷下运行,且在寒冷地区多数采用采集凝固热热泵系统的场合,地表水冬季水温虽低,但水量通常充足,而城市污水水量虽少,但水温较高。由算例的优化设计与供热运行工况分析可知,供热期热泵机组COPh平均值仍能达到3.5~4.0;经济效益方面,与热网+冷水机组系统比较,初投资为后者的115~150%,运行费为后者的60~80%。考虑到节能减排可带来巨大的社会效益与各地区不同的财政补贴,因而该系统值得大力推广。
With the serious issues about energy and environment increasingly, various heat pump technologies have been developed and applied in many fields.Surface water, such as river or lake, and urban sewage are cooling and heating resources of heat pump systems, which are considerable and spectacular in amount. But in contacts, we often meet some difficulties that the surface water winter temperature is excessively low or sewage flux is too insufficiency in the trunk sewers nearby the buildings. This paper brings out a new heat pump system named heat pump system with freezing latent heat collection (HPSFLHC), which is from actual demand of heat pump technology and low renewable energy. In this new system, freezing latent heat of non-clean water sources can be used as low temperature heat source,so it is valuable on practice and theory.
     Freezing latent heat exchanger (FLHE) is one of the key equipments of HPSFLHC. This paper develops two kinds of screwing and scraping FLHEs, which are the spiral screw FLHE and the spiral steel brush FLHE, elaborates its deicing principle, and points out the system parameter condition to remove the ice safely. Through fundamental research on freezing and heat transfer to the low temperature turbulent surface water and laminar urban sewage, it obtains the corresponding fitting formula. Experimental table and double-pipe spiral steel brush FLHE test sample has been independently designed and set up to conduct the freezing latent heat transfer experimental study through the laboratory system to turbulent surface water and the laminar sewage. The experimental result has confirmed the validity of de-icing and removing of the device and the accuracy of theoretical calculation method.
     The surface water temperature and its change relate correct design and the reasonable operation of the heat pump system. The summer surface water temperature model is established and simplified through the meteorological parameter sensitivity analysis, and staged surface water temperature model in the heating period is proposed by the method of theoretical analysis and the data analysis. Intake and outlet position can be simulated and determined with the hourly water temperature forecast method at cooling design day when using the lake water as cooling, and an example is carried on.
     The correct and reasonable structural style of HPSFLHC is the premise to achieve safe heating and display system's operating efficiency. For the different water source types and characteristics, it will be very different on structural style of HPSFLHC. This article analyzes and proposes three styles of HPSFLHC for each kind of different water source condition including clean or non-clean surface water source HPSFLHC, as well as the urban sewage source HPSFLHC. Then it analyzes various systems' rationality and elaborates the system whole year operating patterns.
     The form of heat pump system is the premise on heating safely and operating effectively. This article has established various systems' design optimization method, then forecasts the system's whole year operating characteristic, surveys system's economy, energy conservation, environmental protection performance comprehensively. With examples, we can obtain that performance of energy conservation and the environment-protection is prominent, and it shows that the clean surface water source HPSFLHC has favorable economic characteristic, and the initial investment is reasonable; the non-clean surface water source HPSFLHC has certain superiority, but the initial investment is high; the urban sewage source HPSFLHC has the obvious superiority, and the initial investment is slightly high.
     In brief, when gathering latent heat of environmental water by these new systems, the heat pump unit's COPh is low, but it runs at the partial load mainly in the heating period. In the cold areas, the surface water winter temperature is low, but its water flux usual sufficient, and the urban sewage water flux are low, but its water temperature is high. So through the operating condition analysis when heating by the example, the heat pump unit mean COPh in the heating period still can be 3.5 to 4.0. At economic efficiency aspect, comparing with the heating network and chiller plant system, initially invests of this new system is about 115~150% of the latter, operating cost of this new system is about 60~80% of the latter. Considering the huge social efficiency at energy-saving and environmental protection and different fiscal subsidy, this new system is worth promoting.
引文
1.钱伯章.2005年世界能源消费结构统计评论.上海节能.2006,(4):57
    2.赵庆波.世界能源需求现状及展望.中国能源.2002,(2):34-36
    3.吕宗鑫,吕应运.以煤为主多元化的清洁能源战略.清华大学学报(哲学社会科学版).2000,15(6):72-76
    4.周凤起.21世纪中国能源工业面临的挑战.暖通空调.2000,30(4):23-25
    5.龙惟定.试论我国暖通空调业的可持续发展.暖通空调.1999,29(3):25-30
    6.张国强,龚光彩.能源、环境与制冷空调.制冷学报.2000,32(3):1-6
    7.戴彥德,朱跃中.加强节能和提高能源效率保证社会经济可持续发展.电力需求与管理.2003,5(1):2-6
    8.龙惟定,白玮.中国住宅空调的未来发展.暖通空调.2002,32(4):43-47
    9.周凤起.中国能源工业面临的挑战.中国能源.1999,(12):3-6
    10. J.Hougton著,石广玉等译.全球变暖.北京:气象出版社.2001
    11.范存养,林忠.住宅环境设备的现状与发展.暖通空调.2002,32(4):34-42
    12.范存养,龙惟定.面向地球环境的空调技术.制冷与空调.2001,(1):24-32
    13. Saito T. Regional report—heat pump in Asia & Pacific. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, 2002:38-46
    14.何雪冰,刘宪英.热泵机组用板式冷凝器及蒸发器的选择计算.暖通空调, 2001,31(6):58-61
    15.张永铨,巨永平.变频控制的VRV空调系统.暖通空调, 1994, 24(30):46-49
    16.薛卫华,刘传聚,陈沛霖.变频控制热泵式VRV空调机组冬季运行特性研究.节能技术, 2000, (5):3-6
    17.石文星,史斌华,彦启森.变频空调器的三种算法.暖通空调, 2000, 30(6):16-19
    18.中华人民共和国发展与改革委员会.中华人民共和国可再生能源法.http://nyj.ndrc.gov.cn
    19.朱俊生.国内外新能源和可再生能源发展现状.节能与环保.2001,(4):33-35
    20. ARI Standard 320 Water-source heat pump. 1998
    21. ARI Standard 325 Ground water-source heat pump. 1998
    22. ARI Standard 330 Ground source closed-loop heat pump. 1998
    23.周立.风冷热泵机组环境温度使用范围及除霜技术.暖通空调,1995,25(8): 58-61
    24. Wang H., Touber S. Distributed and unsteady state Modeling of air cooler. Int. J. Refrig. 1991, 14(3): 98-111
    25.喻银平,马最良.双级耦合式热泵供暖系统在寒冷地区应用的可行性分析.电力需求侧管理,2002,4(2): 39-42
    26.马最良,姚杨,姜益强.双级耦合热泵供暖的理论与实践.流体机械,2005,(9): 30-34
    27. Lynn Stiles. Underground thermal energy storage in the US.Newsletter of IEA Heat Pump Center.1998:16
    28.邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状.暖通空调,2004,34(1):19-22
    29.张群力,王晋.地源热泵和地下水源热泵的研发现状及应用过程中的问题分析.流体机械, 2003, 31(5): 50-54
    30. Jitenda B. Singh, Gustav Foster Jr. Representative operating problems of commercial ground-source and ground water-source heat pumps. ASHRAE Trans, 2000, 107(2): 561-568
    31. Cane R, Forgas D. Modeling of GSHP performance. ASHRAE Trans, 1991, 97(1): 909-925
    32. Piechowski M. Heat and mass transfer model of a ground heat exchanger: theoretical development . Int. J. of Energy research, 1999, 34(7): 571-588
    33.范萍萍,端木琳,王学龙,等.土壤源热泵的发展与研究现状.煤气与热力,2005, (10): 66-70
    34.王景刚,马一太,魏东等.地源热泵的应用研究,见:制冷空调新技术进展.上海:上海交通大学出版社,2001
    35.谭乃秦.城市污水处理厂低温热能利用—污水水源热泵空调.给水排水技术动态, 2002, (9):15-20
    36.梁伟臻,吴大为.污水处理厂集水量的确定方法.中国给水排水, 2003,19(12): 72-74
    37.马最良,姚杨.污水源热泵系统的应用前景.中国给水排水, 2003, 19(7): 41-43
    38.崔福义,李晓明.污水资源及其在热泵供热中的应用.低温建筑技术, 2005, (1): 96-97
    39. Kevin R . Groundwater heat pump systems: experience at two high school. ASHRAE Trans, 1996, 102(1): 922-928
    40.吴荣华,孙德兴.城市原生污水冷热源应用的关键因素研究.哈尔滨商业大学学报, 2004 , 20(6): 86-88
    41.吴荣华,张成虎,孙德兴.城市原生污水源热泵系统运行工况与参数特性.流体机械.2005,(11):73-76
    42.王定标,程东娜.太阳能吸附式制冷和供热联合循环系统研究进展.制冷与空调(四川),2006,20(2):85-87
    43.翟晓强,王如竹,吴静怡,等.太阳能吸附式空调系统的运行优化及试验研究.暖通空调,2006,36(7):1-6
    44. 2000年中国水资源公报. http://www.hwcc.com.cn
    45. GB3838—2002,地表水环境质量标准
    46. 2007年1月地表水水质月报.http://www.zhb.gov.cn/tech/hjjc/
    47.孙德兴,张承虎,钱剑峰.利用冷水凝固热的热泵系统与装置.暖通空调,2006,36(7):41-44
    48.曲云霞,方肇洪,张林华,等.地表水源热泵系统的设计.可再生能源,2003,3:11-14
    49.吴荣华,孙德兴.城市污水源热泵系统的节能与环保评价法.中国给水排水, 2005, 35(12) :96-100
    50.王宏哲.城市污水热能回收与利用发展状况、评价和意义.中国环境管理, 2001, 19(5):21-23
    51.陈晓,彭建国,张国强.地表水在供冷供热中应用的现状及分析.建筑热能通风空调.2006,(2):25-27
    52. http://www.utilities.cornell.edu
    53. http://www.enwave.com/enwave/view.asp/dlwc/energy
    54.蒋能照.空调用热泵技术与应用.北京:建筑工业出版社,1997,9-10
    55.张佩芳.浅议地源热泵国内外的发展概况.通用机械.2003,(5):13-16
    56.刘光远,陈兴华.俄罗斯热泵新技术简介.能源研究与利用.2001(3):17-19
    57. Jarn L. A new river water source heat pump project. Japan Air Conditioning, Heating& Refrigeration News, 1996
    58.刁子生.热泵吸收河水热能的热水供应系统.城市管理与科技, 1996(1):32-36
    59. Kavanaugh S. Design considerations for ground and water source heat pumps in southern climates. ASHRAE Transactions, 1989, 95(1):1139-1149
    60. Kavanaugh S, Woodhouse J. Test results of water to air heat pumps with high cooling efficiency for ground-coupled applications. ASHRAE Transactions, 1991, 97(1):895-901
    61. Johnson R, Edwards J. Experimental evaluation of three ground-coupled heat pump systems. ASHRAE Transactions, 1988, (1):280-289
    62. Mohammad Z, Johnson R, Edwards J. Model validation for ground-coupled heat pump systems. ASHRAE Transactions, 1989, (2):215-221
    63. Onsal M, Byrnes J. Recent advances in Fourier analysis and its applications. Dordrecth: Kluwer Academic Publishers, 1990, 59-72
    64. Yumrutas R, onsal M. A computational model of a heat pump system with a hemispherical surface tank as the ground heat source. Energy, 2000, 25:371-388
    65. Büyükalaca O, Eklnci F, Yimaz T. Experimental investigation of Seyhan River and dam lake as heat source–sink for a heat pump. Energy, 2003, 28:157-169
    66.李永安,李继志.湖水水源热泵综合能源利用设计与实践.低温建筑技术,2003,(5):78-79
    67.何满潮,李学元.混合水源联动运行空调技术及工程应用.矿业研究与开发.2004,24(1):30-33
    68.陈晓,张国强.南方地区开式湖水源热泵的应用. 2005年制冷空调学术年会论文集, 2005:370-374
    69.谢有君.潜水式地源热泵系统设计方案及运行费用分析.中国建设信息,2005:65-67
    70.周燕,刘秋克.浅析地表水源热泵空调系统的节能特性.能源工程,2005,(2):54-56
    71.苏宇贵,李志全.东湖生态园餐厅空调及供热水设计简介.工程建设与设计,2005,(12):21-24
    72.刘婷婷,彭建国,张国强,等.地表水源热泵在湖南地区的应用分析.节能技术,2004 ,22(5):14-16
    73.文远高.武汉地区的低温热能资源及其利用方式.节能与环保,2004(6):18-20
    74.文远高,连之伟,刘冬华.热泵空调技术在武汉地区的应用状况及发展前景.流体机械,2003,31(6):59-61
    75.秦红,文远高.空调系统的地表水利用及其节能和环境影响分析.暖通空调制冷1998年学术年会论文集,1998
    76.陈焰华,祈传斌.武汉地区水源热泵系统应用前景分析.暖通空调制冷2002年学术年会论文集,2002
    77.陈晓,张国强.利用湖水的水源热泵系统应用分析.暖通空调制冷2004年学术年会论文集,2004
    78.陈晓,张国强.南方地区开式湖水源热泵的应用.2005年制冷空调学术年会论文集,2005
    79. Stephan K. Heat pump promotion–a prospect in Switzerland and Europe, 2005
    80. Enstrom H. Some experiences of heat pump in district heating networks. XⅥth International Congress of Refrigeration, 1983, (13): 123-128
    81. Kolbusz P. Use of heat pumping in district heating system. Electricity Council Research Centre Feb, 1974, (15): 156-161
    82. Angelino G. Development of thermal prime movers for heat pump drive. Heat pump applications,1976, (5): 97-104
    83. Leif Westin. Heat Pump Based on Sewage for District Heating. New Energy Conference Technology, 1981, (3): 45-49
    84. Baek N. Study on the heat pump system using waste water as a heat source. Energy R & D, 1994, 16(1): 56-63
    85. Baek N, Shin U. A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy, 2005, 78(3): 427-440
    86.尹军,韦新东.我国城市污水中可利用热能状况初探.中国给水排水, 2001, 17(4): 27-30
    87.尹军,韦新东.我国回收污水中热能的可行性分析.中国给水排水, 2000,16(3): 28-30
    88.尹军,王宏哲等.城市污水热能利用技术及展望.吉林建筑工程学院学报, 2001, 14(2): 15-17
    89.周文忠,李建兴等.污水源热泵系统和污水热能利用前景分析.暖通空调, 2004, 34(8): 25-29
    90.尹军.未处理城市污水热能利用方式.节能技术, 2003, (3): 61-65
    91.王宏哲.城市污水热能利用的探讨.环境保护, 2001, 26(11): 44-45
    92.白莉.城市污水热能利用技术的实验研究.吉林大学博士学位论文, 2001
    93.吴荣华,孙德兴.热泵冷热源城市原生污水的流动阻塞与换热特性.暖通空调,2005, 35(2): 86-88
    94.吴荣华,张承虎,孙德兴.城市原生污水冷热源换热管软垢特性研究.流体机械,2006,(1): 59-62
    95.吴荣华,孙德兴.城市污水源热泵系统的节能与环保评价法.中国给水排水,2005,21(12):103-106
    96.张承虎,刘志斌,吴荣华.旁路串联水泵系统流量特性及运行性能分析.流体机械,2006,34(5): 21-25
    97. Akio S. Recent advances in research on cold thermal energy storage. International Journal of Refrigeration, 2002, 25(2):177-189
    98. Sari O, Vuarnoz D, Meili F. Visualization of ice slurries and ice slurry flows. Proceedings of the Second Workshop. France: Ice Slurries of the International Institute of Refrigeration. 2000.68-81
    99. Davies T. Slurry ice as a heat transfer fluid with a large number of application domains. International Journal of Refrigeration,2005, 28(1): 108-114
    100. Peter W, Michael K. From physical properties of ice slurries to industrial ice slurry applications. International Journalof Refrigeration, 2005, 28(1): 4-12
    101. Stamatioua E, Meewisseb J, Kawaji M. Ice slurry generation involving moving parts. International Journal of Refrigeration,2005, 28(1): 706-721
    102. Takaaki I, Xu Z. Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature. International Journal of Heat and Mass Transfer, 2001, 44(23): 4523-4531
    103.何国庚,吴锐,柳飞.冰浆生成技术研究进展及实验初探.建筑热能通风空调. 2006,25 (4):22-27
    104. Peter H. Ice physics. Oxford: Clarendon Press, 1974. 461-522
    105. Shinichi W, Nakao K, Tanaka N. Study of the stability of supercooled water in an ice generator. ASHRAE Transactions. 1996, 102(2):142-450
    106.陶乐仁.水溶液冻结过程的显微实验研究.上海理工大学博士学位论文,2000
    107.曲凯阳,江亿.不锈钢表面上静止过冷水结冰随机性的实验研究.制冷学报,2000,(4):8-12
    108.曲凯阳,江亿.各种因素对过冷水发生结冰的影响.太阳能学报,2003,24 (6):814-821
    109.王军,张定才.过冷却水制冰蓄冷性能的实验研究.制冷学报,2002,(3):45-47
    110.刘道平,李瑞阳,陈之航.直接接触固液凝固制冰及冰蓄冷系统的研究进展.华东工业大学学报,1996,18(3):27-36
    111.魏娟,章学来.冰浆传热与压降的研究进展.能源技术.2005,26(2):52-54
    112.袁竹林.制取流体冰新方法及高效冰蓄冷研究.能源研究与利用,2004,36(4):36-40
    113. Meewisse J. Fluidized bed ice slurry generator for enhanced secondary cooling systems. DELFT: Delft University of Technology, 2004
    114. Kim B, Shina H, Lee Y. Study on ice slurry production by water spray. International Journal of Refrigeration, 2001, 24(2): 176-188
    115. Shina H, Lee Y. Spherical-shaped ice particle production by spraying water in a vacuum chamber. Applied Thermal Engineering, 2000, 20(5): 439-454
    116.刘永红.冰浆流动特性和传热特性研究:[博士学位论文].上海:同济大学,1997
    117.刘永红,陈沛霖.水平管道中冰浆流动的摩阻特性的实验研究.力学与实践,1997,19(6):36-38
    118. Knodel B,Choi U. Heat transfer and pressure drop in ice-water slurries. Applied Tnermal Engineering. 2000 ,20( 07): 671-685
    119. Chen Mingyong, Zhang Yuwen, Cheng Zhongqi. Freezing of cylindrically shaped food stuffs with boundary condition of the third kind. Proceedings of 3rd International Conference on Multiphase Flow and heat transfer, Xi’an JiaoTong University,1994.
    120.宋又王.用奇异摄动法解圆柱体的凝固问题.工程热物理.1981 ,2(4):359-365.
    121. Latif M, Salif Gaye. Analysis of solidification and melting of PCM with energy generation . Applied Thermal Engineering, 2006, 26(5):568–575
    122. Bejan A, Kraus A D. Heat transfer handbook . Wiley, 2003
    123.凯斯,克拉福特[美].对流传热与传质.陈熙,翟殿春,译.北京:科学出版社,1986
    124.斋藤彬夫,大河诚司,石井刚人.流动过冷却水の非定常凝固现象.日本冷冻协会论文集.1998.203-212
    125.斋藤彬夫,大河诚司,宇根浩.过冷却水の凝固に影响を及ぼす外的要因に阌する研究.日本冷冻协仝论文集,1991,8(2):141
    126.曲凯阳,江亿.各种因素对过冷水发生结冰的影响.太阳能学报,2003,24(6):814-821
    127.何国庚,吴锐,柳飞.过冷水法冰浆制取的实验设计与分析.低温与超导,2006,34(4):303-307
    128.张君瑛,章学来,吴喜平.采用密闭制冰发生装置的过冷水制冰系统特性研究与机理分析.暖通空调,2007,37(10):36-39
    129.中国水资源在线.http://www.shuiziyuan.mwr.gov.cn/
    130. Jirka G, Watanabe M. Mathematical predictive models for cooling ponds and lakes (Part A). Boston: P R Parsons of MIT, 1978,238
    131. Octavio K,Watanabe M. Mathematical predictive models for cooling ponds and lakes (Part B). Boston: P R Parsons of MIT, 1980,262
    132.濮培民.水面蒸发与散热系数公式研究(二).湖泊科学,1994,6(3):201-210.
    133.李克锋,郝红升,庄春义,等.利用气象因子估算天然河道水温的新公式.四川大学学报(工程科学版).2006,38(1):1-4
    134.白振营.一个计算湖泊(水库)自然水温的新公式.水文,1999(3):29-32
    135.中国气象局国家气象信息中心气象资料室,清华大学建筑科学系.中国建筑热环境分析专用气象数据集.北京:中国建筑工业出版社,2005
    136.范年乐,柳新之.湖泊、水库和深冷却池水温预报通用数学模型.科学研究论文集(第17集),1984,1-30
    137.刘婷婷.冬冷夏热地区应用地表水源热泵系统供暖的优化方法.湖南大学硕士学位论文,2005
    138.陈丽萍,龚延风,刘金祥.空气源热泵全年能耗分析应用软件的开发.暖通空调,2001,31(3):63-65
    139.王耀春,陈汝东.一种适用于冰蓄冷空调系统的全年逐时负荷计算方法.流体机械, 2004,32(12):69-71
    140.杨昭,张世钢,孙政,等.地下水源热泵的最优化研究.太阳能学报,2002,23(6):687-691
    141. Hui Jin. Parameter estimation based models of water source heat pumps. Oklahoma: Oklahoma State University,2002
    142.北京市关于发展热泵系统的指导意见,2006
    143.尹军,陈雷,王鹤立.城市污水的资源再生及热能回收利用.化学工业出版社,2003.
    144.吴荣华,张成虎,孙德兴.城市原生污水冷热源换热管软垢特性研究.流体机械. 2006,34(1):59-62
    145.吴双应.换热器性能的火用经济分析.热能动力工程,1999,14(6):437-440.
    146.蒋祖星,刘晓红.壳管式海水换热器污垢状况的火用评价方法研究.热能动力工程,2003,18(6):58-60
    147.贺平.供热工程(第三版).中国建筑工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700