纳米SiO_2/玻璃微珠改性UHMWPE复合材料空蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力机械过流部件的空蚀破坏历来为人们所广泛关注,我国西南河流流经喀什特地貌地区,流速高且水流中携带大量的气泡,当水流通过水轮机过流部件时造成严重的空蚀磨损,研究和开发新型抗空蚀材料一直是人们寻求解决水力机械空蚀的主要途径。
     本论文设计了纳米SiO_2/玻璃微珠/超高分子量聚乙烯(UHMWPE)复合材料体系,并通过压制烧结工艺制备出复合材料,考察了复合材料的硬度、冲击韧性、弹性模量和摩擦学性能,研究了复合材料的空蚀性能和空蚀机理,以此为基础进一步分析了材料空蚀率与材料主要机械性能的相关性。主要结论如下:
     1、改性后的纳米SiO_2和玻璃微珠在UHMWPE基体具有良好的分散性,纳米SiO_2和玻璃微珠的加入不仅可以提高UHMWPE材料表面硬度,同时还保持着较高的冲击韧性和弹性性能。与纯UHMWPE相比,复合材料耐磨损性能更好,磨损机制主要表现为不同程度的粘着磨损和疲劳磨损。
     2、相比纯UHMWPE,复合材料具有更好的抗空蚀性能,其中含4%纳米SiO_2和6%玻璃微珠组分的复合材料抗空蚀性能显著提高,这可解释为纳米SiO_2和玻璃微珠的加入使得空蚀裂纹的扩展受阻和钝化,提高了热传导性能,使空蚀时的冲击能量能快速传递开来,产生的热量被迅速带走。
     3、纳米SiO_2和玻璃微珠填充的UHMWPE复合材料空蚀损伤机理主要是由于气泡溃灭产生高速冲击波或微射流使材料表面产生塑性变形和孔洞,进而裂纹萌生、扩展导致材料剥落。
     4、复合材料抗空蚀性能与其机械性能密切相关,通过拟合,制备的复合材料硬度相关指数值在1.2~2.3之间,冲击韧性指数值0.3,弹性模量指数值在-1~-2之间,即复合材料空蚀率与表面硬度、冲击韧性和弹性模量倒数成正比。
Cavitation is an ancient and complex problem existed in hydraulic machinery. In southwest of China, The rivers flowing through karst topography with high velocity flow, generate many air bubbles. Cavitation erosion wear is serious when hydraulic machineries running on the region of the river. To resolve the problem, the principal way of doing that is through research and development of new cavitation resistance materials.
     In this paper, a kind of ultra-high molecular weight polyethylene (UHMWPE) composites filled with nano-SiO_2 and glass microballoon is designed. The composites synthesized by sintering and compaction. Some properties such as hardness, impact toughness, elastic and tribology are measured. The cavitation erosion and cavitation mechanism of composites are studied. Finally, the correlations of the cavitation erosion rate with composite properties are analyzed.
     The main conclusions are as follows.
     1. Modified nano-SiO_2 and glass microballoon have favorable dispersibility in the matrix of UHMWPE. It is found that the hardness increased and the high impact toughness and elastic properties remained with the composites filled with nano-SiO_2 and glass microballoon. The results also showed that this kind of composites has excellent wear resistance, the main wear mechanisms were adhesion and fatigue.
     2. Compared with pure UHMWPE, the composites have good cavitation resistance properties. The erosion rate of the composites filled with 4% nanometer SiO_2 and 6% glass microballoon is twice the pure UHMWPE. This may be attributed to the fact that the propagation of cavitation crack is stoped and dulled when it meet the fillers. And, the fillers can improve the thermal conductive capability of composites. Therefore, when some of the impact energy is converted into heat, maybe a great part of the heat is carried off by means of fillers.
     3. The cavitation mechanism of composites filled with nano-SiO_2 and glass microballoon is confirmed that the plastic deformation and cavitation pinholes are formed with the shock waves or micro-liquid jet produced by bubble collapse. The cavitation damage is the results of initiation and growth of fatigue cracks. 4. The cavitation erosion resistance of composites is closely related to their mechanical properties and concern into the index. By fitting, the index of hardness is between 1.2 and 2.3, the index of impact toughness is between 0.2 and 0.3, and the index of reciprocal of elastic modulus is between 1 and 2. In other words, the cavitation rate of compositesis is proportional to hardness, impact toughness, and the reciprocal of elastic modulus.
引文
[1]段生孝.我国水轮机空蚀磨损破坏状况与对策[J].大电机技术,2001(6):56-64.
    [2]陈顺义,刘诗琪.水泵水轮机空蚀磨损调查[C].第十七次中国水电设备学术讨论会.中国水力发电工程学会,2009:348-352.
    [3]郭生柱,张维平,徐新民.丹江口水力发电厂水轮机空蚀研究[J].大电机技术,2007(4):56-58.
    [4] Plesset M S. Temperature Effects in Cavitation Damage[J]. Journal of Basic Engineering,1972,94(3): 559-563.
    [5] Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. New York:McGraw-Hill,1970.
    [6]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991.
    [7] Senocak I. Computational methodology for the simulation of turbulent cavitating flows[D]. American: Doctor Thesis. University of Florida,2002.
    [8]李根生,沈晓明,施立德等.空化和空蚀机理及其影响因素[J].石油大学学报,1997,21(1):97-102.
    [9]薛伟,陈昭运.水轮机空蚀和磨蚀理论研究[J].大电机技术,1999(6):44-48.
    [10]柳伟,郑玉贵,姚治铭.金属材料的空蚀研究进展[J].中国腐蚀与防护学报, 2001,21(4)250-255.
    [11]王再友,龙霓东,朱金华.抗空蚀材料研究应用进展[J].材料开发与应用,2001,16(6):34-38.
    [12]金泰来.空化与空蚀研究的现状和动向[J].水力发电,1982,(1):38-44.
    [13] Karimi A, Lartin M J. Cavitation erosion of materials. Intenational Metals Reviews,1986,31(l):l-6.
    [14]黄凯,林成刚.高速含沙水流对水轮机的空蚀和磨蚀[J].四川水利,2008(5):2-6.
    [15]陈大融.空化与空蚀研究[J].中国基础科学,2010(6):3-7.
    [16] Mousson J M. Pitting Resistance of Metels Under Cavitation Conditions[J]. Trans ASME,1937,59(5): 399-408.
    [17]何筱奎.不同含沙量不同流速时材料的磨蚀失效特性[J].水力发电学报,1996,(3):79-86.
    [18] Hammitt F G. Cavitation and multiphase flow phenomena[M]. New York:McGraw-Hill,1980.
    [19]鲍崇高.含沙水域水轮机过流部件的材料应用及进展[J].水利水电科技进展,2001,21(6):14-16.
    [20] Srinivasan V, SalazarA J, Saito K. Numerical simulation of cavitation dynam ics using a cavitation- induced-momentum-defect(CIMD) correction approach[J]. Applied Mathematical Modelling, 2009,33(3): 1529-1559.
    [21] Okita K, Ugajin H, Matsumoto Y. Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three-dimensional inducer[J]. Journal of Hydrodynamics,2009,21(1): 34-40.
    [22]汪家道,陈皓生,秦力等.水力机械空蚀中微颗粒的关键作用[J].科学通报,2005,52(22):2683-2687.
    [23]李金明,陈和春,李国敬.水轮机磨蚀因素分析及磨蚀公式重构研究[J].人民长江,2009,40(9):77-79.
    [24]张铁华.水力机械材料在含沙水流中相对抗磨性研究[J].水利水电工程设计,1997(3):57-60.
    [25]王再友,徐英鸽,朱金华.亚稳态金属材料抗汽蚀性能研究[J].兵器材料科学与工程,2003,26(1): 32-36.
    [26] Richman R H, Ran A S, Kung D. Cavitation erosion of TiNi explosively welded to steel[J]. Wear,1995, 302:181-183.
    [27] Wu S K, Lin H C, Yeh C H. A comparison of the cavitatione oion resistance of TiNi alloys, SUS 304 stainless steel and Ni-based self-fluxing alloy[J]. Wear,2000,244:85-93.
    [28]龙霓东,朱金华. Ti3Al基合金的弹性变形能与空蚀[J].中国有色金属学报,2003,13(3):560-564.
    [29]龙霓东,朱金华. FeMnSiCrNi形状记忆合金在蒸馏水和3.5%NaCl溶液中的空蚀[J].材料热处理, 2009,38(16):45-47.
    [30]柳伟,郑玉贵,刘常升等. Cr-Mn-N奥氏体-铁素体不锈钢的空蚀行为[J]金属学报,2003,39(1):85-88.
    [31]柳伟,郑玉贵,敬和民等.清水和含沙水中20SiMn和0Cr13Ni5Mo钢的空蚀行为[J].金属学报,2001, 37(2):197-201.
    [32]曹明等离子熔覆TiC/Ni梯度层组织及其抗汽蚀性能研究[D].南京:海河大学,2007.
    [33]李伟,梁川.掺混物对增强高分子材料抗空蚀性能的研究[J].四川工业学院学报,2001,20(2):35-37.
    [34]龙霓东,朱金华. TiNiNb合金的空蚀[J].稀有金属材料与工程,2003,32(9):740-743.
    [35]国旭明,张艳,王宗杰等. CrMnB堆焊合金的空蚀行为[J].沈阳工业大学学报,2002,24(5):381-384.
    [36]常云龙,张建民,林彬等. CrMnB堆焊合金空蚀和磨蚀行为研究[J].热加工工艺,2005(4):1-3.
    [37] Zhou Y K, Hammitt F G. Vibratory cavitation erosion in aqueous solutions[J]. Wear,1983,80:299-313.
    [38] Ahmed S M, Hokkirigawa K, Ito Y et al. Scanning electron microscopy observation on the incubation period of vibratory[J]. Wear,1991,142:303-314.
    [39] Bardin. Oil Well Drilling Augmented by Cavitation Damage. Proc. 9th Intel. Symp. on Jet Cutting Technology, Sendai, Japan, 1988:18-20.
    [40]王飚等.水轮机抗磨蚀金属材料的优化设计[J].中国工程科学,2000,2(2):64-67.
    [41] Bedkowsi W. Relations between cavitation erosion resistance of materials and their fatigue strength under random loading[J]. Wear,1999,230:201-209.
    [42]陈文革等.钢的磨蚀抗力与力学性能的相关性[J].西安理工大学学报,1998,14(4):422-426.
    [43] Kwok C T, Man H C, Leung L K et al. Effect of temperature,pH and sulphide on the cavitation[J]. Wear, 1997,211:84-93.
    [44] Howard R L, Ball A. The solid particle and cavitation erosion of titanium aluminized intermetallic alloys[J]. Wear,1995,186:123-128.
    [45]娄延春,赵芳欣,于波等. Cr-Ni型水轮机材料电化学腐蚀和抗空蚀行为[J].中国腐蚀与防护学报, 2005,25(5):313-315.
    [46]唐一文,李家麟,贾志杰等.一种防空泡腐蚀富锌涂料及其制备方法[P].中国:CN101100569A. 2007.
    [47]张微,龙军峰.水力机械胶粘耐磨涂层的制备及性能研究[J].材料保护,2004,37(6):46-48.
    [48]张亚利.新型防空蚀材料在小水电站中的推广应用[J].小水电,2010(1):17-18.
    [49]曹斌军.泵站水力机械抗气蚀耐磨损工艺研究[J].有色冶金节能,2008(6):33-34.
    [50]康进兴,赵文轸.水利机械抗磨蚀材料及其防护技术的进展[J].空军工程大学学报:自然科学版, 2002,3(3):47-50.
    [51]高良润,程晓农,郭乃龙.水力机械的磨损与材料[J].排灌机械,1998(1):3-6.
    [52]朱玉峰,董金华.表面工程技术在泵过流部件防护中的应用[J].表面技术,2004,33(4):72-74.
    [53]康进兴,徐英鸽,赵文轸. WC/Ni和WC/Cu基复合覆层的耐气蚀性能[J].中国有色金属学报,2002, 12(4):673-676.
    [54]国旭明,郑玉贵,摇治铭. CrMnB堆焊合金抗空蚀和冲刷磨损性能的研究[J]金属学报,2002,38(9): 936-940.
    [55]许健. 0Cr13Ni94-6MoRe抗磨性电焊条在水电站抗磨蚀修复中的应用[J].水利水电技术,1998,29(6): 24-26.
    [56]柳伟,郑玉贵,姚治铭.激光熔敷钴合金涂层的抗空蚀和冲刷磨损性能[J].材料保护,2002,35(3): 18-20.
    [57]张小彬,臧辰峰,陈岁元等. CrNiMo不锈钢激光熔覆NiCrSiB涂层空蚀行为[J].中国有色金属学报, 2008,18(6):1064-1069.
    [58]曹明等离子熔覆TiC/Ni梯度层组织及其抗汽蚀性能研究[D].南京,海河大学,2007.
    [59]谢笃祜王华李记明.水力机械抗磨蚀涂层的试验研究与应用[J].水利水电技术,1992(1):38-41.
    [60]张双平张弘.水力机械过流部件耐磨抗蚀涂层特点与应用[J].西北电力技术,2000(6):43-45.
    [61]李学军.磨蚀机理探讨及抗磨蚀材料的应用[J].西北水资源与水工程, 1996,7(3):39-45.
    [62] Calleut V A. Aluminum bronze for industrial use[J]. Metals and Materials,1989,5(3):128-132.
    [63]武现治,吴四民,郭维克.改性聚氨酯抗磨蚀材料在机组过流部件的应用[J].人民黄河,2010,32(3): 104-105.
    [64]孙明明,张斌,张绪刚等.双组分聚氨酯胶黏剂的研究[J].化学与黏合,2010,32(2):22-25.
    [65]薛希亮,蒋硕忠,方绪非.水工建筑物抗气蚀高分子涂层材料(YHR)研究[J].长江科学院院报,1993, 10(1):66-71.
    [66] Zhang J, Richardson M O W, Wilcox G D et al. Assessment of resistance of nonmetallic coating to silt abrasion and cavitation erosion in a rotating disk rig[J]. Wear,1996,194:149-1557.
    [67]李伟,梁川.水利水电工程抗空蚀材料研究新进展[J].四川水力发电,2006,19(2):78-81.
    [68]唐一文,徐亮,陈正华等.碳纳米管改性的无机-有机水性富锌底漆的空蚀行为[J].武汉大学学报, 2008,54(1):51-54.
    [69]龚书生.一维纳米材料改性水性无机富锌涂料的研究[D].武汉:华中师范大学,2009.
    [70]肖华林. UHMWPE/SiO2弹性复合材料冲蚀磨损特性[D].湘潭:湖南科技大学,2008.
    [71]彭恩高.材料的含沙水流冲蚀磨损性能研究[D].武汉:武汉材料保护研究所,2006.
    [72]姚启鹏,韩本正,赵琨.超高分子量聚乙烯塑料抗磨试验及其在水机上的应用[J].水利水电技术,1996,27(12):60~62.
    [73]刘广建.超高分子量聚乙烯[M].北京:化学工业出版社,2001.
    [74]高新蕾. Schiff碱铜络合物改性超高分子量聚乙烯及润滑油的摩擦学研究[D].武汉:武汉材料保护研究所,2006.
    [75]韩飞.超高分子量聚乙烯的成型技术现状及研究进展[J]甘肃化工,2005(1):1-6.
    [76]益民.国外高分子和超高分子聚乙烯[J].塑料, 1989,(2):26-37.
    [77]周晓谦.超高分子量聚乙烯改性研究现状[J].齐鲁石油化工, 2004,(4):289-293.
    [78]刘南.超高分子量聚乙烯发展前途佳[J].工程塑料应用, 2000,28(3):43.
    [79]蒋启柏,薛平,何亚东等.超高分子量聚乙烯复合材料的发展[J].工程塑料应用, 2000,28(3):36-38.
    [80]刘萍,王德禧.超高分子量聚乙烯的改性及应用[J].塑料,2001,29(5):7-9.
    [81]梁淑君,贾润礼.超高分子量聚乙烯的研究现状[J].山西化工, 2002,22(2):20-22.
    [82]彭学成.填充改性超高分子量聚乙烯复合材料及其加工研究[D].北京:北京化工大学.2006.
    [83]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其摩擦学行为研究[D].武汉:武汉材料保护研究所,2002.
    [84]刘罡,肖利群,叶淑英.无机填料改性超高分子量聚乙烯性能研究[J].工程塑料应用,2009,37(4): 23-26.
    [85] Panin S V, Komienko L A, Vannasri S, et al. Comparative analysis of the influence of nano- and microfillers of oxidized Al on the frictional-mechanical characteristics of UHMWPE[J]. Journal of Friction and Wear,2010,31(5):371-377.
    [86] Li Jian, Guo Zhi-guang, Hua Meng, Qin Xiang-pei et al. Tribological characteristics of UHMWPE composite and relationship with its compressive behavior[J]. Science in China Series G: Physics Mechanics and Astronomy.2010,47(1):79-87.
    [87] Sinha S K, Lee C B, Lim. S C. Tribological Performance of UHMWPE and PFPE Coated Films on Aluminium Surface[J]. Tribology Letters,2008,29:193-199.
    [88]袁楠.填料改性超高分子量聚乙烯的摩擦磨损性能研究[D].南京:南京理工大学,2006.
    [89]雷毅,郭建良.纳米ZnO和SiO2共混填充UHMWPE复合材料的摩擦磨损行为[J].高分子材料科学与工程,2008,24(12):110-113.
    [90]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究[J].工程塑料应用,1998,26(1):1-3.
    [91]蔡亮珍,杨挺.纳米SiO2在高分子领域中的应用[J].现代塑料加工应用,2002,14(6):20-23.
    [92]曹淑超,伍林,易德莲等.纳米二氧化硅的制备工艺及其进展[J].化学与生物工程,2005(9):1-3.
    [93]谢美菊.超高分子量聚乙烯的加工性能改进和结构与性能的研究[D].成都:四川大学,2006.
    [94]徐凌秀,刘英俊.超高分子量聚乙烯成型加工方法及最新进展[J].塑料加工,1999(4):17-24.
    [95]向东.超高分子量聚乙烯的应用及改性研究进展[J].化工科技市场,2006,29(5):41-45.
    [96]彭富昌,陈守明,叶蓬.超高分子量聚乙烯塑料的性能、加工及应用[J].云南化工,2005,32(2):53-56.
    [97]赵安赤,陈民,王映强.超高分子量聚乙烯加工的高新技术[J].塑料科技,1997,(6):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700