满洲里南部白音高老组火山岩的形成时代与岩石成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对满洲里南部地区白音高老组火山岩进行了详细的岩石学、年代学、元素地球化学及锆石Lu-Hf同位素研究,厘定了火山岩的形成时代,阐述了火山岩的成因,探讨了其形成的构造背景。
     满洲里南部白音高老组火山岩的岩石类型主要有流纹岩、黑云母流纹岩、球粒流纹岩、碱长流纹岩、珍珠岩和流纹质岩屑晶屑熔结凝灰岩,锆石U-Pb定年结果显示其主体形成于139~141Ma的早白垩世早期,并非是以往认为的晚侏罗世或主要形成于120-130Ma之间。白音高老组火山岩属碱性岩,元素地球化学特征与大陆裂谷碱性流纹岩和A型花岗岩相似,并相当于张吉衡(2008)所定义的大兴安岭低Ba-Sr流纹岩。借鉴花岗岩的成因分类,在Whalen et al.(1987)和Eby(1992)所提出的花岗岩成因类型相关判别图解上,白音高老组流纹岩均位于A型花岗岩区,且属A1型。
     锆石Lu-Hf同位素特征显示,满洲里南部地区白音高老组火山岩的εHf(t)值>0,变化于3.49~9.98之间,两阶段Hf模式年龄(TDM2)介于556~951Ma之间,属新元古代。显示出与兴蒙造山带显生宙花岗岩的Nd和Hf模式年龄相同的特征,暗示其可能与显生宙花岗岩具有相同的岩浆源区。
     综合研究认为,白音高老组火山岩浆的源区为新元古代时期形成的基性下地壳物质。锆石饱和温度显示该火山岩浆形成温度约为768℃~874℃之间,火山岩低Sr高Yb的特征表明其形成压力较低,源区有斜长石和角闪石矿物相残留。根据本文对白音高老组流纹岩的研究结果,结合区域相关研究资料,认为满洲里南部白音高老组火山岩形成于非造山板内张性构造环境,与蒙古-鄂霍茨克洋闭合后的伸展作用有关。
Southern Manchuria located in the central Mongolia - Ergun massif in the Eastern Xingmeng orogenic belt between the North China craton and the Siberian craton. Tectonic Evolution of this area is complicated, including the Paleo-Asian Ocean tectonic domain during Paleozoic, Mongol-Okhotsk tectonic domain during Mesozoic and Pacific tectonic domain since Mesozoic-Cenozoic. Study of Mesozoic volcanic rocks in this area is lagging behind, further research of these volcanic rocks will provide solid information for deeping the spatial and temporal evolution of the late Mesozoic volcanic magmatic activities, further dissecting the petrogenesis of the volcanic rocks and investigating the tectonic setting of the volcanic rocks, and will administer to deepen the comparative study of the whole Daxinganling volcanic belt.
     Based on our geochronology study and previous research results, the classification and correlation of the volcanic rocks have been established. The volcanic strata in this area were divided into five formations,including Middle Jurassic Tamulangou Formation, Late Jurassic Manketouebo and Manitu formations, Early Cretaceous Baoyingaolao and Meiletu formations. The main rock type of the volcanic rocks are rhyolite, biotite rhyolite, spherulitic rhyolite, alkali feldspar rhyolite, perlite and Rhyolitic lithic crystal-chip ignimbrite according to the geological investigation and petrographic study. Zircon LA-ICPMS U-Pb dating show the volcanic rocks in Baiyingaolao Formation were mainly formed at the earliest Early Cretaceous from 139Ma to 141Ma, different from the previous thought being formed at Late Jurassic or between 120Ma and 130Ma.
     The geochemistry of major elements indicate that the volcanic rocks from Baiyingaolao Formation in Southern Manchuria are characteristicd by high silica and alkali, lower Aluminum, Calcium and Magnesium, which close to the average composition of the world A-type granites and alkaline rhyolite. In the TAS classification diagram of volcanic rocks, all the samples fall into the range of the rhyolite; The alkali indexs of volcanic rocks vary from 0.80 to 0.98, average 0.91, greater than the minimum value of alkaline rocks of 0.85, near to the average of World A-type granite and alkaline rhyolite, and the alkalinity rate (AR) values range between 3.94 and 6.51, belong to alkaline rocks. The average FeOT/MgO ratio of volcanic value is 6.09 (varying from 2.77 to 36.02), significantly higher than the I-type(average 2.27), S-type (average 2.38) and M-type (average 2.37) granite.
     The volcanic rocks from Baiyingaolao formation are characterized by relatively high total REE contents (ΣREE=103.30×10-6~488.07×10-6) and strong negative Eu anoalies (δEu=0.01~0.41); The trace element geochemistry are characterized evidently by enrichment of Rb, Th, U, K, strong depletion of Ba, Sr, P, Ti, mediate depletion of Nb, Ta. The volcanic rocks have high Rb/Sr ratios, ranging between 1.73 and 15.33 (average 7.28), significantly different from I–type(average 0.61), S-type (average 1.81) and M-type (average 0.06) granite, also higher than the A-type granites (average 3.52); The 10000Ga/Al ratio ranges vary from 2.41 to 4.07 (average 3.52) were higher than the lower limit of A-type granite(2.6)except one sample, and significantly higher than the average values of I-type (2.1) and S-type granite (2.28).
     The geochemical characteristics of the volcanic rocks are similar to the continental rift alkaline rhyolite, A-type granite, and equivalent with the low Ba-Sr rhyolite from Da Hinggan Mountains defined by Zhang et al.(2008). Account to the classification illustration of granite (Whalen et al., 1987 and Eby, 1992), the volcanic rocks of Baiyingaolao Formation show an affinity with the A-type granite.
     Lu-Hf isotope characteristics of zircon show that the volcanic rocks of Baiyingaolao Formation in Southern Manchuria have positiveεHf(t) values, varying from 3.49 to 9.98, and TDM2 ranging from 556Ma to 951Ma, belong to the Neoproterozoic, quite agree with the Nd and Hf madel age of Phanerozoic granites from Xingmeng orogen, suggest that they may ororigined from the same magma source.
     The characteristics above indicate that the the magma of these volcanic rocks derived from the basic lower crust accreted from depleted mantle during Neoproterozoic. The Calculation Results of Zircon saturation temperatures suggest that the volcanic rocks were formed at the temperature of 768℃to 874℃, the volcanic rocks have lower Sr and Higher Yb contents indicate they were formed under lower pressure, residual phases of source are composed of plagioclase and amphibolite. Combining with the regional researching results, we suggest that the volcanic rocks in Baiyingaolao Formation from Southern Manchuria were formed in an intra-plate anorogenic extensional setting, which is related to the extensional functiom after the closure of Mongol-Okhotsk Ocean.
引文
[1] Amelin Y,Lee DC,Halliday AN,et al.Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J].Nature,1999,399:252-255.
    [2] Andersen T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192:59-79.
    [3] Ballard JR,Palin JM,Williams IS,et al.Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP.Geology,2001,29:383-386.
    [4] Belousova EA,Griffin WL,O’Reilly SY,et al.Igneous Zircon:Trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143:602-622.
    [5] Blichert-Toft J,Chauvel C and Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology,1997,127:248-260.
    [6] Cherniak DJ and Watson EB.Pb diffusion in zircon[J].Chemical Geology,2001,172:5-24.
    [7] Cherniak DJ and Watson EB.Diffusion in Zircon[J].Reviews in Mineralogy & Geochemistry,2003,53:112-139.
    [8] Depaolo DJ and Daley EE.Neodymium isotopes in basalts of the Southwest Basin and Range and lithospheric thinning during continental extension.Chemical Geology,2000,169(1-2):157-185.
    [9] Dick AP.Radiogenic isotope geology[M].Cambridge University Press,Cambridge,1995.
    [10] Didenko AN,Mossakovskii AA,Pecherskii DM,et al.Geodynamics of the Central-Asian Paleozoic Oceans.Russian Geology and Geophysics,1994,35:48-61.
    [11] Didenko AN,Kaplun VB,Malyshev YF,et al.Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen[J].Russian Geology and Geophysics,2010,51:492-506.
    [12] Eby GN. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications.Geology,20:641-644.
    [13] Fan WM,Guo F,Wang YJ,et al.Late Mesozoic calc-alkaline volcanism of post-orogenicextension in the northern Da Hinggan Mountains,northeastern China[J]. Journal of Volcanology and Geothermal Research,2003,121:115-135.
    [14] Gao S,Liu XM,Yuan HL,et al.Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS[J].Geostand News,2002,22:181-195.
    [15] Green TH.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology,1995,120:349-359.
    [16] Griffin WL,Pearson NJ,Belousova E,et al.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J] . Geochimica et Cosmochimica Acta,2000,64:133~147.
    [17] Griffin WL,Wang X,Jackson SE,et al.Zircon geochemistry and magma mixing,SE China:In-si-tu analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,2002,61:237-269.
    [18] Harris AC,Allen CM,Bryan SE,et al.ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit:Implications for porphyry-related mineralization.Mineralium Deposita,2004,39(1):46-67.
    [19] Jackson SE,Pearson NJ,Griffin WL,et al.The application of laser ablation-inductively coupled plasma-mass spectrometry ( LA-ICP-MS ) to in-situ U-Pb zircon geochronology.Chemical Geology,2004,211:331-335.
    [20] Jahn BM,Wu FY,Capdevila R,et al.Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China[J].Lithos,2001,59(4):171-198.
    [21] Kelty TK,Yin A,Dash B,et al.Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin,north-central Mongolia:Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J].Tectonophysics,2008,451:290-311.
    [22] King PL,White AJR and Chappell BW.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia[J].Journal of Petrology,1997,38(3):371-391.
    [23] Kravchinsky VA,Cogne JR,Harbert WP,et al.Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone ,Siberia[J].Geophysical Journal International,2002,148:34-57.
    [24] Lee J,Williams I and Ellis D.Pb,U and Th diffusion in nature zircon[J].Nature,1997,390(13):59-162.
    [25] Li JY.Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,2006,26:207-224.
    [26] Li XH,Liang XR,Sun M,et al.Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J].Chemical Geology,2001,175:209-219.
    [27] Liu W,Siebelb W,Li XJ,et al.Petrogenesis of the Linxi granitoids,northern Inner Mongolia of China:Constraints on basaltic underplating[J].Chemical Geology,2005,219:5-35.
    [28] Macdonald R,Davies GR,Bliss CM,et al.Geochemistry of high-silica peralkaline rhyolites,Naivasha,Kenya Rift Valley[J].Journal of Petrology,1987,29(6):979-1008.
    [29] Meng QR . What drove late Mesozoic extension of the northern China-Mongolia tract?[J].Tectonophysics,2003,369:155-174.
    [30] M?ller A,O’Brien PJ,Kennedy A,et al.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland,SW Norway[J].Geological Society Special Publications,2003,220:65-81.
    [31] Nockolds SR.Average chemical composition of some igneous rocks[J].Geological Society of America Bulletin,1954,65:1007-1032.
    [32] Pearce JA.The role of sub-continental lithosphere in magma genesis at destructive plate margins.In:Hawkesworth CJ and Norry MJ (eds.).Continental basalts and mantle xenoliths[M].Nantwich Shiva:Academic Press,1983,230-249.
    [33] Richards MS.Prospecting for Jurassic slabs[J].Nature,1999,397:203-204.
    [34] Riley TR,Leat PT,Pankhurst RJ,et al.Origins of Large Volume Rhyolitic Volcanism in the Antarctic Peninsula and Patagonia by Crustal Melting[J].Journal of Petrology,2001,42(6):1043-1065.
    [35] Rozen OM.The Siberian craton:Tectonic division and history[J].Geotektonika,2003,3:3-21.
    [36] Rubatto D and Gebauer D.Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:Some examples from the western Alps.Cathodoluminescence in Geoscience,Springer-Verlag Berlin Heidelberg,Germany.2000,373-400.
    [37] Shao JA,Zhang LQ and Mou BL.Thermo-tectonic evolution in middle and south part of the Da Hinggan Mountains[J].Science in China(Series D),1998,41(6):570-579.
    [38] Smelov AP and Timofeev VF.Terrane analysis and a geodynamic model of the Precambrian history of the North Asian craton[J].Tikhookeanskaya Geologiya,2003,22(6):42-54.
    [39] Sylvester PJ.Post-collisional strongly peraluminous granites[J].Lithos,1998,45:29-34.
    [40] Tischendorf G and Paelchen W.Zur Klassifikation von Granitoiden/Classification of granitoids[J].Zeitschrift fuer Geologische Wissenschaften,1985,13(5):615-627.
    [41] Van der voo R , Spakman W and Bijwaard H . Mesozoic subducted slabs under Siberia[J].Nature,1999,397:246-249.
    [42] Vervoort JD and Patchett PJ.Behavior of hafnium and neodynium isotopes in the crust:Constraints from Precambrian crustally derived granites[J].Geochimica et Cosmochimica Acta,1996,60:3717-3733.
    [43] Wallick BP and Steiner MB.Paleomagnetism of Cretaceous basalts from the East Mariana Basin, western Pacific Ocean.In Larson RL,Lancelot Y,et al.,Proceedings of the Ocean Drilling Program,Scientific Results,129:447-454.
    [44] Wang F,Zhou XH,Zhang LC,et al.Late Mesozoic volcanism in the Great Xing’an Range(NE Chin):Timing and implications for the dynamic setting of NE Asia[J].Earth and Planetary Science Letters,2006,251:179-198
    [45] Wang PJ,Chen FK,Chen SM,et al.Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin,NE China.Geochemical Journal,2006,40:149-159.
    [46] Watson EB and Harrison TM.Zircon saturation revisited:Temperature and xomposition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,1983,64:295-304.
    [47] Webb LE,Graham SA,Johnson CL,et al.Occurrence,age,and implications of the Yagan-Onch Hayrhan metamorphic core complex,southern Mongolia[J].Geology,1999,27(2):143-146.
    [48] Whalen JB,Currie KL and ChappellB W.A-type granites:Geochemical characteristics,dirimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
    [49] Wilson M.Igneous petrogenesis[M].London:Unwin Hyman Press,1989,295-323.
    [50] Xu WL,Janet MH,Gao Shan,et al.Interaction of adakitic melt-peridotite:Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton[J].Earth and Planetary Science Letters,2008,265:123-137.
    [51] Zhang JH,Ge WC,Wu FY,et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range,Northeastern China[J].Lithos,2008,102:138-157.
    [52] Zhang LC,Zhou XH,Ying JF,et al.Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range,NE China:Implications for their origin and mantle source characteristics[J].Chemical Geology,2008,256:12-23.
    [53] Zheng YD,Wang SZ and Wang YF.An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area[J].Science in China(Series D),1991,34(9):1146-1152.
    [54] Zheng YD,Davis GA,Wang C,et al.Major thrust sheet in the Daqingshan Mountains,Inner Mongolia,China[J].Science in China(Series D),1998,41:553-560.
    [55] Zindler A and Hart SR.Chemical geodynamics[J].Annu Rev Earth Planet Sci Lett,1986,14:493-571.
    [56] Zorin YA,Belichenko VG,Turutanov EK,et al.The South Siberia-Central Mongolian transect[J].Tectonophysics,1993,225:361-378.
    [57] Zorin YA.Geodynamics of the western part of the Mongolia-Okhotsk collisional belt,Trans-Baikal region(Russia)and Mongolia[J].Tectonophysics,1999,306:33-56.
    [58]陈炳蔚,陈廷愚.横贯亚洲巨型构造带的基本特征和成矿作用[J].岩石学报,2007,23(5):865-876.
    [59]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年.岩石学报,2001,17(1):129-138.
    [60]陈义贤,陈文寄,周新华,等.辽西及邻区中生代火山岩--年代学、地球化学和构造背景[M].北京:地震出版社,1997.
    [61]陈志广,张连昌,周新华,等.满洲里新右旗火山岩剖面年代学和地球化学特征.岩石学报,22(12):2971-2986.
    [62]陈志广,张连昌,万博,等.内蒙古乌奴格吐山斑岩铜钥矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J].岩石学报,2008,24(1):115-128.
    [63]程三友.中国东北地区区域构造特征与中、新生代盆地演化[D].北京:中国地质大学,2006.
    [64]邓晋福,赵海玲,莫宣学.中国大陆根-柱构造-大陆动力学的钥匙[M].北京:地质出版社,1996.
    [65]邓晋福,罗照华,苏尚国.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004.
    [66]高晓峰,郭锋,范蔚茗,等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报,2005,21(3):737-748.
    [67]葛文春.大兴安岭中生代火山岩的地球化学特征及其大地构造背景[D].长春:吉林大学地球科学学院,1997.
    [68]葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):396-406
    [69]葛文春,林强,孙德有,等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学—中国地质大学学报,2000,25(2):172-178.
    [70]葛文春,李献华,林强,等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    [71]葛小月,李献华,陈志刚,等.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因对中国东部地壳厚度的制约[J].科学通报,2002,47:474-480.
    [72]郭锋,范蔚茗,王岳军,等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报,2001,17(1):161-168.
    [73]蒋国源,权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所所刊,1988,17:23-100.
    [74]李锦轶,莫申国,和政军,等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘,2004,11(3):157-167.
    [75]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩及其对西伯利亚与中朝古板块碰撞时限的约束的确定[J].岩石学报,2007,23(3):565-582.
    [76]李培忠,于津生.黑龙江碾子山晶洞碱性花岗岩岩体年龄及其意义[J].地球化学,1993,4:389-398.
    [77]李朋武,高锐,管烨,等.华北与西伯利亚地块碰撞时代的古地磁分析—兼论苏鲁-大别超高压变质作用的构造起因[J].地球学报,2007,28(3):234-252.
    [78]李文国等主编.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    [79]李益龙,周汉文,钟增球,等.华北与西伯利亚板块的对接过程:来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据[J].地球科学—中国地质大学学报,2009,34(6):931-938.
    [80]李注苍.新源阔尔库-拉斯台一带石炭纪大哈拉军山组火山岩及其含矿性研究[D].西安:长安大学,2005.
    [81]林强,葛文春,孙德有,等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报,2000,30(4):322-328.
    [82]林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-222.
    [83]刘俊杰,鞠文信,赵九峰,等.大兴安岭根河岩区晚侏罗世火山岩特征及构造环境探讨[J].华南地质与矿产,2006,1:38-46.
    [84]吕志成,段国正,郝立波,等.大兴安岭中南段中生代中基性火山岩岩石学地球化学研究[J].高校地质学报,2004,10(2):186-198.
    [85]孟恩.佳木斯地块东缘及东南缘晚古生代火山岩的年代学和岩石地球化学[D].长春:吉林大学地球科学学院,2008.
    [86]孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报待刊,2010.
    [87]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    [88]裴先治,丁仨平,胡波,等.2004.西秦岭天水地区新生代酸性火山岩地球化学特征及其构造意义.岩石矿物学杂志,23(3):227-235.
    [89]彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质,1999,18(3):24-28.
    [90]秦克章,田中亮吏,李伟实,等.满洲里地区印支期花岗岩Rb-Sr等时线年代学证据[J].岩石矿物学杂志,1998,17(3):235-240.
    [91]秦克章,李惠民,李伟实,等.内蒙古乌奴格吐山斑岩铜铝矿床的成岩、成矿时代[J].地质评论,1999,5(2):180-185.
    [92]邵济安,藏绍先,牟保磊.造山带的伸展构造与软流圈隆起-以兴蒙造山带为例[J].科学通报,1994,39(6):533-537.
    [93]邵济安,张履桥.华北北部中生代岩墙群[J].岩石学报,2002,18(3):312-318.
    [94]邵济安,张履桥,储著银.冀北早白垩世的火山-沉积作用及其构造背景讨论[J].地质通报,2003,22(6):384-390.
    [95]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):6-30.
    [96]苏玉平,唐红峰,丛峰.新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因[J].矿物学报,2008,28(2):117-126.
    [97]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学地球科学学院,2007.
    [98]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004,34 (2):174-181.
    [99]孙德有.吉中-辽北地区显生宙花岗岩的形成时代、地球化学特征与构造背景[D].西安:西北大学,2005.
    [100]孙德有,刘永江,任云生,等.额尔古纳-满洲里地区中生代内生铀及多金属区域成矿地质环境研究项目报告[R].长春:吉林大学地球科学学院,2010.
    [101]孙立新,赵凤清,王惠初,等.燕山地区土城子组划分、时代与盆地性质探讨[J].地质学报,2007,81(4):445-454.
    [102]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    [103]王泉.内蒙古满洲里-新巴尔虎右旗铜银多金属成矿带地质特征-成矿模式及预测[D].长春:吉林大学地球科学学院,2006.
    [104]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    [105]王忠,朱洪森.大兴安岭中南段中生代火山岩特征及演化[J].中国区域地质,1999,18(4):351-372.
    [106]卫三元,李子颖,李晓光.满洲里地区热液型铀矿化的新发现及其矿化特征初步研究[J].矿物学报,2009,1(增刊):638-640.
    [107]吴福元,葛文春,孙德有.埃达克岩的概念、识别标志及其地质意义.见肖庆辉,邓晋福,马大铃等.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    [108]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [109]吴华英,张连昌,周新华,等.大兴安岭中段晚中生代安山岩年代学和地球化学特征及成因分析[J].岩石学报,2008,24(6):1339-1352.
    [110]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,16:1589-1604.
    [111]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [112]武广.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[M].长春:吉林大学地球科学学院,2005.
    [113]肖娥,邱检生,徐夕生,等.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义[J].岩石学报,2007,23(6):1431-1440.
    [114]谢桂青,胡瑞忠,蒋国豪,赵军红.2001.锆石的成因和U-Pb同位素定年的某些进展[J].地质地球化学,29(4):64-70
    [115]谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000.
    [116]宿晓虹.北秦岭西段尹道寺中生代火山岩及兴隆山新元古代火山岩岩石地球化学研究与区域构造演化[D].西安:长安大学,2008.
    [117]许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的PTtC模型与岩石圈演化[J].长春科技大学学报,2000,30(4):329-335.
    [118]许文良,王清海,王冬艳,等.华北地块东部中生代岩石圈减薄过程与机制:中生代火成岩和深源包体证据[J].地学前缘,2004,11(3):309-317.
    [119]许文良,葛文春,裴福萍,等.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报,2008,27(增刊):286-287.
    [120]尹志刚,赵海滨,赵寒冬,等.大兴安岭北端塔木兰沟组玄武质岩石的地球化学特征及构造背景[J].地质通报,2005,24(9):848-853.
    [121]尹志刚,张跃龙,杨晓平,等.大兴安岭北部中生代火山岩特征及岩浆演化[J].世界地质,2006,25(2):120-128.
    [122]英基丰,周新华,张连昌,等.北大兴安岭晚中生代火山岩的年代学和地球化学研究及其构造意义[J].矿物岩石地球化学通报,27(增刊),66-67.
    [123]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [124]张宏,马俊孝,权恒,等.大兴安岭北段中生代火山岩形成的动力学环境[J].贵金属地质,1999,8(1):56-64.
    [125]张吉衡.大兴安岭中生代火山岩的年代学格架[D].长春:吉林大学地球科学学院,2006.
    [126]张吉衡.大兴安岭中生代火山岩火山岩年代学及地球化学研究[D].长春:吉林大学地球科学学院,2009.
    [127]张炯飞,权恒,武广,等.东北地区中生代火山岩形成的构造环境[J].贵金属地质,2000,9(1):33-38.
    [128]张连昌,陈志广,周新华,等.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约.岩石学报,2007,23(11):2823-2835.
    [129]张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].中国大地出版社,2008.
    [130]张玉涛,张连昌,英基丰,等.大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J].岩石学报,2007,23(11):2811-2822.
    [131]张玉涛,张连昌,周新华,等.大兴安岭北段牙克石地区玄武质火山岩的元素、同位素地球化学特征及其地质意义[J].地质通报,2008,27(1):112-120.
    [132]张长厚,王根厚,王果胜,等.辽西地区燕山板内造山带东段中生代逆冲推覆构造[J].地质学报,2002,76 (1):64-76.
    [133]赵国龙,杨桂林,王忠.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989.
    [134]赵书跃,韩彦东,朱春燕,等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报,2004,10(3):276-287.
    [135]周新华,陈义贤.中生代火山岩源区特征的多元同位素制约——以华北北缘为例.科学通报,1998,43(23):2483-2488.
    [136]周新华,英基丰,张连昌,等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学——中国地质大学学报,2009,34(1):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700