高Q声子晶体声波传感机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合新型人工声学材料声子晶体对声波传播独特的调制作用以及声子晶体的点缺陷态特性,对声子晶体用于声波传感来实现高品质因数(Q值)进行了理论和实验研究。其中利用平面波展开法研究了平板声子晶体的复能带结构和声子晶体对材料各向异性的调节作用;用有限元方法对平板声子晶体禁带和点缺陷模式、Lamb波A0模式的慢声效应进行了分析;同时利用激光测振技术对点缺陷模式的振型进行了验证以及对点缺陷模式的用于声波传感的性能进行了研究。主要研究内容包括:
     1.利用平面波展开法计算了平板声子晶体的复能带结构,理论上给出了平板声子晶体不同点缺陷模式的消逝场深度不同的原因,是由于各个缺陷模式对应的波数的虚数部分是不同造成的,该计算结果为进一步研究点缺陷模式的支撑损失对点缺陷Q值的影响提供了理论依据;
     2.制作出了含有点缺陷的硅基平板声子晶体样品,分析了单晶硅的各向异性对声子禁带的影响;对点缺陷模式进行了验证;获得了点缺陷模式Q值在空气中高于16000,而在低压下(o500Pa)可以达到49800;对点缺陷的Q的影响因素进行了理论和实验分析,结果表明:对该样品,在常压下,空气粘性损耗占主导作用,在低压(o500Pa)下,模式有效表面积与体积比对Q值的影响起主导作用;初步对硅基平板声子晶体点缺陷模式的质量灵敏度进行了测试,质量灵敏度约为9.1Hz/ng,质量分辨率约为0.71ng;结果为点缺陷模式应用于声波传感来提高Q值的进一步设计和研究提供了理论和实验上指导;
     3.利用平面波展开法研究了声子晶体结构对声波在单晶硅等各向异性材料中传播的调节作用,结果表明:将声子晶体引入到各向异性材料中,可以有效的将该复合材料调节为各向同性或者是更强的各向异性。将材料调节为各向同性,理论上对声波传感器的阵列化设计,避免单元间的耦合,减小材料晶向位置对声子晶体禁带的影响,避免在器件制作过程中过多考虑材料晶向问题提供了一种手段;另外,通过增强材料的各向异性,可以明显提高声波定向发射的效率,这在声波定向发射技术的应用上具有重要意义。
     4.研究了一维平板声子晶体中Lamb波A0模式的慢声效应,结果表明,通过引入声子晶体结构,可以实现(a)降低Lamb波A0模式的群速度,(b)A0模式群速度为0,(c) A0模式群速度方向与相速度方向相反;(d)理论上证明了0群速度可以获得窄带响应特性,理论上为提高Lamb器件Q值提供了一种方法。
     本论文的研究结果对声子晶体这种新型人工声学材料用于声波传感具有重要的理论意义和工程价值。
In this thesis,due to the low resolution of the acoustic wave sensors, the phononiccrystals have been investigated theoretically and experimentally to improve thequality factor of acoustic wave sensors based on the unique modification of the elasticwaves and the properties of the point defect states. The plane wave expansion methodand the finite element method were used to calculate the complex band structures ofthe phononic crystal plates, the band gaps and the point defect modes of the siliconphononic crystal plates and the slow wave mode of the Lamb wave in the phononiccrystal plates. Then the vibration pattern, the Q factor and the mass sensitivity of thepoint defect modes were investigated by using the heterodyne laser interferometer.
     1. The complex band structures of the perfect phononic crystal plates wereobtained by applying supercell plane wave expansion method. The calculationresults can provide decay factors of the elastic waves with frequencies in theband gap as propagating in the phononic crystal plates.
     2. The characters of the point defect modes in silicon PC plate were investigated.Firstly, the micro fabrication processes of the point defect PC plate wereproposed. Secondly, the vibration patterns of point defect modes weretheoretically and experimentally identified. Finally, the Q factor and the masssensitivity of the point defect modes were investigated.
     3. The anisotropy of mixed modes in phononic crystals with square lattice epoxycylinders embedded in single crystalline silicon were theoretically investigatedby using the PWE method in the long wavelength limit. It is found that: by changing the filling fraction and the crystalline orientation of the material, a) theanisotropy of effective velocities can be tuned in a large range; it can evenapproach to isotropy for the given filling fraction and the crystalline orientation;b) the polarization vector and the energy flow vector (or the deviation angle andthe power flow angle) can be changed; c) the pure vibration mode direction andthe pure propagation mode direction can be tuned to deviate simultaneouslyfrom the symmetric direction of the PC lattice and the material.
     4. The group velocity of the zero order Lamb modes (A0) of the phononic crystalplate with single layer cylindrical holes parallel to the surface of the plate wereinvestigated theoretically. It is shown that, by increasing the radius or the fillingfractions,(a) the A0mode can be efficiently slowed,(b) the group velocity ofthe A0mode can be changed from the positive to the negative and (c) the zerogroup velocity of the A0mode can be obtained. This zero group velocity of theA0mode can benefit to obtain the high Q factor frequency response.The results can provide valuable methods for the phononic crystals applied in theacoustic sensing for improving the performance of the acoustic wave sensing.
引文
[1] Turner A. P. F, Karube I, Wilson G. S., Biosensors: Fundamentals andApplications[M], Oxford: Oxford University Press,1987
    [2] Evan R,etc. Bronlund., Bond-rupture Immunosensors-A Review[J],Biosensors and Bioelectronics,2008,23:1759-1768
    [3] Francesco Baldini, Optical, chemical, and biochemical sensors in medicine[J],SPIE Newsroom, DOI:10.1117/2.1200602.0061
    [4] J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages ofmechanical biosensors[J], DOI:10.1038/NNANO.2011.44,2011
    [5] Huifeng Han,Yan Fang, Tunable surface plasma resonance frequency in Agcore/Au shell nanoparticles system prepared by laser ablation[J], AppliedPhysics Letters,2008,92:023116
    [6] Guilherme N.M. Ferreira, Ana-Carina da-Silva, Brigitte Tome, Acousticwave biosensors: physical models and biological applications of quartz crystalmicrobalance[J], Trends in Biotechnology,2009,27:689-697
    [7] Moussa Hoummady, Andrew Campitelli, Wojtek Wlodarski, Acoustic wavesensors: design, sensing mechanisms and applications[J], Smart Mater. Struct.,1997,6:647-657
    [8] G. Sauerbrey, Use of vibrating quartz for thin film weighing andmicroweighing[J], Zeitschrift fur Physik,1959,155:260
    [9] M.V. Voinova, M. Jonson, B. Kasemo,'Missing mass' effect in biosensor'sQCM applications[J], Biosensors and Bioelectronics,2002,17:835-841
    [10] F. Pascal-Delannoy, B. Sorli, A. Boyer, Quartz Crystal Microbalance(QCM)used as humidity sensor[J], Sensors and Actuators,2000,84:285-291
    [11] R. M. White,F. W. Voltmer, Direct Piezoelectric Coupling to Surface ElasticWaves[J], Applied Physics Letters,1965,7:314-316
    [12] Wies aw P. Jakubik, Surface acoustic wave-based gas sensors[J], Thin SolidFilms,2011,520:986-993
    [13] R.M.White,S.W. Wemzel, Fluid loading of a Lamb-wave sensor[J], AppliedPhysics Letters,1988,52:1653-1655
    [14] Ciaran McMullan, Hiren Mehta, Electra Gizeli, Christopher R Lowe,Modelling of the mass sensitivity of the Love wave device in the presence of aviscous liquid[J], Journal Of Physics D: Applied Physics,2000,33:3053-3059
    [15] Bernhard Jakoby,Michael J Vellekoop, Properties of Love waves: applicationsin sensors[J], Smart Mater. Struct.,1997,6:668-679
    [16] D. McNamara, FBAR technology shrinks CDMA handset duplexers[J],Microwaves& RF,2000,39:71-79
    [17] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J. D. Larson Iii, Thin filmbulk wave acoustic resonators (FBAR) for wireless applications[J], IEEEUltrasonics Symposium Proceedings,,2001,1:813-821
    [18] Michael J. Vellekoop., Acoustic wave sensors and their technology[J],Ultrasonics,1998,36:7-14
    [19] Jan Weber, Willem M. Albers, Jussipekka Tuppurainen, Mathias Link,Reinhard Gabl, Wolfram Wersing, Matthias Schreiter, Shear mode FBARs ashighly sensitive liquid biosensors[J], Sensors and Actuators A,2006,128:84-88
    [20] Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders,Fundamentals of acoustics[M], New York: John Wiley&Sons, Inc.,2000
    [21] K. L. Ekinci, Y. T. Yang, M. L. Roukes, Ultimate limits to inertial masssensing based upon nanoelectromechanical systems[J], J. Appl. Phys,2004,95:2682-2689
    [22] Ron Lifshitz, M. L. Roukes, Thermoelastic damping in micro-andnanomechanical systems[J], Phys. Rev. B,2000,61:5600-5609
    [23] B. H. Houston, D. M. Photiadis, M. H. Marcus, J. A. Bucaro, Xiao Liu, J. F.Vignola, Thermoelastic loss in microscale oscillators[J], Appl. Phys. Lett.,2002,80:1300-1302
    [24] S. Evoy, A. Olkhovets, L. Sekaric, J. M. Parpia, H. G. Craighead, D. W. Carr,Temperature-dependent internal friction in silicon nanoelectromechanicalsystems[J], Appl. Phys. Lett.,2000,77:2397-2399
    [25] Xiao Liu, J. F. Vignola, H. J. Simpson, B. R. Lemon, B. H. Houston, D. M.Photiadis, A loss mechanism study of a very high Q silicon micromechanicaloscillator[J], Journal Of Applied Physics,2005,97:023524
    [26] K. Jensen, H.B. Peng, A. Zettl, Limits of Nanomechanical Resonators[C],presented at the ICONN2006,2006
    [27] R. Tabrizian, M. Rais-Zadeh, F. Ayazi1, Effect of phonon interactions onlimiting the f.Q product of micromechanical resonators[C], presented at theTransducers2009, Denver, CO, USA,2009
    [28] S. A. Chandorkar, M. Agarwal, R. Melamud, R. N. Candler, K. E. Goodson, T.W. Kenny, Limits of quality factor in bulk-mode micromechanicalresonators[C], presented at the MEMS2008, Tucson, AZ, USA,2008
    [29] I. Wilson-Rae, Intrinsic dissipation in nanomechanical resonators due tophonon tunneling[J], Phys. Rev. B,2008,77:245418
    [30] P. Mohanty, D. A. Harrington, K. L. Ekinci, Y. T. Yang, M. J. Murphy, M. L.Roukes, Intrinsic dissipation in high-frequency micromechanical resonators[J],Physical Review B,2002,66:085416
    [31] Minhang Bao,Heng Yang, Squeeze film air damping in MEMS[J], Sensors andActuators A,2007,136:3-27
    [32] Xiaoyuan Xia,Xinxin Li, Resonance-mode effect on microcantilevermass-sensing performance in air[J], Rev.Sci. Instruments,2008,79
    [33] Zhili Hao,Farrokh Ayazi, Support loss in the radial bulk-mode vibrations ofcenter-supported micromechanical disk resonators[J], Sensors and Actuators A,2007,134:582-593
    [34] G. ANETSBERGER, R. RIVIERE, A. SCHLIESSER, O. ARCIZET, T.J.KIPPENBERG, Ultralow-dissipation optomechanical resonators on a chip[J],Nature photonics, OCTOBER2008,2:627-633
    [35] S P Beeby,M J Tudor, Modelling and optimization of micromachined siliconresonators[J], J.Micromech.Microeng,1995,5:103-105
    [36] Goran Stemme, Resonat silicon sensors[J], J.Micromech.Microeng,1991,1:113-125
    [37] R.E. Mihailovich,N.C. MacDonald, Dissipation measurements ofvacuum-operated single-crystal silicon microresonators[J], Sensors andActuators A,1995,50:199-207
    [38] Mustafa U. Demirci,Clark T.-C. Nguyen, Higher-Mode Free-Free BeamMicromechanical Resonators, in2003IEEE International Frequency ControlSymposium and PDA Exhibition Jointly with the17th European Frequencyand Time Forum,2003
    [39] Kun Wang, Ark-Chew Wong, Clark T.-C. Nguyen, VHF Free-Free BeamHigh-Q Micromechanical Resonators[J], JOURNAL OFMICROELECTROMECHANICAL SYSTEMS,2000,9:347-360
    [40] M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic BandStructure of Periodic Elastic Composites[J], Phys. Rev. Lett,1993,71:2022
    [41] M. Sigalas, Elastic wave band gaps and defect states in two-dimensionalcomposites[J], J. Acoust. Soc. Am.,1997,101:1256
    [42] VincentLaude, YounesAchaoui, SarahBenchabane, AbdelkrimKhelif,Evanescent Bloch waves and the complex band structure of phononiccrystals[J], Physical Review B,2009,80:092301
    [43] V.Romero-García, J.V.Sánchez-Pérez, S.Casti eira-Ibá ez, L.M.Garcia-Raffi,Evidences of evanescent Bloch waves in phononic crystals[J], Applied PhysicsLetters,2010,96,:124102
    [44] Feng-Chia Hsu, Jin-Chen Hsu, Tsun-Che Huang, Chin-Hung Wang, PinChang, Design of lossless anchors for microacoustic-wave resonators utilizingphononic crystal strips[J], Applied Physics Letters,2011,98:143505-3
    [45] Saeed Mohammadi, Ali Asghar Eftekhar, William D. Hunt, Ali Adibia,High-Q micromechanical resonators in a two-dimensional phononic crystalslab[J], Applied Physics Letters,2009,94:051906
    [46] A. Lakhtakia, V.V. Varadan, V.K. Varadan, Reflection characteristics of anelastic slab containing a periodic array of circular elastic cylinders: P and SVwave analysis[J], J. Acoust. Soc. Am.,1988,83:1267
    [47] J.P. Dowling, Sonic band structure in fluids with periodic density variations[J],J. Acoust. Soc. Am.,1992,91:2539
    [48] Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y.Y. Zhu, Z.Y. Yang, C.T. Chan, P. Sheng,Locally Resonant Sonic Materials[J], Science,2000,289:1735
    [49]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云,声子晶体[M],北京:国防工业出版社,2009
    [50] M.H. Lu, C. Zhang, L. Feng, J. Zhao, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu,S.N. Zhu, N.B. Ming, Negative birefraction of acoustic waves in a soniccrystal[J], Nature Mater.,2007,6:744
    [51] Xiangdong Zhang, Universal non-near-field focus of acoustic waves throughhigh-symmetry quasicrystals[J], Phys. Rev. B,2007,75:024209
    [52] Suxia Yang, J. H. Page, Zhengyou Liu, M. L. Cowan, C.T. Chan, Ping Sheng,Focusing of Sound in a3D Phononic Crystal[J], Phys Rev. Lett.,2004,93:024301
    [53] Liang-Shan Chen, Chao-Hsien Kuo, Zhen Ye, Acoustic imaging andcollimating by slabs of sonic crystals made from arrays of rigid cylinders inair[J], Appl. Phys. Lett.,2004,85:1072-1074
    [54] Chunyin Qiu, Xiangdong Zhang, Zhengyou Liu, Far-field imaging ofacoustic waves by a two-dimensional sonic crystal[J], Phys. Rev. B,2005,71:054302
    [55] Chunyin Qiu,Zhengyou Liua, Acoustic directional radiation and enhancementcaused by band-edge states of two-dimensional phononic crystals[J], Appl.Phys. Lett.,2006,89:063106
    [56] Jihong Wen, Dianlong Yu, Gang Wang, Honggang Zhao, Yaozong Liu, XisenWen, The directional propagation characteristics of elastic wave intwo-dimensional thin plate phononic crystals[J], Phys. Lett. A,2007,364:323-328
    [57] Shasha Peng, Zhaojian He, Han Jia, Anqi Zhang, Chunyin Qiu, Manzhu Ke,Zhengyou Liu, Acoustic far-field focusing effect for two-dimensional gradednegative refractive-index sonic crystals[J], App. Phys. Lett.,2010,96:263502
    [58] Sz-Chin Steven Lin,Tony Jun Huang, Gradient-index phononic crystals[J],Phys. Rev. B,2009,79:094302
    [59] Sz-Chin Steven Lin, Bernhard R. Tittmann, Tony Jun Huang, Design ofacoustic beam aperture modifier using gradient-index phononic crystals[J], J.Appl. Phys.,2012,111:123510
    [60] Hong-xiang Sun, Shu-yi Zhang, Xiu-ji Shui, A tunable acoustic diode madeby a metal plate with periodical structure[J], App. Phys. Lett.,2012,100:103507
    [61] Ahmet Cicek, Olgun Adem Kaya, Bulent Ulug, Refraction-type sonic crystaljunction diode[J], App. Phys. Lett.,2012,100:111905
    [62] Bin Liang, Bo Yuan, Jian-chun Cheng, Acoustic Diode: Rectification ofAcoustic Energy Flux in One-Dimensional Systems[J], Phys Rev. Lett.,2009,103:104301
    [63] M. Sigalas,E.N. Economou, ELASTIC AND ACOUSTIC WAVE BANDSTRUCTURE[J], J. Sound Vib.,1992,158:377
    [64] Abdelkrim Khelif, Younes Achaoui, Boujemaa Aoubiza, Surface acousticwaves in pillars-based two-dimensional phononic structures with differentlattice symmetries[J], J. Appl. Phys,2012,112:033511
    [65] Didit Yudistira, Yan Pennec, Bahram Djafari Rouhani, Samuel Dupont,Vincent Laude, Non-radiative complete surface acoustic wave bandgap forfinite-depth holey phononic crystal in lithium niobate[J], Applied PhysicsLetters,2012,100:061912
    [66] Mourad Oudich,M. Badreddine Assouar, Surface acoustic wave band gaps in adiamond-based two-dimensional locally resonant phononic crystal for highfrequency applications[J], J. Appl. Phys,2012,111:014504
    [67] J.J. Chen, H.L.W. Chan, J.C. Cheng, Large one-dimensional band gaps inthree-component phononic crystals plates[J], Phys. Lett. A,2007,366:493
    [68] Z. Zhan,P. Wei, Influences of anisotropy on band gaps of2D phononiccrystal[J], Acta Mechanica Solida Sinica,2010,23:181-188
    [69] S.C.S. Lin,T.J. Huang, Tunable phononic crystals with anisotropicinclusions[J], Physical Review B,2011,83:174303
    [70] Yuanwei Yao, Fugen Wu, Zhilin Hou, Zhang Xin, Lamb waves intwo-dimensional phononic crystal plate with anisotropic inclusions[J],Ultrasonics,2011,51:602-605
    [71] Z.G. Huang,T.T. Wu, Temperature effect on the bandgaps of surface and bulkacoustic waves in two-dimensional phononic crystals[J], IEEE T. Ultrasonic.Ferr.,2005,52:365
    [72] Y. Cheng, X. J. Liu, D. J. Wu, Temperature effects on the band gaps of Lambwaves in a one-dimensional phononic-crystal plate (L)[J], J. Acoust. Soc. Am.,2011,129:1157-1160
    [73] O. Bou Matar, J. F. Robillard, J. O. Vasseur, A.-C. Hladky-Hennion, P. A.Deymier, P. Pernod, V. Preobrazhensky, Band gap tunability ofmagneto-elastic phononic crystal[J], J. Appl. Phys.,2012,111:054901
    [74] N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello,V. Laude, Light modulation in phoxonic nanocavities[J], MicroelectronicEngineering,2012,90:155-158
    [75] Richard James, Scott M. Woodley, Catherine M. Dyer, Victor F. Humphrey,Sonic bands, bandgaps, and defect states in layered structures-Theory andexperiment[J], J. Acoust. Soc. Am.,1995,97:2041
    [76] M. Torres, F.R. Montero de Espinoza, D. Garcia-Pablos, N. Garcia, SonicBand Gaps in Finite Elastic Media: Surface States and LocalizationPhenomena in Linear and Point Defects[J], Phys. Rev. Lett.,1999,82:3054
    [77] I.E. Psarobas, N. Stefanou, A. Modinos, Phononic crystals with planardefects[J], Phys. Rev. B,2000,62:5536
    [78] J.N. Munday, C. Brad Bennett, W.M. Robertson, Band gaps and defectmodes in periodically structured waveguides[J], J. Acoust. Soc. Am.,2002,112:1353
    [79] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, V.Laude, Trapping and guiding of acoustic waves by defect modes in afull-band-gap ultrasonic crystal[J], Physical Review B,2003,68:214301
    [80] X. Li,Z.Y. Liu, Coupling of cavity modes and guiding modes intwo-dimensional phononic crystals[J], Solid State Commun,2005,133:397
    [81] J.H. Sun,T.T. Wu, Analyses of mode coupling in joined parallel phononiccrystal waveguides[J], Phys. Rev. B,2005,71:174303
    [82] Zong-Jian Yao, Gui-Lan Yu, Yue-Sheng Wang, Zhi-Fei Shi, Propagation ofbending waves in phononic crystal thin plates with a point defect[J],International Journal of Solids and Structures,2009,46:2571-2576
    [83] Saeed Mohammadi, Ali Asghar Eftekhar, William D. Hunt, Ali Adibia.,High-Q micromechanical resonators in a two-dimensional phononic crystalslab[J], Appl. Phys. Lett.,2009,94:051906
    [84] M. Sigalas,E.N. Economou, Elastic waves in plates with periodically placedinclusions[J], J. Appl. Phys.,1994,75:2845
    [85] Min Kyung Lee, Pyung Sik Ma, Il Kyu Lee, Hoe Woong Kim, Yoon YoungKima, Negative refraction experiments with guided shear-horizontal waves inthin phononic crystal plates[J], App. Phys. Lett.,2011,98:011909
    [86] J. Pierre, O. Boyko, L. Belliard, J. O. Vasseur, B. Bonello, Negativerefraction of zero order flexural Lamb waves through a two-dimensionalphononic crystal[J], App. Phys. Lett.,2010,97:121919
    [87] Tzung-Chen Wu, Tsung-Tsong Wu, Jin-Chen Hsu, Waveguiding andfrequency selection of Lamb waves in a plate with a periodic stubbedsurface[J], Phys. Rev. B,2009,79:104306
    [88] Jiu-Jiu Chen, Kai-Wen Zhang, Jian Gao, Jian-Chun Cheng, Stopbands forlower-order Lamb waves in one-dimensional composite thin plates[J], Phys.Rev. B,2006,73:094307
    [89] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Complete bandgaps in two-dimensional phononic crystal slabs[J], Phys. Rev. E,2006,74:046610
    [90] N. Kuo, C. Zuo, G. Piazza, DEMONSTRATION OF INVERSE ACOUSTICBAND GAP STRUCTURES IN AlN AND INTEGRATION WITHPIEZOELECTRIC CONTOUR MODE TRANSDUCERS[C], presented at theTransducers, Denver,2009
    [91] R H Olsson III,I El-Kady, Microfabricated phononic crystal devices andapplications[J], Meas. Sci. Technol.,2009,20:012002
    [92] M. Gorisse, S. Benchabane, G. Teissier, C. Billard, A. Reinhardt, V. Laude, E.Defa, M. A d, Observation of band gaps in the gigahertz range and deafbands in a hypersonic aluminum nitride phononic crystal slab[J], App. Phys.Lett.,2011,98:234103
    [93] L. Dhar,J.A. Rogers, High frequency one-dimensional phononic crystalcharacterized with a picosecond transient grating photoacoustic technique[J],Appl. Phys. Lett.,2000,77:1402
    [94] T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, E. L. Thomas, HypersonicPhononic Crystals[J], Phys. Rev. Lett.,2005,94:115501
    [95] Tsung-Tsong Wu, Liang-Chen Wu, Zi-Gui Huang, Frequency band-gapmeasurement of two-dimensional air/silicon phononic crystals using layeredslanted finger interdigital Transducers[J], J. Appl. Phys.,2005,97:094916
    [96] Roy H. Olsson, Ihab F. El-Kady, Mehmet F. Sub, Melanie R. Tuck, James G.Fleming, Microfabricated VHF acoustic crystals and waveguides[J], Sensorsand Actuators A,2008,145-146
    [97] El-Kady, R. H. Olsson III, J. G. Fleming, Phononic band-gap crystals forradio frequency communications[J], Appl. Phys. Lett.,2008,92:233504
    [98] S Mohammadi, A.A Eftekhar, A Khelif, W.D. Hunt, A. Adibi, Evidence oflarge high frequency complete phononic band gaps in silicon phononic crystalplates[J], Appl. Phys. Lett.,2008,92:221905
    [99] Saeed Mohammadi, Ali A. Eftekhar, Abdelkrim Khelif, Ali Adibi, AHigh-Quality Factor Piezoelectric-on-Substrate Phononic CrystalMicromechanical Resonator, in IEEE International Ultrasonics SymposiumProceedings,2009.
    [100] Tsung-Tsong Wu, Wei-Shan Wang, Jia-Hong Sun, Jin-Chen Hsu, Yung-YuChen, Utilization of phononic-crystal reflective gratings in a layered surfaceacoustic wave device[J], Appl. Phys. Lett.,2009,94:101913
    [101] Chao-Yi Huang, Jia-Hong Sun, Tsung-Tsong Wu, A two-port ZnO/siliconLamb wave resonator using phononic crystals[J], Appl. Phys. Lett.,2010,97:031913
    [102] Nan Wang, Fu-Li Hsiao, Moorthi Palaniapan, Chengkuo Lee, Silicontwo-dimensional phononic crystal resonators using alternate defects[J], Appl.Phys. Lett.,2011,99:234102
    [103] Nan Wang, Fu-Li Hsiao, J. M. Tsai, Moorthi Palaniapan, Dim-Lee Kwong,Chengkuo Lee, Investigation on the optimized design of alternate-hole-defectfor2D phononic crystal based silicon microresonators[J], J. Appl. Phys.,2012,112:024910
    [104]吴代鸣,固体物理基础[M],北京:高等教育出版社,2007
    [105]陆栋,蒋平,徐至中,固体物理学[M],上海:上海科学技术出版社,2003
    [106] M. Wilm, S. Ballandras, V. Laude, T. Postureaud, A full3Dplane-wave-expansion model for1-3piezoelectric composite structures[J], J.Acoust. Soc. Am.,2002,112:943
    [107] M.Wilm, S.Ballandras, V.Laude, T.Pastureaud, A full3Dplane-wave-expansion model for1-3piezoelectric composite structures[J],J.Acoust.Soc.Am,2002,112:3
    [108] M.Wilm, A.Khelif, S.Ballandras, V.Laude, Out-of-plane propagation ofelastic waves in two-dimensional phononic band-gap materials[J], PhysicalReview E,2003,67:065602
    [109] Tsung-Tsong Wu, Zi-Gui Huang, S. Lin, Surface and bulk acoustic waves intwo-dimensional phononic crystal consisting of materials with generalanisotropy[J], Physical Review B,2004,69:094301
    [110] Vincent Laude, Mika l Wilm, Sarah Benchabane, Abdelkrim Khelif, Fullband gap for surface acoustic waves in a piezoelectric phononic crystal[J],Physical Review E,2005,71:036607
    [111] Zhilin Hou,Badreddine M. Assouar, Modeling of Lamb wave propagation inplate with two-dimensional phononic crystal layer coated on uniform substrateusing plane-wave-expansion method[J], Physics Letters A,2008,372:2091-2097
    [112] J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, A-C.Hladky-Hennion, Absolute forbidden bands and waveguiding intwo-dimensional phononic crystal plates[J], Physical Review B,2008,77:085415
    [113] Olli Holmgren, Kimmo Kokkonen, Timo Veijola, Tomi Mattila, VilleKaajakari, Aarne Oja, Jouni V Knuuttila, Matti Kaivola, Analysis ofvibration modes in a micromechanical square-plate resonator [J], J.Micromech. Microeng.,2009,19:015028
    [114] V. Laude, B. Aoubiza, Y. Achaoui, S. Benchabane, A. Khelif, EvanescentBloch waves in phononic crystals[C], presented at the SPIE,2009
    [115] V.Romero-García, J.V.Sánchez-Pérez, L.M.Garcia-Raffi, Evanescent modes insonic crystals:Complex dispersion relation and supercell approximation[J],Journal Of Applied Physics,2010,108:044907
    [116] VRomero-García, JVSánchez-Pérez, LMGarcia-Raffi, Propagating andevanescent properties of double-point defects in sonic crystals[J], New Journalof Physics,2010,12:083024
    [117] Y. Tanaka, Y. Tomoyasu, S. Tamura, Band structure of acoustic waves inphononic lattices: Two-dimensional composites with large acousticmismatch[J], Phys. Rev. B,2000,62:7387
    [118] J.H. Sun, T.T. Wu, Propagation of acoustic waves in phononic-crystal platesand waveguides using a finite-difference time-domain method[J], Phys. Rev. B,2007,76:104304
    [119] Xiao-Xing Su, Jian-Bao Li, Yue-Sheng Wang, A postprocessing methodbased on high-resolution spectral estimation for FDTD calculation o phononicband structures[J], Phyisica B,2010,405:2444-2449
    [120] Yongjun Cao, Zhilin Hou, Youyan Liu, Finite difference time domain methodfor band-structure calculations of two-dimensional phononic crystals[J], SolidState Communications,2004,132:539-543
    [121] M. Sigalas,N. Garcia, Theoretical study of three dimensional elastic band gapswith the finite-difference time-domain method[J], J. Appl. Phys.,2000,87:3122
    [122] M. Sigalas,N. Garcia, Importance of coupling between longitudinal andtransverse components for the creation of acoustic band gaps: The aluminumin mercury case[J], Appl. Phys. Lett.,2000,76:2307
    [123]梁宏宇,二维声子晶体宽带隙和缺陷态的研究[D]:[硕士学位论文].长沙:中南大学,2007
    [124] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Complete bandgaps in two-dimensional phononic crystal slabs[J], Physical Review E,2006,74:046610
    [125] Jun Mei, Zhengyou Liu, Jing Shi, Decheng Tian, Theory for elastic wavescattering by a two-dimensional periodical array of cylinders: An idealapproach for band-structure calculations[J], Physical Review B,2003,67:245107
    [126] Y.Y. Chen,Z. Ye, Theoretical analysis of acoustic stop bands intwo-dimensional periodic scattering arrays[J], Phys. Rev. E,2001,64:036616
    [127] Z.Y. Liu, C.T. Chan, P. Sheng, A.L. Goertzen, J.H. Page, Elastic wavescattering by periodic structures of spherical objects: Theory andexperiment[J], Phys. Rev. B,2000,62:2446
    [128] M. Kafesaki,E.N. Economou, Multiple-scattering theory for three-dimensionalperiodic acoustic composites[J], Phys. Rev. B,1999,60:11993
    [129] I.E. Psarobas, N. Stefanou, A. Modinos, Scattering of elastic waves byperiodic arrays of spherical bodies[J], Phys. Rev. B,2000,62:278
    [130] Yongjun Cao, Zhilin Hou, Youyan Liu, Convergence problem of plane-waveexpansion method for phononic crystals[J], Physics Letters A,2004,327:247-253
    [131]钟伟芳,聂国华,弹性波的散射理论[M],武汉:华中理工大学出版社,1997
    [132] B. Djafari-Rouhani, L. Dobrzynski, Hardouin Dupare O., Sagittal elasticwaves in infinite and semi-infinite superlattices[J], Phys. Rev. B,1983,28:1711-1720
    [133]王刚,声子晶体局域共振带隙机理及减振特性研究[D]:[博士学位论文].长沙:国防科技大学,2006
    [134] R. Sainidou, N. Stefanou, A. Modinos, Green's function formalism forphononic crystals[J], Phys. Rev. B,2004,69:064301
    [135]闫志忠,基于小波理论的二维声子晶体带隙结构分析[D]:[博士学位论文].北京:北京交通大学,2007
    [136]阿肯巴赫著,徐植信,洪锦如译,弹性固体中波的传播[M],上海:同济大学出版社,1992
    [137] G.Sauerbrey, Verwendung von Schwingquarzen zur Wagung dunnerSchichten und zur Mikrowagung[J], Z.Phys.,1959,155:206-222
    [138] J C Greenwood, Silicon in mechanical sensors[J], J.Phys.E:Sci.Instrum,1988,21:1114-1128
    [139] Kurt E. Petersen, Silicon as a Mechanical Material[J], PROCEEDINGS OFTHE IEEE,1982,70:
    [140] J.E.-Y. Lee,A.A.Seshia,5.4-MHz single-crystal silicon wine glass mode diskresonator with quality factor of2million[J], Sensors and Actuators A,2009,156:28-35
    [141] J. E.-Y. Lee, B. Bahreyni, Y. Zhu, A. A. Seshia, Ultrasensitive mass balancebased on a bulk acoustic mode single-crystal silicon resonator[J], Appl. Phys.Lett.,2007,91:234103
    [142] S. Mohammadi, A.A. Eftekhar, A. Khelif, H. Moubchir, R. Westafer, W.D.Hunt, A. Adibi, Complete phononic bandgaps and bandgap maps intwo-dimensional silicon phononic crystal plates[J], Electron. Lett.,2007,43:898-899
    [143] Saeed Mohammadi, Ali A. Eftekhar, Abdelkrim Khelif, William D. Hunt, AliAdibia, Two-Dimensional Phononic Crystal Slab Defect ModeMicromechanical Resonators, in Proc. of SPIE,2009, p.72230H.
    [144] Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I.Milne, Recent developments on ZnO films for acoustic wave basedbio-sensing and microfluidic applications: a review[J], Sensors and ActuatorsB,2010,143:606-619
    [145] Xiao-Hong Xu, Hai-Shun Wu, Cong-Jie Zhang, Zhi-Hao Jin, Morphologicalproperties of AlN piezoelectric thin films deposited by DC reactive magnetronsputtering[J], Thin Solid Films,2001,388:62-67
    [146]郑志霞,冯勇建,张春权, ICP刻蚀技术研究[J],厦门大学学报,2004,43:365-368
    [147] http://www.oichina.cn/products/item/plasma-etch-plasma-etching/icp-etching-inductively-coupled-plasma-etch.
    [148]陈颖慧,高杨,郑英彬,赵兴海,剥离工艺制作SAW滤波器IDT的研究[J],加工、测量与设备,2012,49:124-128
    [149]张清涛,李艳秋, MEMS器件中电极制作工艺的研究[J],微细加工技术,2005,3:53-56
    [150] Sarah E. Bobbin, J.W. Wagner, R.C. Cammarata, Determination of theflexural modulus of thin films from measurement of the first arrival of thesymmetric Lamb Wave[J], Applied Physics Letters,1991,59:1544-1546
    [151]赵洪文,李达成,曹芒,高精度表面粗糙度外差干涉仪信号理系统的研制[J],光学技术,1997,23:39-42
    [152] Kim M,Kim S, Two-way frequency-conversion phase measurement forhigh-speed and high-resolution heterodyne in terferometry[J],Meas.Sci.Technol.,2004,8:2341-2348
    [153] Yim N., Eom C., Kim S., Dual mode phase measurement for opticalheterodyne interferometry[J], Meas.Sci.Technol.,2000,4:1131-1137
    [154] D. W. Burns, J. D. Zook, R. D. Horning, W. R. Herb, H. Guckel,Sealed-cavity resonant microbeam pressure sensor[J], Sensors and Actuators,1995,48:179-186
    [155] F. R. Blom, S. Bouwstra, M. Elwenspoek, J. H. J. Fluitman, Dependence ofthe quality factor of micromachined silicon beam resonators on pressure andgeometry[J], J.Vac. Sci. Technol.B,1992,10:19-26
    [156] Xiong Wang, Dingbang Xiao, Zelong Zhou, Zhihua Chen, Xuezhong Wu,Shengyi Li, Support loss for beam undergoing coupled vibration of bendingand torsion in rocking mass resonator[J], Sensors and Actuators A,2011,171:199-206
    [157] P.G. Steeneken, J.J.M. Ruigrok, S.Kang, J.T.M. van Beek, J.Bontemps, J.J.Koning, Parameter Extraction and Support-Loss in MEMS Resonators[J],
    [158] B P Harrington,R Abdolvand, In-plane acoustic reflectors for reducingeffective anchor loss in lateral–extensional MEMS resonators[J], J.Micromech. Microeng.,2011,21:085021
    [159] D.S. Bindel,S. Govindjee, Elastic PMLs for resonator anchor losssimulation[J], Int. J. Numer. Mech. Engrg.,2005,64:789-818
    [160] John A. Judge, Douglas M. Photiadis, Joseph F. Vignola, Brian H. Houston,Jacek Jarzynski, Attachment loss of micromechanical and nanomechanicalresonators in the limits of thick and thin support structures[J], Journal OfApplied Physics,2007,101:013521
    [161] Zhili Hao, Ahmet Erbil, Farrokh Ayazi, An analytical model for support lossin micromachined beam resonators with in-plane flexural vibrations[J],Sensors and Actuators A,2003,109:156-164
    [162] Feng-Chia Hsu, Jin-Chen Hsu, Tsun-Che Huang, Chin-Hung Wang, PinChang, Design of lossless anchors for microacoustic-wave resonators utilizingphononic crystal strips[J], Appl. Phys. Lett.,2011,98:143505
    [163] Drew Goettler, Mehmet Su, Zayd Leseman, Yasser Soliman, Roy Olsson,Ihab El-Kady, Realizing the frequency quality factor product limit in siliconvia compact phononic crystal resonators[J], Journal Of Applied Physics,2010,108:084505
    [164] Saeed Mohammadi, Ali. A. Eftekhar, Reza Pourabolghasem, Ali Adibi,Simultaneous high-Q confinement and selective direct piezoelectric excitationof flexural and extensional lateral vibrations in a silicon phononic crystal slabresonator[J], Sensors and Actuators A,2011,167:524-530
    [165] Feng-Chia Hsu, Jin-Chen Hsu, Tsun-Che Huang, Chin-HungWang, and PinChang, Reducing support loss in micromechanical ring resonators usingphononic band-gap structures[J], J. Phys. D: Appl. Phys.,2011,44:375101
    [166] S.J. Wong, C.H.J. Fox, S. McWilliam, Thermoelastic damping of thein-plane vibration of thin silicon rings[J], Journal Of Sound And Vibration,2006,293:266-285
    [167] L.D. Landau,E.M. Lifshitz, Theory of Elasticity[M], Oxford: Pergamon Press,1959
    [168] C. Zener, Internal friction in solids: II. General Theory of ThermoelasticInternal Friction[J], Phys. Rev.,1937,53:90-99
    [169] C. Zener, Internal friction in solids: I. Theory of internal friction in reeds[J],Phys. Rev. B,1937,52:230-235
    [170] J. Gorman, Finite Element Model of Thermoelastic Damping in MEMS[D]:[Master of Science]. Massachusetts Institute of Technology,2002
    [171] Amy Duwel, Rob N. Candler, Thomas W. Kenny, Mathew Varghese,Engineering MEMS Resonators With Low Thermoelastic Damping[J], JournalOf Applied Physics,2006,15:1437-1445
    [172] S.A.Chandorkar, M.Agarwal, R.Melamud, R.N.Candler, K.E.Goodson,T.W.Kenny, Limits of quality factor in bulk-mode micromechanicalresonators[C], presented at the MEMS2008,2008
    [173] R.Tabrizian, M.Rais-Zadeh, F.Ayazi, Effect of phonon interactions onlimiting the f.Q product of micromechanical resonators[C], presented at theTransducers2009,2009
    [174] Dustin W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, J. M. Parpia,Measurement of mechanical resonance and losses in nanometer scale siliconwires[J], Appl. Phys. Lett.,1999,75:920-922
    [175] K. L. Ekinci,M. L. Roukes, Nanoelectromechanical systems[J], Rev. Sci.Instrum.,2005,76:061101
    [176] Kevin Y. Yasumura, Timothy D. Stowe, Eugene M. Chow, Timothy Pfafman,Thomas W. Kenny, Barry C. Stipe, Daniel Rugar, Quality Factors in Micron-and Submicron-Thick Cantilevers[J], JOURNAL OFMICROELECTROMECHANICAL SYSTEMS,2000,9:117-125
    [177] C. Q. Ru, Size effect of dissipative surface stress on quality factor ofmicrobeams[J], Appl. Phys. Lett.,2009,94:051905
    [178] Jinling Yang, Takahito Ono, Masayoshi Esashi, Surface effects and highquality factors in ultrathin single-crystal silicon cantilevers[J], Appl. Phys.Lett.,2000,77:3860-3862
    [179] Jinbok Choi, Maenghyo Cho, Wonbae Kim, Surface effects on the dynamicbehavior of nanosized thin film resonator[J], Appl. Phys. Lett.,2010,97:171901
    [180] Alberto Cagliani,Zachary J. Davis, Bulk Disk Resonator Based UltrasensitiveMass Sensor[C], presented at the SENSORS2009,2009
    [181] Jr. D.S. Ballantine, S.J. Martin, A.J. Ricco, G.C. Frye, H.Wohltjen, R.M.White,E.T. Zellers, Acoustic Wave Sensors Theory, Design, and Physico-ChemicalApplications[M], San Diego, London: Academic Press,1997
    [182] S. W. Wenzel,R. M. White, Analytic comparison of the sensitivities ofbulkuwave, surfacemwave, and flexural plate-wave ultrasonic gravimetricsensors[J], Appl. Phys. Lett.,1989,54:1976-1978
    [183] G. McHale, M. I. Newton, F. Martin, Theoretical mass sensitivity of Lovewave and layer guided acoustic plate mode sensors[J], J. Appl. Phys,2002,91:9701-9710
    [184] B.A.Auld, Acoustic Fields and Waves in Solids[M], New York:Wiley-Interscience1973
    [185] D. L. Portigal,E. Burstein, Acoustical Activity and Other First-Order SpatialDispersion Effects in Crystals[J], Phys. Rev.,1968,170:673
    [186] Joel F. Rosenbaum, Bulk Acoustic Waves: Theory and Devices[M], Boston:Artech House,2000
    [187] John R. Neighboure, Elastic energy flow in crystals of general symmetry[J],Journal Of Applied Physics,1973,44:4816-4823
    [188] John J. Ditri, On the propagation of pure plane waves in anisotropic media[J],Appl. Phys. Lett.,1994,64:701-703
    [189] P. C. Waterman, Orientation Dependence of Elastic Waves in SingleCrystals[J], Phys. Rev.,1959,113:1240
    [190] K.Brugger, Pure modes for elastic waves in crystals[J], J. Appl. Phys.,1965,36:759-768
    [191] F.E.Borgnis, Specific directions of longitudinal wave propagation inanisotropic media[J], Phys.Rev.,1955,98:1000
    [192] B.A. Auld, Acoustic Fields and Waves in Solids[M], New York: WileyInterscience,1973
    [193] Qing Ni,Jianchun Cheng, Anisotropy of effective velocity for elastic wavepropagation in two-dimensional phononic crystals at low frequencies[J], Phys.Rev. B,2005,72:014305
    [194] Qing Ni,Jianchun Cheng, Long wavelength propagation of elastic waves inthree-dimensional periodic solid-solid media[J], J. Appl. Phys.,2007,101:073515
    [195] A. A. Krokhin, P. Halevi, J. Arriaga, Long-wavelength limit homogenizationfor two-dimensional photonic crystals[J], Phys. Rev. B,2002,65:115208
    [196] A. A. Krokhin, J. Arriaga, L. N. Gumen, Speed of Sound in Periodic ElasticComposites[J], Phys. Rev. Lett,2003,91:264302
    [197] K.Brugger, Determination of third-order elastic coefficients in crystals[J],Journal Of Applied Physics,1965,36:768-773
    [198] D M Martin, V Yantchev, I Katardjiev, Buried electrode electroacoustictechnology for the fabrication of thin film based resonant components[J], J.Micromech. Microeng.,2006,16:1869-1874
    [199] Johan Bjurstr m, Ilia Katardjiev, Ventsislav Yantcheva, Lateral-field-excitedthin-film Lamb wave resonator[J], Applied Physics Letters,2005,86:154103
    [200] Michio Kadota, Takashi Ogami, Kansho Yamamoto, Hikari Tochishita,LiNbO3thin film for A1mode of Lamb wave resonators[J], Phys. StatusSolidi A,2011,208:1068-1071
    [201] C Y Huang, J H Sun, T T Wu, A two-port ZnO/silicon Lamb wave resonatorusing phononic crystals[J], Applied Physics Letters,2010,97:031913
    [202] Tsung Tsong Wu, Wei Shan Wang, Jia Hong Sun, Jin Chen Hsu, Yung YuChen, Utilization of phononic-crystal reflective gratings in a layered surfaceacoustic wave device[J], Applied Physics Letters,2009,94:101913
    [203] Ventsislav Yantchev, Lilia Arapan, Ilia Katardjiev, Victor Plessky, Thin-filmzero-group-velocity Lamb wave resonator[J], Applied Physics Letters,2011,99:033505
    [204] C. Prada, D. Clorennec, D. Royer, Local vibration of an elastic plate andzero-group velocity Lamb modes[J], The Journal of the Acoustical Society ofAmerica,2008,124:203-212
    [205] F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, C. Karnutsch, Designof an optofluidic biosensor using the slow-light effect in photonic crystalstructures[J], Applied Optics,2012,51:568-576
    [206] T. Baba, Slow light in photonic crystals[J], Nature photonics,2008,2:465-473
    [207] P. Lalanne,J. P. Hugonin, Very Large Spontaneous-Emission β Factors inPhotonic-Crystal Waveguides[J], Physical Review Letters,2007,99:023902
    [208] Thomas F. Krauss, Why do we need slow light?[J], Nature photonics,2008,2:448-450
    [209] W. M. Robertson, C. Baker, C. Brad Bennett, Slow group velocitypropagation of sound via defect coupling in a one-dimensional acoustic bandgap array[J], Am. J. Phys.,2004,72:255
    [210] V. Laude, L. Robert, W. Daniau, A. Khelif, S. Ballandras, Surface acousticwave trapping in a periodic array of mechanical resonators[J], Applied PhysicsLetters,2006,89:083515
    [211] J. Christensen, PA Huidobro, L. Martín-Moreno, FJ García-Vidal, Confiningand slowing airborne sound with a corrugated metawire[J], Applied PhysicsLetters,2008,93:083502
    [212] M.B. Dühring, V. Laude, A. Khelif, Energy storage and dispersion of surfaceacoustic waves trapped in a periodic array of mechanical resonators[J], JournalOf Applied Physics,2009,105:093504
    [213] C Y Sun, J C Hsu, T T Wu, Resonant slow modes in phononic crystalplates with periodic membranes[J], Applied Physics Letters,2010,97:031902
    [214] V. Laude, J.C. Beugnot, S. Benchabane, Y. Pennec, B. Djafari-Rouhani, N.Papanikolaou, J.M. Escalante, A. Martinez, Simultaneous guidance of slowphotons and slow acoustic phonons in silicon phoxonic crystal slabs[J], OpticsExpress,2011,19:9690-9698
    [215] A. Cicek, O. Adem Kaya, M. Yilmaz, B. Ulug, Slow sound propagation in asonic crystal linear waveguide[J], Journal Of Applied Physics,2012,111:013522
    [216] I. Malfanti, A. Taschin, P. Bartolini, R. Torre, Evidence of slow acousticsurface waves on a1D phononic surface by a pulsed laser spectroscopictechnique resolved in time and space[J], Europhysics Letters,2012,97:44010
    [217] Jiujiu Chen, Yunjia Xia, Xu Han, Hongbo Zhang, Lamb waves in phononiccrystal slabs: Truncated plane parallels to the axis of periodicity[J], Ultrasonics,2012,52:920-924
    [218] Bruno Morvan, Anne-Christine Hladky-Hennion, Damien Leduc, Jean-LouisIzbicki, Ultrasonic guided waves on a periodical grating: Coupled modes inthe first Brillouin zone[J], Journal Of Applied Physics,2007,101:114906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700