基于纳米结构的太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上最丰富的可再生能源就是太阳能,而对太阳能高效利用最有前景的一种方式是太阳能电池。太阳能电池从发明到现在,已经有200多年了。然而太阳能电池在能源领域的应用却依然无法与传统能源所抗衡。阻碍太阳能电池大规模应用的原因主要有两个:相对较低的光电转换效率和较高的制造成本。为了解决这两个问题,目前有大量的研究工作围绕纳米结构的太阳能电池而展开,以提高太阳能电池的表现。
     本文研究的第一个对象是纳米线太阳能电池。纳米线是直径在几十到几百纳米,长度为数微米的半导体圆柱。它有非常好的减反射效果。本文将有限元方法应用于纳米线光学特性的理论计算,建立了纳米线的光学模型。本文对同质结与异质结纳米线的光学特性分别进行了研究。本文首先利用有限元方法求解麦克斯韦方程组,计算得出GaAs同质结纳米线的反射率、透射率和吸收率。模型的反射率模拟结果与刻蚀制作的GaAs纳米线反射率实验结果进行了比对。模型的反射率模拟结果与VLS生长制作的GaAs纳米线反射率实验结果也进行了比对。在AM1.5G太阳光光谱条件下,本文计算得出了让电池吸收率和产生的短路电流达到最大的纳米线直径,周期(纳米线间距)与长度。本文计算了纳米线顶端的Au颗粒(VLS生长纳米线时产生的)对电池最大电流密度的影响。本文计算了纳米线之间填充的有机物与ITO透明电极对电池最大电流密度的影响。纳米线光学模拟的另一个研究重点是AM1.5G条件下,Si衬底上异质结纳米线光学特性的数值模拟。本文计算了直径在100n m一250nm之间、周期在250-1000nm,长度为5μm的双结纳米线光生电流密度。本文研究了纳米线的禁带宽度对于光生电流密度的影响。本文计算了Si衬底上不同禁带宽度的纳米线在满足电流匹配条件下的最佳直径与周期。本文根据模拟得到的纳米线直径与周期,结合电子束曝光与感应耦合等离子体刻蚀的方法,在GaAs衬底上制作了GaAs纳米线。
     本文另一个研究对象是纳米结构菲涅尔透镜。本文将有限元方法应用于纳米结构菲涅尔透镜光学特性的理论计算,建立了纳米结构菲涅尔透镜的光学模型。本文利用有限元方法求解麦克斯韦方程组,计算得出菲涅尔透镜阵列的反射率、透射率和吸收率。本文将纳米结构菲涅尔透镜阵列应用于Ⅲ-V族叠层太阳能电池,研究了菲涅尔透镜对电池反射率与吸收率的影响。根据模拟得到的菲涅尔透镜尺寸,结合电子束曝光(EBL)与感应耦合等离子体(ICP)刻蚀的方法,在Ⅲ-V族叠层太阳能电池上制作了纳米结构菲涅尔透镜阵列。最后,本文测量了制作了菲涅尔透镜阵列电池片的I-V曲线等特性。
The most abundant source of renewable energy is solar energy.The most promising way to use solar energy efficiently is solar cell. It has been more than two handred years since solar cell was invented. But solar photovoltaic cells are not competitive with more conventional energy technologies because of their relatively low photoconversion efficiency and high cost. A substantial body of recent work in photovoltaics is beginning to exploit intentionally engineered nano-and micro-scale structures and the physics of reduced dimensionality to increase device performance.
     One focus of this thesis is nanowire(NW) solar cells. NWs are rods with a length typically on the order of microns and a diameter on the order of10's to100's of nanometers. It is well known that NWs can exhibit anti-reflection properties that are less dependent on incident wavelength, polarization and angle as compared to conventional thin film dielectric coatings. The reflectance, transmittance and absorptance of GaAs nanowire (NW) arrays are calculated by solving Maxwell's equations using the finite element method. The model is compared with measurement results from well-ordered periodic GaAs NW arrays fabricated by dry etching. The model results are also compared with the reflectance measured from NWs grown by the Au-assisted vapor-liquid-solid (VLS) method. The optimum NW diameter, periodicity (spacing between NWs) and length are determined to maximize absorptance of the AM1.5G solar spectrum and short circuit current density in a NW array solar cell. A gold nanoparticle at the top of the NWs (used in the vapor-liquid-solid NW growth process) substantially reduced the optimum photocurrent density, while a polymer filling the space between NWs and a planar ITO contact had a relatively minor influence. Numerical simulation of the photocurrent density is performed for a two-junction nanowire (NW) on silicon solar cell under AM1.5G illumination. The photocurrent density is determined for NW diameters from100-250nm, period (spacing) from250-1000nm, and length of5
     m. The dependence of photocurrent density on NW bandgap is also determined. For each NW bandgap, the optimum diameter and period are determined to obtain current matching between the top NW cell and the bottom Si cell. This thesis explores a method which combined with electron beam lithography(EBL) and inductively coupled plasma(ICP) to fabricate GaAs NWs.
     Another focus of this thesis is nano-scale Fresnel lens. The reflectance, transmittance and absorptance of nano-scale Fresnel lens arrays are calculated by solving Maxwell's equations using the finite element method. This Fresnel lens is used on Ⅲ-Ⅴ multi-junction solar cell. The influence of Fresnel lens on multi-junction solar cell has been investigated. A method which combines the electron beam lithography(EBL) and inductively coupled plasma(ICP) etching is developed to fabricate nano-scale Fresnel lens arrays on Spire Ⅲ-Ⅴ multi-junction solar cell. Finally, the Ⅰ-Ⅴ curve and the performance of this solar cell are measured.
引文
[1]European Roadmap for PV R&D. European Commission Joint Research Center,2004 EUR 21087EN
    [2]Hegedus S, Luque A. Handbook of photovoltaic science and engineering. In:Luque A, Hegedus S. Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire, 2002.
    [3]Prince M. "Silicon solar energy converters". J. Appl. Phys.,1995,26:534-540
    [4]Loferski J. "Theoretical considerations govern- ing the choice of the optimum semiconductor for photovoltaic solar energy conversion". J. Appl. Phys., 1956,27:777-784
    [5]Wysocki J, Rappaport P. "Effect of temperature on photovoltaic solar energy conversion" J. Appl. Phys.,1960,31:571-578
    [6]Shockley W, Queisser "Detailed balance limit of efficiency of p-n junction solar cells" J. Appl. Phys.,1961,32:510-519
    [7]Friedman D, et al." Measurement of built-in electrical potential in Ⅲ-V solar cells by scanning Kelvin probe microscopy" Prog. Photovolt.,1995,3:47
    [8]Zhao J, Wang A, Green M, "24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates"Prog. Photovolt.,1999.7:471-474
    [9]Yan B J, Yue G Z, Subhendu G. "Status of nc-Si:H solar cells at united solar and roadmap for Manufacturing a-Si:H and nc-Si:H based solar panels". Proceedings of MRS',2007
    [10]Ohl R S. "Light sensitive electric device". US Patent, 2443542, field 27 May 1941
    [11]Kingsbury E F, Ohl R S. Photoelectric properties of ionically bombard silicon. Bell Syst. Tech. J.,1952,31:8092
    [12]Chopin D, Fuller C, Pearson G L. "A new silicon p-n junction photocell for converting solar radiation into electrical power".J. Appl. Phys.,1954,25:676-677
    [13]Pearson G L. PV founders award luncheon. Conf. Record, May, 1955:166
    [14]Yamamoto K, Nakajima A, Yoshimi M, et al. Record of the 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, May, 2006:1489
    [15]Kim J Y, Lee K, Coates N E, et al." Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing" Science, 2007, 317:222
    [16]O'Regan B, Gratzel M, "Low costand highly efficient solar cells based on the sensitization of colloidal titanium dioxide", Nature, 1991, 335:7377
    [17]Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.; Lieber, C.M." Logic gates and computation from assembled nanowire building blocks" Science 2001, 294, 1313.
    [18]Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.;Weber, E.; Russo, R.; Yang, P. "Room-Temperature Ultraviolet Nanowire Nanolasers".Science 2001, 292, 1897.
    [19]Panev, N.; Persson, A. I.; Skold, N.; Samuelson, L. "Sharp exciton emission from single InAs quantum dots in GaAs nanowires "Appl. Phys.Lett.2003,83,2238.
    [20]Duan, X.; Huang, Y; Agarwal, R.; Lieber, C. M. "Single-nanowire electrically driven lasers".Nature 2003,421, 241.
    [21]Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Science2001, 293,1455.
    [22]L. Tsakalakos, J. Balch, J. Fronheiser, M.Y. Shih, S.F. LeBoeuf, M. Pietrzykowski, P.J. Codella, B.A. Korevaar, O. Sulima, J. Rand, A. Davuluru and U. Rapol, "Strong broadband optical absorption in silicon nanowire films" J. Nanophotonics 1 (2007) 013552.
    [23]W.Q. Xie, J.I. Oh and W.Z. Shen, "Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays" Nanotechnology 22 (2011) 065704.
    [24]A. Convertino, M. Cuscuna and F. Martelli, "Optical reflectivity from highly disordered Si nanowire films" Nanotechnology 21 (2010) 355701
    [25]J. Zhu, Z. Yu, G.F. Burkhard; C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays" Nano Lett. 9 (2009) 279.
    [26]S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar and M. Husain," Excellent antireflection properties of vertical silicon nanowire arrays" Solar Energy Mat. & Solar Cells 94 (2010) 1506.
    [27]X. Li, J. Li, T. Chen, B.K. Tay, J. Wang and H. Yu, "Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications" Nanoscale Res. Lett. 5 (2010) 1721.
    [28]E. Garnett and Peidong Yang, "Light trapping in silicon nanowire solar cells" Nano Lett. 10 (2010) 1082.
    [29]Z. Xiong, F. Zhao, J. Yang and X. Hu," Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications" Appl. Phys. Lett. 96 (2010) 181903.
    [30]L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications" Nano Lett. 7 (2007) 3249.
    [31]J. Li, H. Yu, S.M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo and D.-L. Kwong, "Design guidelines of periodic Si nanowire arrays for solar cell application" Appl. Phys. Lett. 95 (2009) 033102.
    [32]J. Li, H. Yu, S.M. Wong, X. Li, G. Zhang, P. G.-Q. Lo and D.-L. Kwong, "Design guidelines of periodic Si nanowire arrays for solar cell application" Appl. Phys. Lett. 95 (2009) 243113.
    [33]C. Lin and M.L. Povinelli," Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications" Optics Express 17 (2009) 19371.
    [34]Hiruma, K.; Yazawa, H.; Katuyama, T.; Ogawa, K.; Haraguchi,K.; Koguchi, M.; Kakibayhasi, H." Growth and optical properties of nanometer - scale GaAs and InAs whiskers" J. Appl. Phys.1995,77,447.
    [35]Mandl, B.; Stangl, J.; Martensson, T.; Eriksson, J.; Karlsson, L.S.; Bauer, G.; Samuelson, L.; Seifert, W. "Au-free epitaxial growth of InAs nanowires" Nano Lett. 2006,6,1817-21.
    [36]Fontcuberta i Morral, A.; Colombo, C.; Arbiol, J.; Morante, J.R.; Abstreiter, G." Nucleation mechanism of gallium-assisted Molecular Beam Epitaxy growth of Gallium Arsenide nanowires" Appl. Phys. Lett.2008, 92, 063112.
    [37]Noborisaka, J.; Motohisa, J.; Fukui, T." Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays" Appl. Phys. Lett.2005,86,213102.
    [38]Plissard, S.; Dick, K. A.; Wallart, X.; Caroff, P. "Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon" Appl. Phys. Lett.2010, 96, 121901.
    [39]Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.; Zhang, W. J.; Bello, I.; Lee, S. T. "Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells"Nano Lett.2008, 8,4191.
    [40]Hamano, T.; Hirayama, H.; Aoyagi, Y. Jpn. "New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy" J. Appl. Phys.,1997,36 (Part 2), L286.
    [41]Henry C H. "Limiting efficiencies if ideal single and multiple energy gap terrestrial solar cells". J. Appl. Phys.,1980,51:4494
    [42]Cotal H L, Lillington D R, Ermer J H, et al. "Triple-junction solar cell efficiencies above 32%:the promise and challenges of their application in high concentration ratio PV Systems". 28th IEEE PVSC, 2000.
    [43]Jian Ming Jin. "The finite element method in electromagnetics. Version 1". USA:John Wiley & Sons INC,1993
    [44]F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber," Nanowire sensors for medicine and the life sciences" Proc. Natl. Acad. Sci. USA 101 (2004)14017-14022.
    [45]J.-I. Hahm, C.M. Lieber" Direct ultrasensitivie electrical detection of DNA and DNA sequence variations using nanowire nanosensors" Nano Lett.4 (2004) 51-54.
    [46]D.J. Sirbuly, A. Tao, M. Law, R. Fan, P. Yang, "Multifunctional nanowire evanescent wave optical sensors" Adv. Mater. 19 (2007) 61-66.
    [47]E.D.Minot, F. Kelkensberg,M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller,M.T. Borgstrom, O. Wunnicke, M.A. Verheijen, E.P.A.M. Bakkers, "Single quantum dot nanowire LEDs" Nano Lett.7 (2007) 367-371.
    [48]Y. Huang, X. Duan, Charles M. Lieber, "Nanowires for integrated multicolor nanophotonics" Small 1 (2005) 142-147.
    [49]F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes" Nano Lett.5 (2005) 2287-2291.
    [50]Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, "Coaxial group III-nitride nanowire photovoltaics" Nano Lett.9 (2009) 2183-2187.
    [51]B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources" Nature 449 (2007) 885-889.
    [52]J.A. Czaban, D.A. Thompson, R.R. LaPierre, "GaAs core- shell nanowires for photovoltaic applications" Nano Lett.9 (2009) 148-154.
    [53]M. Law, J. Goldberger, and P. D. Yang, "Semiconductor nanowires and nanotubes" Annual Rev. Mat. Res.34,83 (2004).
    [54]A. P. Levitt, Introductory review, 1-13, Whisker Technology, Wiley-Interscience, New York (1970).
    [55]W. H. Sutton, "Principles and methods for fabricating whisker-reinforced composites",273-342, Whisker Technology, Wiley-Interscience, New York (1970).
    [56]C. M. Lyon, C. M. Olson, and E. D. Lewis, Trans. Electrochem. Soc.96,359(1949).
    [57]E. R. Johnson and J. A. Amick, J. Appl. Phys.25,1204 (1954).
    [58]F. C. Frank, Disc. Faraday Soc.5,48 (1949).
    [59]W. K. Burton, N. Cabrera, and F. C. Frank, "The growth of crystals and the equilibrium structure of their surfaces" Phil. Trans. Roy. Soc. Lond. A243,299 (1951).
    [60]G. W. Sears, "Mechanism of whisker growth-Ⅲ nature of growth sites" Acta metallurgica 3, 361(1955).
    [61]R. Gomer, J. Chem. Phys.28,457 (1958).
    [62]W. W. Webb and W. D. Forgeng," Growth and defect structure of sapphire microcrystals" J. Appl. Phys.28,1449 (1957).
    [63]J. M. Blakely and K. A. Jackson," Growth of Crystal Whiskers" J. Chem. Phys.37, 428 (1962).
    [64]V. Ruth and J. P. Hirth, J. Chem. Phys.41,3139 (1964).
    [65]W.W.Webb, Dislocation structure of whiskers, 230-237, Growth and perfectionof crystals:proceedings, John Wiley and Sons, New York (1958).157
    [66]R. S. Wagner and W. C. Ellis, Appl. Phys. Lett.4,89 (1964).
    [67]R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold," Study of the Filamentary Growth of Silicon Crystals from the Vapor" J. Appl. Phys.35,2993 (1964).
    [68]R. S. Wagner and W. C. Ellis, Trans. Metal. Soc. AIME 233,1053 (1965).
    [69]E. I. Givargizov and A. "Rate of Growth of Whiskers by the Vapour-Liquid-Crystal Mechanism and Role of Surface Energy" A. Chernov, Kristallografiya 18,147 (1973).
    [70]E. I. Givargizov," Fundamental aspects of VLS growth" J. Cryst. Growth 31,20 (1975).
    [71]K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G. P.Morgan, "Quantum size microcrystals grown using organometallic vapor phase epitaxy" Appl. Phys. Lett.59,431 (1991).
    [72]M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, "Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers" Appl. Phys.Lett.61, 2051 (1992).
    [73]M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, Jap.J. Appl. Phys.31, 2061 (1992).
    [74]K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi,and H. Kakibayashi, "GaAs free - standing quantum - size wires" J. Appl. Phys. 74, 3162 (1993).
    [75]K. Haraguchi, T. Katsuyama, and K. Hiruma, "Polarization dependence of light emitted from GaAs p - n junctions in quantum wire crystals" J. Appl. Phys.75,4220 (1994).
    [76]J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda," Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction" J. Vac. Sci.Technol. B 15,554 (1997).
    [77]J. T. Hu, T. W. Odom, and C. M. Lieber, "Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes" Ace. Chem. Res.32, 435 (1999).
    [78]X. F. Duan and C. M. Lieber," General synthesis of compound semiconductor nanowires" Adv. Mat.12,298 (2000).
    [79]Y. Cui and C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks" Science 291, 851 (2001).
    [80]M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics" Nature415, 617 (2002).
    [81]F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes" Nano Lett.5, 2287(2005).
    [82]W. Lu and C. M. Lieber, "Nanoelectronics from the bottom up" Nature Mat.6, 841 (2007).
    [83]M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson,K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional steeplechase for electrons realized" Nano Lett.2,87(2002).
    [84]K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R.Wallenberg, and L. Samuelson," Synthesis of branched'nanotrees'by controlled seeding of multiple branching events" Nature Mat.3,380 (2004).
    [85]A. Mikkelsen, N. Skold, L. Ouattara, M. Borgstrom, J. N. Andersen, L. Samuelson,W. Seifert, and E. Lundgren, "Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy" Nature Mat.3,519 (2004).
    [86]A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, andL. R. Wallenberg," Solid-phase diffusion mechanism for GaAs nanowire growth" Nature Mat.3,677 (2004).
    [87]K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, and W. Seifert, "A New Understanding of Au - Assisted Growth of III - V Semiconductor Nanowires" Adv. Funct. Mat.15,1603 (2005).
    [88]K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson, W. Seifert,L. R. Wallenberg, and F. M. Ross, "The morphology of axial and branched nanowire heterostructures" Nano Lett.7,1817 (2007).
    [89]L. Brewer and J. S. Kane, "The importance of complex gaseous molecules in high temperature systems" J. Phys. Chem.59, 105 (1955).
    [90]P. L. Edwards and R. J. J. Happel, "The tensile deformation of copper single crystals containing BeO particles" J. Appl. Phys.33,943 (1962).
    [91]Z.Y. Fan, R. Kapadia, P.W. Leu, X.B. Zhang, Y.L Chueh, K. Takei, K. Yu, A. Jamshidi, A.A. Rathore, D.J. Ruebusch, M. Wu, A. Javey, "Ordered arrays of dual-diameter nanopillars for maximized optical absorption" Nano Lett. 10 (2010) 3823.
    [92]S.L. Diedenhofen, G. Vecchi, R.E. Aigra, A. Hartsuiker, O.L. Muskens, G. Immink, E.P.A.M. Bakkers, W.L. Vos and J.G. Rivas, "Theoretical conversion efficiency of a two-junction Ⅲ-V nanowire on Si solar cell" Ad. Mater.21 (2009) 1.
    [93]O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers and A. Lagendijk, "Design of light scattering in nanowire materials for photovoltaic applications" Nano. Lett.8 (2008) 2638.
    [94]N. Anttu and H.Q. Xu," Coupling of light into nanowire arrays and subsequent absorption" J. Nanoscience and Nanotechnology 10 (2010) 7183.
    [95]J. Kupec, R.L. Stoop and B. Witzigmann, "Light absorption and emission in nanowire array solar cells" Optics Express 18 (2010) 27589.
    [96]J. Kupec and B. Witzigmann, "Dispersion, wave propagation and efficiency analysis of nanowire solar cells" Optics Express 17 (2009) 10399.
    [97]K. Chen, J.-J. He, M. Li, and R. R. LaPierre, "Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching" Chin. Phys. Lett.29, 036105(2012).
    [98]E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
    [99]H. C. Casey, Jr., D. D. Sell, and K. W. Wecht," Concentration dependence of the absorption coefficient for n- and p- type GaAs between 1.3 and 1.6 eV" J. Appl. Phys. 46,250(1975).
    [100]A. C. E. Chia and R. R. LaPierre," Contact planarization of ensemble nanowires" Nanotechnology 22,245304 (2011).
    [101]Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Prog. Photovolt., Res. Appl.2012
    [102]LaPierre R R" Theoretical conversion efficiency of a two-junction Ⅲ-V nanowire on Si solar cell" 2011 J. Appl. Phys.110 014310
    [103]J.M. Olson, S.R. Kurtz, A.E. Kibbler, and P. Faine, "A 27.3%. Efficient Ga(0.5)In(0.5)P/GaAs Tandem Solar Cell," Appl. Phys. Lett.,56, 1990, pp.623-625.
    [104]R.R. King, A. Boca, W. Hong, X.Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M.Fetzer, S. Mesropian, and N.H. Karam, "Band-Gap Engineering Architectures for High-Efficiency Multijunction Concentrator Solar Cells," 24th European Photovoltaic Solar Energy Conference, 2009, pp.55-61.
    [105]W. Guter, J. Schone, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, and F. Dimroth, "Current-matched triple-junction solar cell reaching 41.1 % conversion efficiency under concentrated sunlight", Appl. Phys. Lett., 94, 223504 (2009)
    [106]J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, "40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions," Appl. Phys. Lett.93,123505 (2008).
    [107]Barnett, A.; Honsberg, C.; Kirkpatrick, D.; Kurtz, S.; Moore, D.; Salzman, D.; Schwartz, R.; Gray, J.; Bowden, S.; Goossen, K.; Haney, M.; Aiken, D.; Wanlass, M.; Emery, K, "50% Efficient Solar Cell Architectures and Designs", Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Volume 2, May 2006 pp.2560-2564.
    [108]Andreev V M中国科学院半导体学术讨论会,北京,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700