有机聚合物平面光波导生化传感器的优化设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对日益严峻的生化恐怖袭击威胁和在医疗诊断、环境监测领域的大量需求,光学生化传感器吸引着越来越多的关注。平面光波导传感器兼具光纤传感器灵敏度高、响应迅速、抗电磁干扰能力强等特点,还可以通过灵活设计与不同结构、不同功能的波导器件构成集成光子传感芯片,符合光学生化传感器多功能化、集成化和便携化的未来发展方向。但是使用无机材料制备的波导器件因其生长工艺复杂、设备昂贵,不易实现大规模的生产与应用。
     目前针对应用于光通信领域的有机聚合物材料研究已较为成熟,材料成本较低、合成工艺简单、对加工设备要求不高、结构种类丰富。在生化传感领域与离子、蛋白质、细胞等待测物的生物化学兼容性更强。因此使用聚合物材料制备波导传感器能弥补无机材料在这方面的不足。本论文结合目前存在的技术难题与未来发展趋势,对几种不同波导结构的聚合物平面光波导生化传感器进行改进优化,主要工作如下:
     1.以光波导模式理论为基础,在一定边界条件下求得非对称三层平板波导的特征方程,再利用有效折射率法推导矩形波导导模特征方程,确定了波导传感器件的单模传输条件;阐述光波导传感器的工作原理—消逝场原理及两种传感检测模型:均匀传感与表面传感;详细介绍传感器的性能参数,包括灵敏度、检测极限、分辨率、量程和线性度。列举本论文完成过程中制备器件所主要使用的实验药品及仪器设备。
     2.针对基于MZI结构的波导生化传感器输出信号具有周期性,提出不借助电光、热光等外部调制手段,仅通过精确控制传感窗口长度来调节器件的静态工作点,同时能在较大折射率测量范围内实现较高线性度的理论设想;首先根据波导材料SU-8和P(MMA-GMA)的折射率,综合考虑器件尺寸与插入损耗等因素,使用Matlab软件编程计算和Rsoft光学仿真软件模拟后得到优化后的传感窗口长度为11515μm;其次优化制备传感窗口的ICP刻蚀工艺,深入研究各参数对波导形貌和表面亲水性的影响,包括天线功率、偏置功率、气体流量及配比、腔室压强、刻蚀时间;刻蚀后的波导表面水接触角测试发现接触角从130°降低到35°;光学性能测试证明传感芯片的插入损耗没有因刻蚀而明显增大;传感测试结果表明优化后的聚合物波导生化传感芯片可检测的液体折射率测量范围是1.31~1.42,灵敏度为225.4dB/RIU,检测极限约为10-6RIU;最后制备传感窗口长度为10000μm和15000μm的聚合物MZI波导传感芯片与优化器件进行对比实验后发现,优化后的传感器灵敏度比二者分别提升141%和139%,并考察波导传感芯片的长期工作稳定性,发现在30天内器件性能未出现明显衰减。
     3.进一步优化了基于MZI结构的聚合物波导生化传感器器件性能及制备工艺。通过编程计算和软件模拟,将Y型分束器与合束器在横向上设计成不同长度来控制两分支波导的相位差,使非对称的MZI波导传感器件始终处于静态工作点;尝试了聚合物波导生化传感器在表面传感模型上的应用,利用溶胶-凝胶法合成了基于硅烷偶联剂KH590的亲水性敏感层,利用Comsol仿真软件模拟后证明将折射率高于芯层,厚度为500nm的敏感层固定在波导表面后,传输光场在敏感层的占比分布增大至12%;将修饰后的传感芯片用于检测溶液中的铜离子浓度,传感芯片对于铜离子的可分辨浓度为20μg/ml。
     4.探索了聚合物材料体系下的微环型波导结构在传感检测方面的应用;编程计算了微环半径、波导间距等结构尺寸参数并分析器件的输出功率与输出光谱,根据其线性度确定了待测物折射率的检测范围,得到了以聚合物为波导材料的微环传感器性能参数。
     本论文从优化理论设计和改进制备工艺等方面针对基于有机聚合物材料的平面光波导生化传感器件进行了一系列的研究。发挥有机聚合物材料在波导器件功能集成、个数集成方面的优势,有望制备出高性能、小尺寸、低成本的生化传感芯片并实现规模化生产,从而服务于反恐预警、医疗卫生、食品安全等关键领域。
To withstand the growing threat of terror attacks and great demands of medicaldiagnosis and environmental monitoring, optical bio-chemical sensor is attractingmore and more attention. Same as fiber sensor, planar optical waveguide sensorbenefits from high sensitivity, fast response and resistance to electromagneticinterference etc. Moreover, flexible design in structure and function makeswaveguide sensor a promising solution for future optical bio-chemical sensor.However, the waveguide devices based on inorganic materials fail to meet therequirements of mass production due to the complicated fabrication process andexpensive equipments.
     Organic polymers for optical communication are not only cost-effective insynthesis and processing, but also highly compatible with samples as metal ions,proteins and virus. Polymers include a wide range of structures, which offer lots ofchoices. Therefore, it is more profitable to use polymers to fabricate opticalbio-chemical sensors than inorganic materials. This dissertation combines withexisting technical problems and the trend of developments to optimize severaldifferent structures of polymeric waveguide bio-chemical sensor, includingtheoretical design and fabrication technology. The main work is as follows:
     1. On the basis of the theory of optical waveguide mode, taking certainboundary conditions into account, we solved the characteristic equations ofasymmetric three-layer slab waveguide. Then using effective index method, wededuced the equations of guiding mode of rectangular waveguide. This dissertationexplained the working principle of optical waveguide sensors, which was the theoryof evanescent field and two kinds of sensing model: uniform sensing and surfacesensing. We also introduced the parameters of waveguide sensor, includingsensitivity, detection limit, resolution, range and linearity in detail. And we enumerated the experimental drugs and instruments for the fabrication of polymericwaveguide sensors in this dissertation.
     2. Aiming at the bio-chemical sensor based on Mach-Zehnder interferometer(MZI) structure, whose output signal is periodic, we presumed to set the workingpoint of the device and achieve high linearity in a large measuring rang bycontrolling the length of sensor window. First, according to the refractive index ofwaveguide materials and dimension and insertion loss of the device, using thecalculation of Matlab software and simulation of Rsoft software, we obtained thatthe optimum length of sensing window was11515μm. At the same time, weimproved the fabrication technology of Inductively Coupled Plasma (ICP) etchingprocess for sensing window by deeply investigating etching parameters, includingantenna power, bias power, gas ratio, chamber pressure and etching time. Due to theprecise control of etching, the water contact angle on the waveguide surface wasdecreased from130°to30°, and no additional insertion loss was brought in afteretching. The results of sensing test demonstrated that the refractive index measuringrange for liquid, sensitivity and detection limit of the optimized waveguide sensorwere from1.31to1.42,225.4dB/RIU and10-6RIU, respectively. Waveguidesensors based on MZI structure with sensing window lengths of10000μm and15000μm were fabricated to compare with the optimized sensor. The sensitivitieswere93.3dB/RIU and94.2dB/RIU, which were much lower than225.4dB/RIU.Finally we evaluated the long-term stability of the waveguide sensor chip.
     3. The MZI-structure waveguide bio-chemical sensor was further improved indesign and fabrication. Through calculation and simulation, the Y-shape splitter andcombiner were designed as different lengths in horizontal direction to form anasymmetric MZI structure, which kept the sensor at the working point. Then weprepared the sensing layer based on silane coupling agent KH590with sol-gelmethod. This layer was deposited on the waveguide core, which greatly enhance theevanescent field. The simulation results showed that12%of the optical field in thesensing layer distributed in the sensing layer. After the modification on thewaveguide core, detection for copper ions was conducted and the minimum detectable concentration was20μg/ml.
     4. The advantages of micro-ring waveguide in sensing applications wereanalyzed. The working principles of waveguide coupling and polymeric microringresonators were detailedly introduced. Then we calculated the radius of micro-ring,the distance of coupling gap and structure parameters. The output power andspectrum of the micro-ring sensor were studied in consideration of linearity andmeasuring range.
     This dissertation has carried out the research on the optimization of theoreticaldesign and fabrication technology for polymeric planar optical waveguidebio-chemical sensor. Due to the advantages of function and quantity integration, it islikely to fabricate high-performance, small-size and low-cost sensor chip withpolymeric waveguide devices of and realize large-scale production, which serves inhealth care, food security and other important areas.
引文
[] Chui M, L ffler M, Roberts R. The internet of things[J]. McKinsey Quarterly,2010,2:1-9.
    [2]张方风,申贵成.我国物联网发展思考[J].计算机系统应用,2011,3:249-253.
    [3]程钰杰.我国物联网产业发展研究[D].安徽大学,2012.
    [4] Giusto D, Lera A, Morabito G, et al. The Internet of Things[M].Berlin/Heidelberg, Germany: Springer,2010.
    [5]梅方权,智慧地球与感知中国——物联网的发展分析[J].农业网络信息,2009,12:124-126.
    [6]于荣金.光子学及其发展[C].中国光学学会95年会特邀报告专辑,1995,4:16-22.
    [7]曾雪云.浅谈我国光纤通信的发展现状及前景[J].科技资讯,2010,34:102-106.
    [8]李育洪,王克逸.基于平面光波导的光学传感器[J].安徽教育学院学报,2001,19(6):23-26.
    [9] Gagliardi R M, Karp S. Optical communications[J]. New York,Wiley-Interscience,1976.445p.,1976,1.
    [10] Mihalcea R M, Baer D S, Hanson R K. A diode-laser absorption sensor systemfor combustion emission measurements[J]. Measurement Science andTechnology,1998,9(3):327.
    [1] Zhang Y, Gu C, Schwartzberg A M, et al. Surface-enhanced Raman scatteringsensor based on D-shaped fiber[J]. Applied Physics Letters,2005,87(12):123105.
    [2] Jain P K, Huang X, El-Sayed I H, et al. Review of some interesting surfaceplasmon resonance-enhanced properties of noble metal nanoparticles and theirapplications to biosystems[J]. Plasmonics,2007,2(3):107-118.
    [3] Berthou H, J rgensen C K. Optical-fiber temperature sensor based onupconversion-excited fluorescence[J]. Optics letters,1990,15(19):1100-1102.
    [4] Hartog A. A distributed temperature sensor based on liquid-core optical fibers[J].Lightwave Technology, Journal of,1983,1(3):498-509.
    [5] Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg gratingstrain-sensor system with a fiber Fabry–Perot wavelength filter[J]. Optics letters,1993,18(16):1370-1372.
    [16] Giallorenzi T G, Bucaro J A, Dandridge A, et al. Optical fiber sensortechnology[J]. Microwave Theory and Techniques, IEEE Transactions on,1982,30(4):472-511.
    [17] Laine J P, Tapalian C, Little B, et al. Acceleration sensor based on high-Qoptical microsphere resonator and pedestal antiresonant reflecting waveguidecoupler[J]. Sensors and Actuators A: Physical,2001,93(1):1-7.
    [18] Massie C, Stewart G, McGregor G, et al. Design of a portable optical sensor formethane gas detection[J]. Sensors and Actuators B: Chemical,2006,113(2):830-836.
    [19] Arregui F J, Liu Y, Matias I R, et al. Optical fiber humidity sensor using a nanoFabry–Perot cavity formed by the ionic self-assembly method[J]. Sensors andActuators B: Chemical,1999,59(1):54-59.
    [20] Chan W H, Yang R H, Wang K M. Development of a mercury ion-selectiveoptical sensor based on fluorescence quenching of5,10,15,20-tetraphenylporphyrin[J]. Analytica Chimica Acta,2001,444(2):261-269.
    [21] Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for proteindetection[J]. Optics letters,2005,30(24):3344-3346.
    [22] Ymeti A, Greve J, Lambeck P V, et al. Fast, ultrasensitive virus detection usinga Young interferometer sensor[J]. Nano letters,2007,7(2):394-397.
    [23]段再明.解析山西雾霾天气的成因[J].太原理工大学学报.2011,5:100-103.
    [24]周志田,王海燕,杨多贵.中国适宜人居城市研究与评价[J].中国人口,资源与环境.2004,1:137-139.
    [25]张一宾.生物杀虫剂的概况和发展方向[J].现代农药.2008,1:58-62.
    [26]王晓京,朱士俊.医疗费用支付方式的比较[J].中华医院管理杂志.2006,7:143-146.
    [27] Walt D R, Agayn V, Bronk K, et al. Fluorescent optical sensors[J]. Appliedbiochemistry and biotechnology,1993,41(1-2):129-138.
    [28] Nguyen L V, Hwang D, Moon S, et al. High temperature fiber sensor with highsensitivity based on core diameter mismatch[J]. Optics express,2008,16(15):11369-11375.
    [29] Ohno H, Naruse H, Kihara M, et al. Industrial applications of the BOTDRoptical fiber strain sensor[J]. Optical fiber technology,2001,7(1):45-64.
    [30] Optical fiber sensor technology[M]. London: Chapman&Hall,1995.
    [31] Shevchenko Y, Camci-Unal G, Cuttica D F, et al. Surface Plasmon ResonanceFiber Sensor for Real-Time and Label-Free Monitoring of Cellular Behavior[J].Biosensors and Bioelectronics,2014.
    [32] Wong W C, Chan C C, Hu P, et al. Miniature pH optical fiber sensor based onwaist-enlarged bitaper and mode excitation[J]. Sensors and Actuators B:Chemical,2014,191:579-585.
    [33] Mak T, Westerwaal R J, Slaman M, et al. Optical fiber sensor for the continuousmonitoring of hydrogen in oil[J]. Sensors and Actuators B: Chemical,2014,190:982-989.
    [34] Chu C S, Lin C A. Optical fiber sensor for dual sensing of temperature andoxygen based on PtTFPP/CF embedded in sol-gel matrix[J]. Sensors andActuators B: Chemical,2014.
    [35] Candiani A, Sozzi M, Cucinotta A, et al. Optical Fiber Sensor for DNADetection Based on Doubled-Tilted Bragg Grating[M]//Sensors. Springer NewYork,2014:349-352.
    [36] Zhang S, Zhang W, Geng P, et al. Fiber Mach-Zehnder interferometer based onconcatenated down-and up-tapers for refractive index sensing applications[J].Optics Communications,2013,288:47-51.
    [37] Hottin J, Wijaya E, Hay L, et al. Comparison of Gold and Silver/GoldBimetallic Surface for Highly Sensitive Near-infrared SPR Sensor at1550nm[J]. Plasmonics,2013,8(2):619-624.
    [38] Srivastava T, Jha R, Das R. High-performance bimetallic SPR sensor based onperiodic-multilayer-waveguides[J]. Photonics Technology Letters, IEEE,2011,23(20):1448-1450.
    [39] Vala M, Chadt K, Piliarik M, et al. High-performance compact SPR sensor formulti-analyte sensing[J]. Sensors and Actuators B: Chemical,2010,148(2):544-549.
    [40] Huang Y H, Ho H P, Wu S Y, et al. Phase sensitive SPR sensor for widedynamic range detection[J]. Optics letters,2011,36(20):4092-4094.
    [41] Wales D J, Parker R M, Gates J C, et al. An integrated Bragg grating oxygensensor using a hydrophobic sol-gel layer doped with an organic dye[C]//TheEuropean Conference on Lasers and Electro-Optics. Optical Society of America,2011: CH1_5.
    [42] Fan Y, Zhu T, Shi L, et al. Highly sensitive refractive index sensor based on twocascaded special long-period fiber gratings with rotary refractive indexmodulation[J]. Applied optics,2011,50(23):4604-4610.
    [43] Jin L, Li M, He J J. Highly-sensitive silicon-on-insulator sensor based on twocascaded micro-ring resonators with vernier effect[J]. Optics Communications,2011,284(1):156-159.
    [44] Kozma P, Hámori A, Kurunczi S, et al. Grating coupled optical waveguideinterferometer for label-free biosensing[J]. Sensors and Actuators B: Chemical,2011,155(2):446-450.
    [45] Hiltunen M, Hiltunen J, Stenberg P, et al. Polymeric slot waveguideinterferometer for sensor applications[J]. Optics express,2014,22(6):7229-7237.
    [46] Kozma P, Kehl F, Ehrentreich-F rster E, et al. Integrated planar opticalwaveguide interferometer biosensors: A comparative review[J]. Biosensors andBioelectronics,2014,58:287-307.
    [47] Lin P, Kwok S, Lin H Y, et al. Mid-Infrared Spectrometer UsingOpto-nanofluidic Slot-Waveguide for Label-free On-Chip Chemical Sensing[J].Nano letters,2013.
    [48] Lai W C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IRabsorption signatures in a photonic crystal slot waveguide[J]. Optics letters,2011,36(6):984-986.
    [49] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J].Chemical reviews,2011,111(6):3828-3857.
    [50] Huang C J, Dostalek J, Sessitsch A, et al. Long-range surfaceplasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitivedetection of E. coli O157: H7[J]. Analytical chemistry,2011,83(3):674-677.
    [51] Pham S V, Dijkstra M, Hollink A J F, et al. On-chip bulk-index concentrationand direct, label-free protein sensing utilizing an optical grated-waveguidecavity[J]. Sensors and Actuators B: Chemical,2012,174:602-608.
    [52] S yn tjoki A. Atomic-layer-deposited thin films for silicon nanophotonics[J].
    [53] Shul R J, McClellan G B, Casalnuovo S A, et al. Inductively coupled plasmaetching of GaN[J]. Applied physics letters,1996,69(8):1119-1121.
    [54] van Dijken S, de Bruin D, Poelsema B. Kinetic physical etching for versatilenovel design of well ordered self-affine nanogrooves[J]. Physical review letters,2001,86(20):4608.
    [55] Hom-Ma Y, Kaji T. Fabricating semiconductor device utilizing a physical ionetching process: U.S. Patent4,025,411[P].1977-5-24.
    [56] Aspnes D E, Studna A A. Chemical etching and cleaning procedures for Si, Ge,and some III‐V compound semiconductors[J]. Applied Physics Letters,1981,39(4):316-318.
    [57] Heitzmann H A. Optical sensor with beads: U.S. Patent4,557,900[P].1985-12-10.
    [58] Laughlin R G. Solvation and structural requirements of surfactant hydrophilicgroups[J]. Advances in liquid crystals,1978,3:41-98.
    [59] Dean J A. Handbook of organic chemistry[M]. New York etc.: McGraw-Hill,1987.
    [60] Tu X, Song J, Liow T Y, et al. Thermal independent silicon-nitride slotwaveguide biosensor with high sensitivity[J]. Optics express,2012,20(3):2640-2648.
    [61] Dante S, Duval D, Sepúlveda B, et al. All-optical phase modulation forintegrated interferometric biosensors[J]. Optics Express,2012,20(7):7195-7205.
    [62] Hong J, Choi J S, Han G, et al. A Mach-Zehnder interferometer based on siliconoxides for biosensor applications[J]. Analytica chimica acta,2006,573:97-103.
    [63] Kim K, Murphy T E. Porous silicon integrated Mach-Zehnder interferometerwaveguide for biological and chemical sensing[J]. Optics express,2013,21(17):19488-19497.
    [64] Latimer W M, Hildebrand J H. Reference book of inorganic chemistry[M].Macmillan,1929.
    [65] Sol-gel science: the physics and chemistry of sol-gel processing[M]. GulfProfessional Publishing,1990.
    [66] Plachetka U, Koo N, Wahlbrink T, et al. Fabrication of photonic ring resonatordevice in silicon waveguide technology using soft UV-nanoimprintlithography[J]. Photonics Technology Letters, IEEE,2008,20(7):490-492.
    [67] Zhou L, Sun X, Li X, et al. Miniature microring resonator sensor based on ahybrid plasmonic waveguide[J]. Sensors,2011,11(7):6856-6867.
    [68] Takezawa Y, Akasaka S, Ohara S, et al. Low excess losses in a Y-branchingplastic optical waveguide formed through injection molding[J]. Applied optics,1994,33(12):2307-2312.
    [69] Blanchette J A, Nielsen L E. Characterization of graft polymers[J]. RubberChemistry and Technology,1956,29(4):1157-1165.
    [70] Zhao J, Sheadel D A, Xue W. Surface treatment of polymers for the fabricationof all-polymer MEMS devices[J]. Sensors and Actuators A: Physical,2012,187:43-49.
    [71] Oh M C, Kim K J, Lee J H, et al. Polymeric waveguide biosensors withcalixarene monolayer for detecting potassium ion concentration[J]. Appliedphysics letters,2006,89(25):251104.
    [72] Shew B Y, Cheng Y C, Tsai Y H. Monolithic SU-8micro-interferometer forbiochemical detections[J]. Sensors and Actuators A: Physical,2008,141(2):299-306.
    [73] Bruck R, Melnik E, Muellner P, et al. Integrated polymer-based Mach-Zehnderinterferometer label-free streptavidin biosensor compatible with injectionmolding[J]. Biosensors and Bioelectronics,2011,26(9):3832-3837.
    [74] Vazquez R M, Osellame R, Nolli D, et al. Integration of femtosecond laserwritten optical waveguides in a lab-on-chip[J]. Lab on a Chip,2009,9(1):91-96.
    [75]马春生,刘式墉.光波导模式理论[M].吉林:吉林大学出版社,2001.
    [76] MacCraith B D, Ruddy V, Potter C, et al. Optical waveguide sensor usingevanescent wave excitation of fluorescent dye in sol-gel glass[J]. Electronicsletters,1991,27(14):1247-1248.
    [77] Horvath R, Pedersen H C, Skivesen N, et al. Monitoring of living cellattachment and spreading using reverse symmetry waveguide sensing[J].Applied Physics Letters,2005,86(7):071101.
    [78] Prieto F, Sepulveda B, Calle A, et al. An integrated optical interferometricnanodevice based on silicon technology for biosensor applications[J].Nanotechnology,2003,14(8):907.
    [79] Yin D, Schmidt H, Barber J, et al. Integrated ARROW waveguides with hollowcores[J]. Optics Express,2004,12(12):2710-2715.
    [80] Plowman T E, Durstchi J D, Wang H K, et al. Multiple-analytefluoroimmunoassay using an integrated optical waveguide sensor[J]. Analyticalchemistry,1999,71(19):4344-4352.
    [81] Flanagan M T, Sloper A N. Waveguide sensor with input and reflecting gratingsand its use in immunoassay: U.S. Patent5,081,012[P].1992-1-14.
    [82] Nishihara H, Haruna M, Suhara T. Optical integrated circuits[M]. New York:McGraw-Hill,1989.
    [83] Horváth R, Pedersen H C, Skivesen N, et al. Optical waveguide sensor foron-line monitoring of bacteria[J]. Optics letters,2003,28(14):1233-1235.
    [84] Mukundan H, Anderson A S, Grace W K, et al. Waveguide-based biosensors forpathogen detection[J]. Sensors,2009,9(7):5783-5809.
    [85] Glaser B G. Theoretical sensitivity: Advances in the methodology of groundedtheory[M]. Mill Valley, CA: Sociology Press,1978.
    [86] Analytical Methods Committee. Recommendations for the definition, estimationand use of the detection limit[J]. Analyst,1987,112(2):199-204.
    [87] Armbruster D A, Tillman M D, Hubbs L M. Limit of detection (LQD)/limit ofquantitation (LOQ): comparison of the empirical and the statistical methodsexemplified with GC-MS assays of abused drugs[J]. Clinical Chemistry,1994,40(7):1233-1238.
    [88] Nuccio S R, Dinu R, Shamee B, et al. Modulation and chirp characterization ofa100-GHz EO polymer Mach-Zehnder modulator[C]//National Fiber OpticEngineers Conference. Optical Society of America,2011: JThA030.
    [89] Heideman R G, Lambeck P V. Remote opto-chemical sensing with extremesensitivity: design, fabrication and performance of a pigtailed integrated opticalphase-modulated Mach–Zehnder interferometer system[J]. Sensors andActuators B: Chemical,1999,61(1):100-127.
    [90] Xiao-Qiang S, Chang-Ming C, Xiao-Dong L, et al. Polymer electro-opticmodulator linear bias using the thermo-optic effect[J]. Chinese Physics Letters,2012,29(1):014212.
    [91] Sepúlveda B, Armelles G, Lechuga L M. Magneto-optical phase modulation inintegrated Mach–Zehnder interferometric sensors[J]. Sensors and Actuators A:Physical,2007,134(2):339-347.
    [92] Xu P, Yao K, Zheng J, et al. Slotted photonic crystal nanobeam cavity withparabolic modulated width stack for refractive index sensing[J]. Optics express,2013,21(22):26908-26913.
    [93] Shul R J, McClellan G B, Casalnuovo S A, et al. Inductively coupled plasmaetching of GaN[J]. Applied physics letters,1996,69(8):1119-1121.
    [94] Allen D J, Johnson K W, Nevin R S. Hydrophilic polyurethane membranes forelectrochemical glucose sensors: U.S. Patent5,322,063[P].1994-6-21.
    [95] Yasuda H, Sharma A K, Yasuda T. Effect of orientation and mobility of polymermolecules at surfaces on contact angle and its hysteresis[J]. Journal of PolymerScience: Polymer Physics Edition,1981,19(9):1285-1291.
    [96] CRC handbook of chemistry and physics[M]. Boca Raton, FL: CRC press,1988.
    [97] Tu X, Song J, Liow T Y, et al. Thermal independent silicon-nitride slot waveguidebiosensor with high sensitivity[J]. Optics express,2012,20(3):2640-2648.
    [98] Prieto F, Sepulveda B, Calle A, et al. An integrated optical interferometricnanodevice based on silicon technology for biosensor applications[J].Nanotechnology,2003,14(8):907.
    [99] Uriu-Adams J Y, Keen C L. Copper, oxidative stress, and human health[J].Molecular aspects of medicine,2005,26(4):268-298.
    [100]Sol-gel science: the physics and chemistry of sol-gel processing[M]. GulfProfessional Publishing,1990.
    [101]Rabiei P, Steier W H, Zhang C, et al. Polymer micro-ring filters andmodulators[J]. Journal of Lightwave Technology,2002,20(11):1968.
    [102]Ramachandran A, Wang S, Clarke J, et al. A universal biosensing platformbased on optical micro-ring resonators[J]. Biosensors and Bioelectronics,2008,23(7):939-944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700