环境样品中痕量铀、钍、镎和钚的电感耦合等离子体质谱(ICP-MS)分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核设施的运行,不可避免有放射性物质弥散到环境中。随着核能的开发应用,为评价放射性废物对坏境的影响及确定放射性废物安全处置方案,长寿命放射性核素的环境行为越来越受到各国环境科学工作者的关注。研究环境中铀、镎、钚等长寿命放射性核素的精密测定,对保护公众安全和保护环境,对了解核设施的历史操作情况和现状,都具有重要意义。
     环境样品基体复杂,铀、镎和钚等锕系元素含量非常低,在复杂的生态条件下,这些核素常常具有复杂多变的化学形态,要准确测定其含量,必须要有灵敏可靠的检测方法。传统的放化分析方法主要包括α谱测量法、中子活化分析法、液体闪烁法、固体径迹法和γ谱法等,这些方法有制源过程复杂、测量时间较长、易受环境天然放射性元素的掩盖等缺陷,在许多方面已不能满足辐射防护与分析监测的要求。
     随着新型分析技术的不断发展,痕量与超痕量非放射性检测技术已逐步应用于测量环境样品中放射性核素。电感耦合等离子体质谱(ICP-MS)具有灵敏度高、干扰少、检测限低、测量时间短、可进行多核素同时测量等特点。自八十年代以来,国外对ICP-MS测量环境样品中的铀、钍、镎和钚的研究表明,ICP-MS在测量长寿命放射性核素方面是最有发展前景的测量技术之一。任何分析技术的发展都有其局限性,ICP-MS也有不足之处,如测量环境样品中痕量水平的镎和钚时,存在一定干扰等。建立简便、快速的化学分离预处理技术,是ICP-MS成功应用于环境样品中痕量与超痕量放射性核素分析的关键。本文主要研究了以下内容:
     (1)国内率先开展微波消解溶样-ICP-MS同时直接测定土壤样品中U和Th
     根据微波消解法处理样品速度快、试剂用量少等特点,引入微波消解法处理土壤样品;用209Bi做内标排除基体干扰;用2%(v/v)HN03消除ICP-MS测量时产生的记忆效应;用IAEA标样验证了分析方法的准确度等。分析了四种土壤样品,获得U、Th含量的相对标准偏差低于10%。
     (2)环境样品中U同位素丰度比的ICP-MS测量方法研究
     研究了TOPO萃取色层分离环境样品中U的方法。通过色层柱体积、上柱酸度、洗涤酸度,以及不同洗脱剂的条件实验,确定了分离流程,获得U的全程回收率约98%,
    
     中国原子能科学研究院博士学位论文 摘 要
     对土壤样品的去污因子为 l.4 X 10’-l.8 X 10’。
     通过对不同丰度铀同位素标样的测量研究,确定了ICPMS测量铀同位素的质量偏
     倚系数,比较研究了扫描和跳峰两种数据采集方式,获得刀’U/23b精密度忧于 1%、
     ”‘U/2”U、”6U/235U、“勺123勺和’“U/23’U优于 5%。两种方式测量实际样品的结果吻
     A
     ()首次建立了 TOA革取色层分离-ICPMS测量环境样品中锋的方法
     关于TOA应用于分离环境样品中的痕量锋,只有液-液摹取法见诸报道。我们建立
     了 TOA$取色层法分离和 ICP-MS测定环境样品中刀Np的方法。该方法操作简便、
     快速、准确、可靠,对模拟土壤样品分离锋的回收率接近 100%,刀佃p的检测限为 0.46
     pg mL‘*.2 x 10-’Bq rnL-‘卜对刀8U的去污因子超过 10\ 完全适合于环境样品中痕量
     ‘’hp的检狈。
     (4)革取色层分离-ICPMS测量环境样品中的钎
     在国家标准方法(GB ZIg刁-89)的基础上,通过改变样品上柱流速、用加热的
     0.02mOIL-’HZCZO。+0.16md’HNO。洗脱色层柱,使土壤样品中的针的凹收率为
     (91.7。8.3)%。改进了国标方法。
     (5)在国内首次用 ICP-MS测定了针的同位素丰度比值,成功地将同位素稀释法
     应用于ICP-MS测量环境样品中的环
     采用优化的仪器条件,测定了‘“Pu/239PU的比值。将同位素稀释法应用于 ICP-MS,
     测量了环境样品中*的含量。通过对IAEA标准样品的测定,检验了该方法的准确性。
     用该方法测定了核设施的实际样品。
     (6)环境样品中痕量锋和钎的ICP-MS同时测量方法研究
     经TO A革取色层柱分离环境样品中的基体,通过两次上柱,将Np和PU同时洗脱,
     实现了1*-*S同时测定帅和h的含量。以IAEA标样进行了验证,PU的测定值与
     标样的推荐值较好吻合(标样中无Np的标推值人初步证明ICP-MS同时测定Np和
     Pll的可行性。
Small amounts of radioactive materials are lost inevitably to the environment during any processing of nuclear material. With the development of nuclear power industry the corresponding waste has been grown. In order to evaluate the radioactive waste, which could affect the environment, and to devise projects for the nuclear waste disposal, the behaviour of long-lived artificial radionuclides in the environment are subject to detailed studies and are of increasing concern to environmental researchers. By analyzing radionuclides such as uranium. neptunium and plutonium in environmental samples, which were collected in the immediate environment of a nuclear process or nuclear site, researchers can detect evidence of the corresponding nuclear activities. Results from such research can also supply reliable information to assure the public safety and protect the environment.
    The concentration of neptunium and plutonium is extremely low in environmental samples. Additionally such samples have a complex matrix composition, which is to be taken into account for a proper analysis. Conventional radiochemical methods such as alpha spectrometry, neutron activation analysis, liquid scintillation system, fission track and gamma spectrometry for the quantitative determination of neptunium and plutonium often require complicated and time-consuming sample preparation and separation procedures. Due to the large amount of the complex and often unknown matrix, the analysis may also be covered by naturally occurring radionuclides.
    With the development of new analysis techniques, non-radioactive methods are increasingly used for the determination of trace or ultratrace radionuclides hi environmental samples. Inductively coupled plasma mass spectrometry (ICP-MS) has some advantages, such as high sensitivity, low detection limits, short analysis time, less chemical interferences and multi-elemental capability. Since 1980s, ICP-MS has been used overseas for the determination of uranium, thorium, neptunium, and plutonium in environmental samples. ICP-MS is one of the most suitable analysis techniques for the measurement of the long-lived radionuclides. However, ICP-MS is susceptible to spectral interference and non-spectral interference or
    
    
    
    matrix effects. Therefore the set up of a simple, fast separation procedure is the key to success when traces of radionuclides are measured by ICP-MS. The main topics of research presented in this paper are as follows (points 1 to 6):
    (1) A microwave acid-digestion - ICP-MS method was established for the direct determination of U and Th in soil samples:
    A microwave acid-digestion method, which is characterised by faster digestion and smaller reagent consumption than traditional approaches for the dissolution of soil samples has been developed. The matrix effects of soil have been effectively corrected by using 209Bi as an internal standard. The memory effect during aspiration of the liquid sample into the ICP-MS has been eliminated by using 2% (v/v) HNOs. The results obtained from soil standards of IAEA are in good agreement with recommended values. This method was applied to four real soil samples. The results show a standard precision of below 10%.
    (2) Studies on the method of determination of uranium isotopes ratios in environmental samples:
    An efficient separation procedure for uranium from environmental samples by TOPO chromatographic extraction has been developed. The procedure has been optimized experimentally for the size of the column, different concentrations of nitric acid for column load, column rinse and the different types of eluent. Uranium was recovered with approximately 98% efficiency by the improved and optimized procedure. The decontamination factors for the soil matrix is approximately 1.4 x 103 up to 1.8 x 105.
    The instrumental mass bias is usually calculated from the analysis of reference materials with certified isotope abundance ratios. For both scan and jump mode the isotope discrimination correction was evaluated and the accuracy was compared. The results s
引文
[1]潘自强.环境危害评价-公众健康危害评价方法及其应用.北京:原子能出版社,1991:p47.
    [2]饶林峰.锕系元素环境化学.核化学与放射化学,1986,8(3):188.
    [3]R.W.Boyle著,朱文泉,周镭庭,于铭强,傅祥林译.铀和钍矿床的地球化学普查.北京:原子能出版社,1988:p9,29,30.
    [4]D.R.Lide.Handbook of Chemistry and Physics.CRC Press,Boca Raton,FL,1990.
    [5]D.C.Kocher."Radioactive Decay Data Tables",National Technical Information Service,U.S.Department of Commerce,Springfield,VA,1988.
    [6]著,张心祥,祝疆,姜延林等译.镎的分析化学.北京:原子能出版社,1978:p1,7.
    [7]R.C.Thompson.Neptunium-the Neglected Actinide:a Review of the Biological and Environmental Literature.Radiat.Res.,1982,90:1~33.
    [8]E.Holm.in:Impact of Radionuclide Release into the Marine Environment,IAEA-SM-243,Vienna 1981,p155.
    [9]M.S.Baxter.The Disposal of High-activity Nuclear Wastes in the Ocean.Mar.Poll.Bull.,1982,14:126~132.
    [10]B.L.Cohen.Effects of the ICRP Publication 30 and the 1980 Bier Report on Hazard Assessments of High-level Wastes.Health Phys.,1982,42:133~143.
    [11]B.L.Cohen.Effects of Recent Neptunium Studies on High-level Waste Hazard Assessment.Health Phys.,1983,44:567~569.
    [12]A.Aarkrog.Long-lived Radionuclides Important in Marine Waste Disposal.In the Behavior of Long-Lived Radionuclides Associated with the Deep-Sea Disposal of Radioactive Wastes,IAEA-TECDOC-368,IAEA,Vienna,1986,p149~154.
    [13]G Kirchner.A New Hazard Index for the Determination of Risk Potentials of Disposed Radioactive Waste.J.Environ.Radioact.,1990,11:71~97.
    [14]G A.Burney,R.M.Harbour.Radiochemistry of Neptunium.1974,NAS-NS-3060.
    [15]A.S.Hursthouse,M.S.Baxter,F.R.Livens,H.J.Duncan.Transfer of Sellafield-defived ~(237)Np to and within the Terrestrial Environment.J.Environ.Radioactivity.1991,14:147~174.
    
    
    [16] B. S. Jensen. The Geochemistry of Radionuclides with Long Half-lives: Their Expected Migration Behaviour, RISO-R-430, RISO National Lab. Denmark. 1980.
    [17] K. Nilsson, & L. Carlsen. The Migration Chemistry of Neptunium, RISO-M-2792, RISO National LAB., Denmark. 1989.
    [18] J. J. Katz, G T. Seaborg, & L. R.Morss. The Chemistry of the Actinide Elements, 2nd, Chapman and Hall, London. 1986.
    [19] R. J. Pentreath. The Analysis of Pu in Environmental Samples: a Brief Historical PerspectiveAppl. Radiat. Isot, 1995, 46: 1279.
    [20] A. C. Chamberlain. Environmental Impact of Particles Emitted from Windscale Piles, 1954-7 Sci. Total Environ., 1987, 63: 139.
    [21] A. Aarkrog, H. Dahlgaard, S. P. Nielsen, A. V. Trapeznikov, I. V. Molchanova, V. N. Pozolotina, E. N. Karavaeva, P. I. Yushkov and G G Polikarpov. Radioactive Inventories from the Kyshtym and Karachay Accidents. Estimates Based on Soil Samples Collected in the South Urals (1990-1995) Sci. Total Environ., 1997, 201 : 137.
    [22] D. Lux, L. Kammerer, W. Ruhm and E. Wirth. Cycling of Pu, Sr, Cs, and Other Long-living Radionuclides in Forest Ecosystems of the 30-km Zone Around Chernobyl Sci. Total Environ., 1995, 173/174 : 375.
    [23] Cornelius Keller 著 ,《超铀元素化学》编译组译.镎的氧化还原反应.北京:原子能出版社, 1977: p42, 342,502.
    [24] M. Yamamoto, H. Kofuji, A. Tsumura, K. Yuita, S. Yamasaki, M. Komamura, K. Komura. Temporal Feature of Global Fallout Sup 237 Np Deposition in Paddy Field Through the Measurement of Low-level 237Np by High Resolution ICP-MS. Radiochim. Acta., 1994, 64(3-4) : 217-224.
    [25] J. S. Crain, L. L. Smith, J. S. Yaeger, J. A. Alvarado. Determination of Long-lived Actinides in Soil Leachates by Inductively Coupled Plasma Mass Spectrometry. J. Radioanal. Nucl. Chem., 1995, 194(1) : 133-139.
    [26] J. Toole, A. S. Hursthouse,et al. The Determination of Actinides in Environmental Samples by ICP-MS. Plasma Source Mass Spectrometry. 1990, p155
    [27] N. Momoshima, H. Kakiuchi, Y. Maeda. Identification of the Contamination Source of Plutonium in Environmental Samples with Isotopic Ratios Determined by Inductively Coupled Plasma Mass Spectrometry and Alpha-spectrometry. J. Radioanal. Nucl. Chem., 1997, 221(1-2) : 213-217.
    
    
    [28]C.K.Kim,Y.Oura,H.Nitta,N.Ikeda,Y.Takaku.Measurement of ~(240)pu/~(239)pu Ratio by Fission Track Method and Inductively Coupled Plasma Mass Spectrometry.J.Radioanal.Nucl.Chem.Letters,1989,136(5):353~362.
    [29]武汉大学等五校编,分析化学.高等教育出版.1986:p3.
    [30]N.E.Bores.Radiobioassay Intercomparison Studies of U-nat,Pu-238,Pu-239 and Am-241,Ph.D.Dissertation,University of Tennessee.1999:p5~7.
    [31]国际辐射单位与测量委员会第22号报告“低水平放射性测量”.原子能出版社,1972:p1.
    [32]中华人民共和国国家标准,GBJ8-74“放射性防护规定”.北京:原子能出版社,1974:p12.
    [33]汪尔康主编,21世纪的分析化学.环境分析化学发展趋势.北京:科学出版社,1998:p309.
    [34]罗文宗,陈连仲等,放射化学分析.北京:科学出版社,1988:p85,95,59.
    [35]C.W.Sill.Some Problems in Measuring Plutonium in the Environment.Health Physics,1975,29:619.
    [36]Reference Methods for Marine Radioactivity studies,Ⅱ,Technical Report Series No169 IAEA Vienna.1975.
    [37]H.Levine et al.Health Phys.,1965,11:117
    [38]W.B.Silker.BNWL-36.
    [39]王功鹏,土壤和尿中~(239)Pu的放射化学测定.核防护,1980,2:65.
    [40]C.W.Sill et al.Purification of Radioactive Tracers for Use in High Sensitivity Alpha Spectrometry.Th,Pa,U,Np,Pu,Am,Cm,and Cf Tracers.Anal.Chem.,1974,46:1725.
    [41]J.C.Veselsky.Problems in the Determination of Plutonium in Bioassay and Environmental Analysis Anal.Chem.Acta,1977,90:1.
    [42]阪上正信.环境中的超铀元素,辐射防护,1990,10(2):81
    [43]E.B.Fowler,R.W.Henderson,M.F.Miliigan.Proceeding of Environmental Plutonium Syposium Held at Lasl.LA-4756,1971.
    [44]P.W.Krey,D.C.Bogen.Determination of Acid Leachable and Total Plutonium in Large Soil Samples.J.Radioanal.Nucl.Chem.,1987,115:335.
    [45]B.F.Myasoedov,F.I.Pavlotskaya.Measurement of Radioactive Nuclide in the Environment.Analyst,1989,114(3):255.
    
    
    [46]N.Y.Chu.Plutonium Determination in Soil by Leaching and Ion-exchange Separation.Anal.Chem.,1971,43:449.
    [47]中华人民共和国国家标准,水中微量铀的分析方法,GB6788-86,1986.
    [48]中华人民共和国国家标准,空气中微量铀的分析方法,GB12377-90,激光液体荧光法,1990.
    [49]中华人民共和国国家标准,土壤中铀的测定,GB11220-89,1989.
    [50]中华人民共和国国家标准,生物样品灰中铀的测定,激光液体荧光法,GB11223.1-89,1989.
    [51]中华人民共和国国家标准,水中钍的分析方法,GB11224-89,1989.
    [52]1960, 2: 357.
    [53]K.Sekind,T.Imai,A.Kasai.Liquid~liquid Extraction Separation and Sequential Determination of Plutonium and Americium in Environmental Samples by Alpha~spectrometr.Talanta,1978,34:567.
    [54]马俊杰,战庆长,韩寿岭.食品中~(237)Np和~(239)Pu的同时测定.辐射防护,1987,7(2):128.
    [55]M.Naumann,G Ubl.Radiochemische Bestimmung Von Plutonium Urinbei Gegenwart Von Komplexen Dekorporationsmitteleln.J.Radioanal.Chem.,1980,58:340.
    [56]A.D.Site,V.Marchionni,C.Testa.Radiochemical Determination of Plutonium in Marine Samples by Extraction Chromatography.Anal.Chem.Acta.,1980,117:217.
    [57]中华人民共和国国家标准,土壤中钚的测定(萃取色层法).GB11219.1~89.北京:中国标准出版社.1989.
    [58]K.Bunzl,W.Kraeke.Simultaneous Determination of Plutonium and Americium in Biological and Environmental Samples.J.Radioanal.Nucl.Chem.,1987,115:13.
    [59]A.Yamato.An Anion Exchange Method for the Determination of ~(241)Am and Plutonium in Environmental and Biological Samples.J.Radioanal.Chem.,1982,75:265.
    [60]F.S.Jiang,S.C.Lee,S.N.Bakhtiar,et al.Determination of Thorium,Uranium and Plutonium Isotopes in Atmospheric Samples.J.Tadioanal.Nucl.Chem.,1986,100:65.
    [61]N.Hayashi,J.Ishida,A.Yamato,et al.Determination of ~(239+240)pu and ~(241)Am in Environmental Samples.J.Radioanal.Nucl.Chem.,1987,115:369.
    
    
    [62] M. Shamsipur, A. R. Ghiasvand, and Y. Yamini. Solid-Phase Extraction of Ultratrace Uranium(VI) in Natural Waters Using Octadecyl Soloca Membrane Disks Modified by Tri-n-octylphosphine Oxide and its Spectrophotometric Determination with Dibenzoylmethane. Anal. Chem., 1999, 71: 4892-4895.
    [63] S. A. Ivanova, M. N. Mikheeva, A. P. Novikov, B. F. Myasoedov. Preconcentration of Neptunium by Supported Liquid Membranes for Luminescent Analysis of Environmental Samples. J. Radioanal. Nucl. Chem., 1994, 186(4) : 341-352.
    [64] V. N. Yepimakhov, S. V. Glushkov. Determination of U, Pu, Am and Cm in Water Coolant of Nuclear Power Plants Using Membranes Impregnated with Hydrated Manganese Dioxide. J. Radioanal. Nucl. Chem., 1998, 232:163-166.
    [65] J. E. Andrews, G F. Hunt, G P. Russ, J. M. Sims. Rapid Determination of Plutonium in Effluent by ICP-MS. American Nuclear Society. 1991, 88: 43.
    [66] C. K. Kim, S. Morita, N. Ikeda, R. Seki, Y. Takaku, D. J. Assinder. Distribution and Behavior of 99Tc, 237Np, 239+240pu and 241 Am in the Coastal and Estuarine Sediments of the Irish Sea. J. Radioanal. Nucl. Chem., 1992. 156 (1) : 201-213.
    [67] M. Hollenbach, J. Grohs, S. Mamich. Flow Injection Sample Pretreatment for the Determination of Radionuclides in Soils by ICP-MS. Federal of Analytical Chemistry and Spectroscopy Societies (FACSS). 1994,257: 110. 098.
    [68] M. Yamamoto, A. Tsumura, T. Tsukatani. Plutonium Isotopic Composition in Soil from the Former Semipalatinsk Nuclear Test Site. Radiochimica-Acta, 1996, 72(4) : 209-215.
    [69] A. E. Eroglu, C. W. McLeod, K. S. Leonard, D. Mc. Cubbin. Determination of Plutonium in Seawater Using Co-precipitation and Inductively Coupled Plasma Mass Spectrometry with Ultrasonic Nebulisation. Spectrochimica Acta, Part B, 1998, 53: 1221-1233.
    [70] Y. Muramatsu, S. Uchida, K. Tagami, S. Yoshida and T. Fujikawa. Determination of Plutonium Concentration and its Isotopic Ratio in Environmental Materials by ICP-MS after Separation Using Ion-exchange and Extraction Chromatography. J Anal. At. Spectrom, 1999, 14: 859-865.
    [71] M.本尼迪克特,T.H.皮格福得,H.W.利瓦伊著,汪得熙,王方定,祝疆等译.核化学工程.北京:原子能出版社, 1988: p204,387.
    [72] D. Langmuir, J. S. Herman. The Mobility of Thorium in Natural Waters at Low Temperatures. Geochim. Cosmochim. Acta, 44 (11) : 1753-1766.
    
    
    [73]罗文宗,张文青.钚的分析化学.北京:原子能出版社.1983,p59,68,123,165.
    [74]D.B.James,W.A.Bayer.Processing of Plutonium by Ion Exchange Ⅷ.Self-diffusion Studies in Anion-exchange Resin.USAEC Report LA-3534,1966.
    [75]D.W.Ockenden,G.A.Welck.The Preparation and Properties of Some Plutonium Compounds.Part Ⅴ.Colloidal Quadrivalent Plutonium.J.Chem.Soc.,1956:3358.
    [76]D.W.Costanzo,R.E.Biggers.A Study of the Polymerization,Depolymerization and Precipitation of Tetravalent Plutonium as Functions of Temperature and Acidity by Preliminary Report.USAEC Report ORNL-TM-585,1963.
    [77]M.H.Llogd,R.G.Haire.Studies on the Chemical and Colloidal Nature of Pu(Ⅳ) Polymer.CONF-730927-2,1973.
    [78]鲍林,卡列林著,朱永,丛进阳,焦荣洲等译.锕系元素氧化还原热力学.北京:原子能出版社,1980:p187.
    [79]秦启宗,毛家骏,金忠,陆志仁著,化学分离学.北京:原子能出版社,1984:p64,19.
    [80]A.Premadas,P.K.Srivastava.Rapid Laser Fluorometric Method for the Determination of Uranium in soil,Ultrabasic Rock,Plant Ash,Coal Fly Ash and Red Mud Samples.J.Radioanal.Nucl.Chem.,1999,242:23~27.
    [81]H.Bern,D.E.Ryan.Determination of Seven Trace Elements in Natural Waters by Neutron Activation Analysis after Preconcentration with 1-(2-pyridylazo)-2-naphthol.Anal.Chim.Acta,1984,166:189.
    [82]N.B.Kim,K.S.Park,H.J.Woo,K.Y.Lee,Y.Y.Yoon,D.K.Kim.Determination of U and Thin Tungsten by Radiochemical Neutron Activation Analysis.J.Radioanal.Nucl.Chem.,1992,160:539~548.
    [83]J.G.Fleissner.Source of Measurement Error in Plutonium Solids Isotope Assay Measurements,in Proc.Third International Conference on Facility Operations-Safeguards Interface,San Diego,California,November 29-December $,1987(American Nuclear,Society,La Grange Park,Illinois,1988),306~311.
    [84]P.A.Russo."Task GK-edge Densitometer for Measuring Plutonium Product Concentrations".in Taskex-Tokai Advanced Safeguards Technology Exercise IAEA,Vienna,Austria,1982,p117~132.
    
    
    [85] R. Gunnink. "MGA2: A one-Detector Code for Rapid High Precision Plutonium Isotopic Measurements," Nucl. Mater, manage. 16(Proceedings Issue), 1987, 352-358
    [86] 沈珠琴,张延安.铀钍分析方法某些进展.岩矿测试. 1992, 11:186-190.
    [87] B. F. Myasoedov, F. I. Pavlotskaya. Measurement of Radioactive Nuclide in the Environment. Analyst. 1989,114 (3) :255.
    [88] S. Z. Zhu, D. T. Yang, S. X. Long, Z. H. Xiao. An Improved Method for the Determination of Pu in the Environment. Radiochim. Acta, 1994, 65: 59-61.
    [89] Y. Baba. Determination of Plutonium by Solvent Extraction-liquid Scintillation Method. J. Radioanal. Chem., 1983, 79:83.
    [90] H. M. Ide, W. D. Moss, M. A. Gantier. Rapid Screening Methods for the Analysis of Pu or Am in Urine. Health Physics. 1985, 49(5) : 970.
    [91] K. Komura, M. Sakanoue, M. Amatnoto. Determination of 240Pu/239Pu Ratio in Environmental Samples Based on the Measurements of LXAx-ray Activity Ratio. Health. Physics, 1984,46: 1213.
    [92] M. E. Wrenn, N. P. Singh, Y. H. Xue. Fission Track Analysis of Plutonium in Small Specimens of Biosamples from the Marshall Islands. Furnished by Brookhaven National Laboratory. DOE/NV/10574-4,1989.
    [93] L. C. Sun, A. R. Moorthy, E. Kaplan, et al. Assessment of Plutonium Exposure in Rengelap and Utirik Populations by Fission Track Analysis of Urine. J. Appl. Radiat. Isot., 1995,46(11) : 1259.
    [94] G Kuppers, G Erdtmann. Determination of Traces of Uranium in Tungsten and Molybdenum by Radiochemical Neutron Activation Analysis Via the Fission Product 140Ba. J. Radioanal. Nucl. Chem., 1995,198: 457-466.
    [95] 杨怀元.液闪计数测定α核素技术的一些进展.辐射防护通讯.1997,17 (3) : 15.
    [96] R J. Rosenberg. No-Conventional Measurement Techniques for the Determination of Some Long-lived Radionuclides Produced in Nuclear Fuel. A Literature Survey. J. Radioanal. Nucl. Chem., 1993, 17(2) : 465.
    [97] A. V. Stepanov, V. M. Aleksandruk, A. S. Babaev, et al. Determination of Uranium and Neptunium by Laser-induced Time Resolved Spectrometry. Radioisotope. 1990, 31(5-6) : 267.
    [98] V. A. Fassel and R. N. Kniseley. Inductively Coupled Plasma: Optical Emission Spectroscopy. Detection limits; Ultratrace Amounts. Anal. Chem., 1974,46, 1110A.
    
    
    [99] V. A. Fassel. A Simultaneous or Sequential Determination of the Elements at All Concentration Levels the Renaissance of an Old Approach. Anal. Chem., 1979, 51: 1290A.
    [100] R. K. Wing, V. A. Fassel, V. J. Peterson, and M. A. Floyd. Inductively Coupled Plasma-atomic Emission Spectroscopy: An Atlas of Spectral Information, Elsevier, New York, 1985.
    [101] R. S. Houk, V. A. Fassel, G D. Flesch, H. J. Svec, A. L. Gray, C. E. Taylor. Inductively Coupled Argon Plasma as An Ion Source for Mass Spectrometric Determination of Trace Elements. Anal. Chem., 1980, 52: 2283-2289.
    [102] K. E. Jarvis. Inductively Coupled Plasma Mass Spectrometry, a New Technique for the Rapid or Ultra-trace Level Determination of the Rare Earth Elements in Geological Materials. Chem. Geol., 1988,68: 31-39.
    [103] R. Feng, N. Machado, and J. Ludden. Geochim. 207Pb /206Pb Ages of Detrital Zircon from Meta Sedimentary Rocks in the Quadrilatero Ferrifero Region, Southern Sao Francisco Craton: Considerations About Source-areas and Sedimentation Ages. Cosmochim. Acta., 1993, 57:3479.
    [104] J. Fucsko, T S. Han, and M. Kbalazs. Application of Vapor Phase Decomposition Techniques (VPD/AAS and ICP-MS) for Trace Element Analysis in Oxide Coatings on Silicon J. Electrochem.Soc.1993,140: 1105.
    [105] R. Dolan, J. Van Loon, D. Templeton, and A. Paudy. Assessment of ICP-MS for Routine Multielement Analysis of Soil Samples in Environmental Trace Elements Studies. Fresenius' J. Anal. Chem., 1990, 336: 99-105.
    [106] K. J. Mulligan, T. M. Davidaon, and J. A. Caruso. Feasibility of the Direct Analysis of Urine by Inductively Coupled Plasma Mass Spectrometry for Biological Monitoring of Exposure to Metals. J. Anal. At. Spetrom., 1990, 5: 301.
    [107] B. T. G Ting, and M. Janghorbani. Application of ICP-MS to Accurate Isotopic Analysis for Human Metabolic Studies. Spectrochim. Acta, Part B, 1987,42: 21.
    [108] R. W. Morrow and J. S. Grain, Editors. Application of Inductively Coupled Plasma-Mass Spectrometry to Radionuclide Determinations. ASTM Publication Code Number 04-012910-35.
    [109] G M. Hieftje, and L. A. Norman. International Journal of Mass Spectrometry Ionization Processes, 1992,118-119: p519.
    
    
    [110] I. B. Brenner, and H. E. Talor. Critical Review of Analytical Chemistry, 1992, 23: p355.
    [111] D. W. Koppenaal. "Atomic Mass Spectrometry", Analytical Chemistry, Review Papers in Even-numbered Years Preceding This Citation, But No Review Was Published in 1994, Vol. 64,1992, p320R.
    [112] J. R. Bacon, et al. Atomic Spectrometry Update-Atomic Mass Spectrometry and X-ray Fluorescence Spectrometry, J. Anal. At. Spectrom., 1994, 9: 267.
    [113] G Holland, and A. Eaton, Eds., Application of Plasma Source Mass Spectrometry II, See Also the First Installment of This Serial Dated 1991, Royal Society of Chemistry, Cambridge, 1993.
    [114] K. E. Jvarvis, A. L. Gray, and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Chapman and Hall, New York, 1992, p 120.
    [115] A. Montaser, and W. Golightly, Eds., Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edition, VCH Publishing, New York, 1992.
    [116] E. H. Evans, J. J. Giglio, T. M. Castillano, and J. A. Caruso. Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry, Royal Society of Chemistry, Cambridge, 1995.
    [117] M. A. Vaughan. and G Horlick. Oxide, Hydroxide and Doubly Charged Species in Inductively Coupled Plasma Mass Spectrometry. Appl. Spectrom., 1986,40: 434-445.
    [118] A. Krushevska, M. Kotrebai, A. Laszitiy, R. M. Barnes, and D. Amarasiriwardena. Application of Tertiary Amines for Arsenic and Selenium Signal Enhancement and Polyatomic Interference Reduction in ICP-MS Analysis of Biological Samples. Fresenius' J. Anal. Chem., 1996, 355: 793-800.
    [119] L. Alves. D. Wiederin, and R. Houk. Reduction of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry by Cryogenic Desolvation. Anal. Chem., 1992, 64:1164.
    [120] J. S. Crain, J. Alvarado. Hydride Interference on the Determination of Minor Actinide Isotopes by Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spec., 1994, 9: 1223-1227.
    [121] C. Riglet, O. Provitina, J. L. Dautheribes, D. Revy. Determination of Traces of Neptunium-237 in Enriched Uranium Solutions Using Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spect., 1992, 7: 923-927.
    
    
    [122] R. Chiappini, J. M. Taillade, and S. Brebion. Development of a High-sensitivity Inductively Coupled Plasma Mass Spectrometer for Actinide Measurement in the Femtogram Range. J. Anal. At. Spec., 1996, 11: 497-503.
    [123] J. R. Pretty, D. C. Duckworth, and G J. Van Berkel. Electrochemical Sample Pretreatment Coupled On-line with ICP-MS: Analysis of Uranium Using an Anodically Conditioned Glassy Carbon Working Electrode. Anal. Chem., 1998, 70: 1141-1148.
    [124] S. Yamasaki and A. Tsumura, Anal. Sci., 1991, 7: 1135.
    [125] Y. Muramatsu, K. Tagami and S. Uchida. Levels of Artificial Radionuclides and Uramium in Raim Water Collected from Ibaraki (Japan) Following the Tomsk-7 Accident in Russia. J. Radioanal. Nucl. Chem. lett., 1994, 188: 305.
    [126] M. Y. Perez-Jordan, J. Soldevila, A. Salvador, A. Pastor and M. Guardia, J. Anal. At. Spectrom., 1998, 13: 33.
    [127] K. Shiraishi, Y. Igarashi, M. Yamamoto, T. Nakajima, I. P. Los, A. V. Zelensky and M. Z. Buzimmy. Concentrations of Thorium and Uranium in Freshwater Samples Collected in the Former USSA. J. Radioanal. Nucl. Chem., 1994, 185: 157-165.
    [128] S. Yoshida, Y. Muramatsu, K. Tagami and S. Uchida, Int. Multi-element Analysis Using ICP-MS to Determine Soil-to-plant and Soil-to-mushroom Transfer Factors. J. Environ. Anal. Chem., 1996, 63: 195.
    [129] Y. Igarashi, H. Kawamura, K. Shiraishi and Y. Takaku. Determination of Thorium and Uranium in Biological Samples by Inductively Coupled Plasma Mass Spectrometer Using Internal Standardisation. J. Anal. At. Spect, 1989,4: 571-576.
    [130] G Russ and J. Bazan. Isotopic Ratio Measurements with an Inductively Coupled Plasma Source Mass Spectrometer. Spectrochim. Acta. Part B, 1987,42: 49.
    [131] S. E. Home, C. M. Davidson, and M. McCartney. Operational Speciation of Uranium in Inter-tidal Sediments from the Vicinity if a Phosphoric Acid Plant by Means of the BCR Sequential Extraction Procedure and ICP-MS. J. Anal. At Spectrom., 1999,14: 163-168.
    [132] J. S. Becker, R. S. Soman, K. L. Sutton, J.A. Caruso and H. J. Dietze. Determination of Long-lived Radionuclides by Inductively Coupled Plasma Quadrupole Mass Spectrometry Using Different Nebulizers. J. Anal. At. Spectrom., 1999,14: 933-937.
    [133] J. S. Crain and B. L. Mikesell. Detection of Sun-ngll Actinides in Industrial Waste Water Matrices by Inductively Coupled Plasma Mass Spectrometer. Appl. Spectrosc., 1992, 46:1498.
    
    
    [134] C. K. Kim, R. Seki, S. Moritat, Sh. I. Yamasaki, A.Tsumura, Y. Takaku, Y. Lgarashi and M. Yamamoto. Application of a High Resolution Inductively Coupled Plasma Mass Spectrometry to the Measurement of Long-lived Radionuclides. J. Anal. At. Spectrom., 1991, 6: 205-209.
    [135] P. S. Alvarado and M. D. Erickson. Determination of Long-lived Radioisotopes Using Electrothermal Vaporization-inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom., 1996,11: 923-928.
    [136] M. Liezers, C. T. Tye, D. Mennie, D.Koller. ASTM Spec. Tech. Publ., 1995, 1291: 61.
    [137] P. Chapon. Presented at Pittcon '97, Atlanta, GA, USA, March, 1997, p16-21,.
    [138] J. S. Crain, J, T. Kiely. Waste Reduction in Inductively Coupled Plasma Mass Spectrometer Using Flow Injection and a Direct Injection Nebulizer. J. Anal. At. Spectrom., 1996,11(7) : 525.
    [139] M. Hollenbach, J. Grohs, M. Kroft, S. Mamich, ASTM Spec. Tech. Publ., 1995, 1291,: 99.
    [140] G A. Burney, R. M. Harbour. Radiochemistry of Neptunium.NAS-NS-3060,1974.
    [141] A. S. Hursthouse, M. S. Baxter, K. Mckay, F. R. Livens. Evaluation of Methods for the Assay of Neptunium and Other Long-lived Actinides in Environmental Matrices. J. Radioanal. Nucl. Chem., 1992,157: 281-294.
    [142] C. K. Kim, A. Takaku, M. Yamamoto, H. Kawamura, K. Shiraishi, Y. Igarashi, S. Igarashi, H. Takayama, N. Ikeda. Determination of 237Np in Environmental Samples Using Inductively Coupled Plasma Mass Spectrometer. J. Radioanal. Nucl. Chem., 1989, 132: 131-137.
    [143] S. H. Sumiya, S. H. Morita, K. Tobita, M. Kurabaryashi. Determination of Technetium-99 and Neptunium-237 in Environmental Samples by Inductively Coupled Plasma Mass Spectrometer. J. Radioanal. Nucl. Chem., 1994, 177: 149-159.
    [144] S. C. Lee, J. M. Hutchinson, K. Inn, M. Thein. Health Phys., 1995, 68:923.
    [145] D. E. Vance, V. F. Belt, T. J. Oatts, D. K. Mann. Neptunium Determination by Inductively Coupled Plasma Mass Spectrometry. J. Radioanal. Nucl. Chem., 1998, 234: 143-146.
    [146] R. J. B. Hall, M. R James, T. Wayman, P. Hulmston. The Feasibility of the Use of
    
    Electrothermal Vaporization ICP-MS for the Determination of Femtogramme Levels of Plutonium and Uranium. Plasma Source Mass Spectrometry, 1990, p145.
    [147] K. P. Jochum, M. Seufert, H. J. Knab. Qualitative Multi-element Analysis of Geochemical and Cosmochemical Sample Using Spark Source Mass Spectrometry. Analytische Chemie.1981, 309:285.
    [148] K. P. Jochum, M. Seufert, S. Best. Improvement in Precision and Accuracy of Spark Source Mass Spectrometry Analysis by Sample Dissolution and Isotope Dilution. Anal. Chem., 1981,309:308.
    [149] D. W. Koppenaal, R. G Lett, F. R. Brown, S. E. Manahan. Determination of Nickel, Copper, Cadmium, Thallium and Lead in Coal Gasification Products by Isotope Dilution Spark Source Mass Spectrometry. Anal. Chem., 1980, 52:44.
    [150] K. G Heuman. High Accuracy in the Element Analysis by Mass Spectrometry. Anal. Chem., 1986, 324: 601.
    [151] C. J. Allegre, A. Prinzhofer and A. Pierre. Stochastic Melting of The Marble Cake Mantle: Evidence from Local Study of the East Pacific Rise at 12 Sup 0 50'N. Earth Planet Sci. Lett., 1989, 92: 179.
    [152] C. Pin. Isotope Dilution Inductively Coupled Plasma Mass Spectromety: a Straightforward Method for Rapid and Accurate Determination of Uranium and Thorium in Silicate in Silicate Rocks. Anal. Chim. Acta., 1992, 256: 153-161.
    [153] J. W. McLaren, D. Beauchemin, and S. S. Berman. Application of Isotope Dilution Inductively Coupled Plasma Mass Spectromety to the Analysis of Marine Sediments. Analytical Chemistry. 1987, 59(4) : 610-613.
    [154] J. I. G Alonso, F. Sena, P. Arbore, M. Betti, and L. Koch. Determination of Fission Products and Actinides in Spent Nuclear Fuels by Isotope Dilution Ion Chromatography Inductively Coupled Plasma Mass Spectromety. J. Anal. At. Spectrom., 1995,10: 381-393.
    [155] K. Shiraishi, Y. Igarashi, G Tanaka, Y. Takaku, K. Masuda, K. Yoshimizu, J. F. McInroy. Determination of Thorium and Uranium in Total Diet Samples by Inductively Coupled Plasma Mass Spectromety. J. Anal. At. Spectrom., 1991,6(4) : 335-338.
    [156] B. G Ting, D. C. Paschal, K. L. Caldwell. Determination of Thorium and Uranium in Urine with Inductively Coupled Argon Plasma Mass Spectrometry. J. Anal. At. Spectrom., 1996,11 (5) : 339-342.
    
    
    [157] F. B. Rabee. Estimating the Concentration of Uranium in Some Environmental Samples in Kuwait after the 1991 Gulf War. Applied Radiation and Isotopes. 1995, 46(4) : 217-220.
    [158] M. Yukawa, Y. Watanabe, Y. Nishimura, Y. Guo, Z. Yongru, H. Lu, W. Zhang, L. Wei, Z. Tao. Determination of U and Th in Soil and Plants Obtained from a High Natural Radiation Area in China Using ICP-MS and r-counting. Fresenius' J. AnaL. Chem., 1999, 363: 760-766.
    [159] M. E. Himri, A. Pastor, M. de LaGuardia. Determination of Uranium in Tap Water by ICP-MS. Fresenius' J. Anal. Chem., 2000, 367: 151-156.
    [160] 曹心德 ,尹明,王晓蓉,赵贵文.微波消解-电感耦合等离子体质谱法测定土壤中微量稀土元素.分析化学研究简报,1999, 27(6) : 679-683.
    [161] C. L. Rose, W. A. Mckay, C. M. Halliwell, J. D. Watterson & J. Toole. Provisional Environmental Sampling Protocols. April 1997.
    [162] T. E. Sampson, Los Alamos National Lab Report LA-10750-MS. 1986.
    [163] A. J. Walder and P. A. Freedman. Isotopic Ratio Measurement Using a Double Focusing Magnetic Sector Mass Analyzer with an Inductively Coupled Plasma as an Ion Source. J. Anal. At. Spectrom.,1992, 7 :517-575
    [164] I. S. Begley and B. L. Sharp. Occurrence and Reduction of Noise in Inductively Coupled Plasma Mass Spectromety for Enhanced Precision in Isotope Ratio Measurement. J. Anal. At. Spectrom., 1994, 9:171-176.
    [165] W. Kerl, J. S. Becker, H. J. Dietze and W. Dannecker. Isotopic and Ultratrace Analysis of Uranium by Double-focusing Sector Field ICP Mass Spectrometry. Fresenius' J. Anal. Chem., 1997, 359: 407-409.
    [166] J. S. Becker and H. J. Dietze. .Precise Isotope Ratio Measurements for Uranium, Thorium and Plutonium by Quadrupole-based Inductively Coupled Plasma Mass Spectromety. Fresenius' J. Anal. Chem., 1 999, 364: 482-488.
    [167] J. S. Becker and H. J. Dietze. Application of Double Focusing Sector Field ICP Mass Spectrometry with Shielded Torch Using Different Nebulizers for Ultratrace and Precise
    
    Isotope Analysis of Long-lived Radionuclides Invited Lecture. J. Anal. At. Spectrom., 1999, 14: 1493-1500.
    [168] L. L. Smith, J. S. Crain, J. S. Yaeger, E. P. Horwitz, H. Diamond, R. Chiarizia. Improved Separation Method for Determining Actinides in Soil Samples. J. Radioanal. Nucl. Chem., 1995,194: 151-156.
    [169] E. J. Wyse, J. A. Maclellan, C. W. Lindenmeier, J. P. Bramson, D. W. Koppenaal. Actinide Bioassays by ICP-MS. J. Radioanal. Nucl. Chem., 1998, 234: 165-170.
    [170] C. Testa, D. Desideri, M. A. Meli, C. Roselli. New Radiochemical Procedures for Environmental Actinide Measurements and Data Quality Control. J. Radioanal. Nucl. Chem., 1995, 194: 141-149.
    [171] R. M. Brown, S. E. Long, C. J. Pickford. The Measurement of Long Lived Radionuclides by Non-radiometric Methods. Sci. Total. Environ., 1988, 70: 265-274.
    [172] Y. Igarashi, C. K. Kim, Y. Takaku, K. Shiraishi, M. Yamamoto, N. Ikeda. Application of Inductively Coupled Plasma Mass Spectromety to the Measurement of Long-lived Radionuclides in Environmental Samples. Anal. Sci., 1990,6: 157-164.
    [173] D. J Assinder, M. Yamamoto, C. K. Kim, R. Seki, Y. Takaku, Y. Yamauchi, K. Komura, K. Ueno, G S. Boune. Neptunium in Intertidal Coastal and Estuarine Sediments in the Irish Sea. J. Envirn. Radioactivity., 1991,14: 135-145.
    [174] C. K. Kim, Y. Takaku, M. Yamamoto, H. Kawamura, K. Shiraishi, Y. Igarashi, S. Igarashi, H. Takayama, N. Ikeda. Determination of 237Np in Soil Samples Using Inductively Coupled Plasma Mass Spectrometry. Radioisotopes. 1989, 38: 153-154.
    [175] T. D. Filer. Separation of the Trivalent Actinides from the Lanthanides by Extraction Chromatography. Anal. Chem., 1974,46(4) : 608-610.
    [176] E. P. Horwitz, R. Chiarizia, M. L.Dietz, H. Diamond, D. Nelson. Separation and Preconcentration of Actinides from Acidic Media by Extraction Chromatography. Anal. Chim. Acta., 1993,281:361-372.
    [177] S. N. Nguyen, P. E. Miller, J. F. Wild and D. P. Hickman. Simultaneous Determination of 237Np, 232Th and U Isotopes in Urine Samples Using Extraction
    
    Chromatography, ICP-MS and Gamma-ray Spectroscopy. Radioactivibility & Radiochemistry. 1996, 7(3) : 16-21.
    [178] K. Mayer, W. DeBolle, A. Alonso, M. Blanco and P. D. Bievre. The Potential if Tracking the oOrigin of Natural Uranium: Reading the Isotopic Identity Card of Materials. 3rd Int Conf Nucl and Radiochemistry, Wien, 7-11. Sept. 1992
    [179] S. Stump, H. Dahlgaard, and S. C. Nielsen. High Resolution Inductively Coupled Plasma Mass Spectrometry for the Trace Determination of Plutonium Isotopes and Iisotope Ratios in Environmental Samples. J. Anal. At. Spectrom., 1998,13:1321-1326.
    [180] P. I. Mitchell, L. L. Vintro, H. Dahlgaard, C. Gasco and J. A. Sanchez-Cabeza. Sci. Total Environ., 1997, 202 : 147.
    [181] N. Erdmann, G Herrmann, G Huber, S. Kohler, J. V. Kratz, A. Mansel, M. Nunnemann, G Passler, N. Trautmann and A. Turchin. Resonance Ionization Mass Spectroscopy for Trace Determination of Plutonium in Environmental Samples Fresenius' J. Anal. Chem., 1997, 359: 378-381.
    [182] K. Takamiya, T. Iniue, K. Nakanishi, A. Yokoyama, N. Takahashi, T. Saito, H. Baba, Y. Nakagome. Fission Fragment Configurations at the Scission Point of 233U, 235U and 239Pu(nth,f). J. Radion. Nucl. Chem., 1999, 239: 117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700