Lu-Hf同位素地球化学方法及其在华南古元古代变质岩和中生代花岗岩研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文回顾了Lu-Hf同位素地球化学研究进展、报道了MC-ICPMS(多接受器电感耦合等离子体质谱)技术下的岩石与锆石(ZrSiO4)的Hf分离纯化和~(176)Hf/~(177)Hf比值测定方法、以及Lu-Hf同位素体系在华南古元古代变质岩和中生代花岗岩成因研究中的应用。具体包括:
     1、Lu-Hf同位素地球化学研究进展。MC-ICPMS技术的出现后,Hf同位素比值分析技术瓶颈(高电离能带来的难电离问题)被打破,Lu和Hf分离纯化流程日趋简化,样品用量显著减少。该部分综述Lu-Hf同位素体系基本地质地球化学特征、岩石矿物现有分离纯化以及测定方法、以及Lu-Hf同位素体系在地质年代学和地球化学示踪上的应用。研究表明,MC-ICPMS的出现导致了可供分析的地质样品种类显著增多且Hf分离纯化条件显著降低。Lu-Hf体系现在已逐步成为了进行定年和地球化学示踪体系的重要手段。
     2、报道一个改进的单柱Ln-spec提取色谱萃取分离Hf方法。用该方法可以有效地分离出岩石样品的基体元素、REE和干扰元素等,并使Hf的回收率>90%、本底<5×10~(-11)g。用该方法对一些国际和国家岩石标样进行了Hf分离,采用单聚焦和双聚焦两种型号的MC-ICPMS测定了Hf同位素组成,国际标样的结果与文献值在误差范围内完全一致,国家标样具有的Hf同位素结果具有很好的外部重现性。
     3、报道一个锆石Hf分离纯化方法及锆石标样的~(176)Hf/~(177)Hf比值的测定结果。Hf分离纯化采用改进的高温高压氢氟酸溶解和其后的一个离子交换分离流程实现,整个流程Hf的回收率高于90%。标准样91500、Temora和We-1~(176)Hf/~(177)Hf比值测定的平均值分别为0.282310±0.000034、0.282706±0.000020和0.281534±0.000009。上述每个结果包括至少7组独立的锆石样晶的溶解、分离和测定,表明标准样91500、Temora和We-1是Hf同位素组成均一的,可作为LAM-MC-ICPMS(激光剥蚀多接受器电感耦合等离子体质谱)的原位微区锆石~(176)Hf/~(177)Hf比值分析过程中外部校正及监控标准样。
     4、报道中国东南部华夏板块1.77Ga的斜长角闪岩的Lu-Hf同位素分析结果。这些斜长角闪岩有异常高的εHf(t)比值(+15.2~+23.3),且εHf(t)比值与已发表的εNd(t)比值表现出良好的正相关(r~2=0.81)。这表明这些斜长角闪岩的Sm-Nd同位素体系没有受到后期变质作用影响,形成过程中受到少量地壳物质混染。混染程度最低的样品(拥有最高Nb/La比值~13)有全球同时期岩石最高的εNd(t)比值(约+8.5)和εHf(t)比值(+22),意味着在古元古晚期华夏古陆下部存在一个极度亏损地幔。该地幔可能形成于晚太古代大规模壳幔分异事件中。Lu-Hf和Sm-Nd的联合调查表明该地幔组成为含少量石榴石(~1%)的尖晶石橄榄岩。新形成岩石圈地幔在冷却过程中,位于石榴石-尖晶石相过渡带的石榴石将周围橄榄岩中的Lu运移到晶格中,导致了华夏斜长角闪岩非常高的Lu/Hf和高放射成因的Hf同位素组成。
     5、报道桂东南大容山-十万大山花岗岩带浦北岩体(东北带)、旧州岩体(中部带)和台马岩体(西南带)全岩的主、微量元素、Sr-Nd同位素和锆石的LAM-MC-ICPMS原位Hf同位素分析结果。岩石学及元素地球化学结果显示:上述三个岩体为典型S型花岗岩;高Ⅰ_(Sr)(>0.721)和低εnd(t)(-9.9~-13.0)意味着它们可能来自古老地壳的重熔。岩浆结晶(~230 Ma)锆石的εHf(t)主要集中在-11~-9,相应T_(DM2)为1.9~1.8 Ga,少数结晶锆石的εHf(t)逐渐升高到-4.5,相应地T_(DM2)降低到1.5 Ga。捕获锆石(1681~384 Ma)的的εHf(t)分布在-17.1~+3.4,T_(DM2)主要集中在2.4 Ga、1.9 Ga和1.5 Ga。岩浆结晶锆石εHf(t)值与根据全岩εNd(t)和“地壳Hf-Nd相关”预测值基本一致,表明T_(DM2)为1.9 Ga的地壳为最重要的物源区。部分岩浆锆石与捕获锆石具有相同的T_(DM2)~1.5Ga,表明平均地壳存留年龄为1.5Ga的物源区参与了该花岗岩带的形成;由于缺少T_(DM2)>2.0Ga的岩浆锆石,少量平均地壳存留年龄为2.4Ga的再循环地壳物质参与了该花岗岩带的形成。因为缺少显著幔源特征的高εHf(t)值锆石,本文认为地幔物质基本没有参与该S型花岗岩带的形成。
This thesis reviews the progress of Lu-Hf isotopic system and its applications, and establishes a rapid chemical separation method of Hf from whole-rock samples and zircon minerals and ~(176)Hf/~(177)Hf ratios determination by MC-ICPMS. This new isotopic systems has been applied to investigations of Paleoproterozoic metamorphic rocks and Mesozoic granitoids from South China. The contents include:
     1. The progress of Lu-Hf isotopic study. Widespread application of Lu-Hf isotopic systems has long been hampered due to the very high ionization potential of hafnium until the advent of MC-ICP-MS technique since 1990s. Meanwhile, a number of methods of separation and purification of Hf have been developed, which significantly reduce the sample mass required for Hf isotopic analysis. This part reviews the geochemical characteristic of Lu-Hf isotopic system, and development of separation and purification methods of Lu and Hf, Hf isotope ratio determination using MC-ICPMS, and the applications of this Lu-Hf isotopic system as a new tool of geochronological dating technique and a geochemical tracer in geological studies.
     2. A modified single-column Ln-Spec extraction chromatography method has been developed for separation of Hf from rock samples. Using this method, hafnium can be effectively separated from the major and rare earth elements as well as the interference elements in rock samples, with recovery of >90% and whole procedure blank of <5×10~(11) g for Hf. A number of international and national rock standards were analyzed for Hf isotopic compositions using both single- and double-focus multiple collector-inductively coupled mass spectrometers. While the analytical results for the international rock standards are identical with those reference values within analytical errors, the external precision for the national rock standards is in good agreement.
     3. A method that Hf in zircon was purified from other interferential elements was developed and the Hf isotope ratios were determined by using a Micromass IsoProbe MC-ICPMS for two international zircon standards 91500 and Temora and one in-house zircon standard We-1. Zircons were digested by HF in high-pressure bombs. For the reason that Zr does not affect Hf isotopic determinations in the simulative experiment, Hf was separated using a modified one-step ion-exchange chromatography. The overall recovery of Hf is >90%. Calibrated by an external standard solution JMC-475 Hf, ~(176)Hf/~(177)Hf ratios of these standard zircons were precisely determined. The average ~(176)Hf/~(177)Hf values of 91500 and Temora and we-1 were 0.282310±0.000034,0.282706±0.000020 and 0.281534±0.000009, respectively. It is concluded that the ~(176)Hf/~(177)Hf ratios of 91500, Temora and We-1 were homogeneous, because the aforementioned Hf isotopic results consist of at least seven separated performances of aliquots for each zircon sample. These results have significant implications for zircon Hf isotopic determination by using LA-MC-ICPMS.
     4. New Lu-Hf isotopic data were reported for the 1.77 Ga amphibolites in the Cathaysia Block of South China. These amphibolite samples have very high initial eHf(t) values of+15.2 to +23.3 and the eHf(t) values are tightly correlated with eNd(t) values. This suggests that the amphibolites were derived from a depleted mantle source with minor crustal contamination, and their Sm-Nd isotope system was not disturbed during later metamorphism. The least-contaminated samples possess exceptionally high eNd(t) value of ca.+8.5 andεHf(t) value of ca.+22, which are the highest values ever reported for the same-aged rocks worldwide, indicating there once existed a ultra-depleted mantle underlying the Cathaysia Block in the late Paleoproterozoic. This mantle source was likely formed by large scale crust/mantle differentiation in the Neoarchean. Lu-Hf and Sm-Nd isotopic investigations demonstrate that this ultra-depleted mantle is spinel peridotite with minor amount of (~1%) garnet. Garnets in spinel-garnet phase transition removed Lu from peridotites vicinity to their nucleations during cooling of the newly-formed lithospheric mantle, resulting in very high Lu/Hf ratio and strongly radiogenic Hf isotopic compositions found in the studied Cathaysian amphibolites. There existed great isotopic heterogeneity of depleted mantle in the late Paleoproterozoic.
     5. Detailed petrological, Sr-Nd isotope and in-situ Zircon Hf isotope data are reported for Pubei intrusive, Jiuzhou intrusive and Taima intrusive, which consist of main body of Darongshan-Shiwandashan granitoid belt. Petrological and element geochemistry show that these intrusives are typical S-type granites. High I_(Sr) (>0.721) and low eNd(t) (-9.9 to -13.0) indicate they originated from remelting of old crust. After corrected by their each own SHRIMP Zircon U-Pb age (Deng et al., 2004), most of zircons which age are~230 Ma have focused eHf(t) value of -11 to -9 and the corresponding T_(dm2) age between~1.9 and~1.8 Ga while the rest have higher eHf(t) value of-4.5 and corresponding to T_(dm2) age of~1.5 Ga. Inherited zircons in age of 1681~384 Ma haveεHf(t) of-17.1 to +3.4 and their T_(DM2) a]ge focused at~2.4 Ga,~1.9 Ga and~1.5 Ga. Considering that most~230 Ma magmatic zircons have eHf(t) values consistent with the estimated values in terms of Hf-Nd isotopic array, we interpret that the crust with average residential time of 1.9Ga is the dominant material source for the studied granites. Some magmatic and inherited zircons have nearly the same T_(dm2) ages of ~1.5Ga, indicating that the crust with average residential time of 1.5Ga is also involved in formation of these granitoids. Given that no igneous zircon with T_(dm2) older than 2.0Ga have been detected, minor amount of recycled crustal materials with average residential time of 2.4Ga could also be involved. Because new mantle inputs have not been identified in terms of zircon Hf isotopes, mantle-derived magmas might not have been involved in formation of this S-type granitoid belt.
引文
1..程建萍,凌文黎,1999.Lu-Hf同位素体系对若干基础地质问题的新制约(之二)-大洋地幔端元.地质科技情报,18(2):80-84.
    2.邓希光,2003.桂东南S型花岗岩的SHRIMP锆石U-Pb年代学、元素和Sr-Nd同位素地球化学研究.博士后研究工作报告.中国科学院广州地球化学化学研究所,88pp.
    3.邓希光,陈志刚,李献华等,2004.桂东南地区大容山—十万大山花岗岩带SHRIMP锆石U-Pb定年.地质论评,50(4):426-432.
    4.方清浩,冯君储,何令仪,1987.广西大容山S-型花岗岩套.岩石学报,(3):23-33.
    5.甘晓春,赵风清,金文山等,1996.华南火成岩中捕获锆石的古元古代-太古宙U-Pb年龄信息.地球化学,25(2):112-120.
    6.洪大卫,1994.花岗岩研究的最新进展及发展趋势.地学前缘,1:79-85.
    7.胡雄健,许金坤,童朝旭等,1991.浙西南前寒武纪地质.地质出版社,北京.278pp.
    8.黄琳,1988.广西大容山过铝花岗岩复式岩基的同位素地球化学研究.地球化学,17(1):26-40.
    9.黄萱,DePaolo D.J.,1989.华南中生代花岗岩类Nd-Sr同位素研究及华南基底.岩石学报,(1):28-36.
    10.金文山,庄建民,杨传夏等,1992.福建前加里东区域变质岩系的岩石学、地球化学和变质作用特征.福建地质,11(4):241-261.
    11.李献华,祁昌实,刘颖等,2005.岩石样品快速Hf分离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学,34:109-114.
    12.李献华,梁细荣,韦刚健等,2003.锆石Hf同位素组成的LAM-MC-ICPMS精确测定.地球化学,32:86-90.
    13.李献华,刘颖,涂湘林等,2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学,31(3):289-294.
    14.廖庆康,1991.广西大容山—十万大山花岗岩岩基形成时代.广西地质,4: 59-68.
    15.凌文黎,程建萍,1998.高精度Lu-Hf法同位素测定的新技术与新方法.地质科技情报,17(3):85-90.
    16.凌文黎,程建萍,1999.Lu-Hf同位素体系对若干基础地质问题的新制约(之一)-地球早期演化.地质科技情报,1999,18(1):79-84.
    17.刘昌实,朱金初,沈渭洲等,1990.华南花岗岩物源成因特征与陆壳演化.大地构造与成矿学,14:125-138.
    18.刘颖,刘海臣,李献华,1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,25(6):552-558.
    19.祁昌实,李献华,梁细荣等,2005.U-Pb定年锆石标准~(176)Hf/~(177)Hf比值的多接收器电感耦合等离子体质谱测定.质谱学报,26(3):149-154.
    20.祁昌实,邓希光,李武显等,2006.桂东南大容山-十万大山花岗岩带的成因:地球化学及Sr-Nd-Hf同位素制约.岩石学报,(审稿中)
    21.汪绍年,1991.广西大容山-十万大山岩带花岗岩带中花岗岩类特征及成因.岩石学报,(2):73-80.
    22.王庆权,王联魁,1989.大容山花岗岩带中石榴石、堇青石的成因研究.矿物学报,9(1):42-50.
    23.王银喜,杨杰东,郭令智等,1992.浙江龙泉古元古代花岗岩的发现及基底时代的讨论.地质论评,38(6):525-531.
    24.韦刚健,梁细荣,李献华等,2002.(LP)MC—ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学,31(3):295-299.
    25.吴福元,杨进辉,柳小明,李铁胜等,2005.冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报,50:1996-2003.
    26.吴福元,李献华,高山等,2004.Lu-Hf同位素体系及其岩石学应用.(献给:2004年全国岩石学与地球动力学研讨会),52pp.
    27.徐平,吴福元,谢烈文等,2004.U-Pb同位素定年锆石标准的Hf同位素.科学通报,49:1403-1410.
    28.徐克勤,朱金初,刘昌实等,1989.华南花岗岩类成因系列和物质来源.南京大 学学报(自然科学版),25(3):1-18.
    29.杨岳衡,张宏福,谢烈文等,2006.地质样品中镥-铪同位素体系的化学分离与质谱测试新进展.岩矿测试,26(2):151-158.
    30.于津海,周新民,O'Reilly YS等,2005.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报,50(16):1758-1767.
    31.于津生,桂训唐,袁超,1999.广西大容山花岗岩套同位素地球化学特征.广西地质,12(3):1-6.
    32.袁忠信,张宗清,1992.南岭花岗岩类岩石Sm、Nd同位素特征及岩石成因探讨.地质论评,38(1):1-14.
    33.郑建平,路凤香,余淳梅等,2004.汉诺坝玄武岩中条带状麻粒岩捕虏体锆石原位Hf同位素、U-Pb定年和微量元素研究.科学通报,49:375-383.
    34. Albarede F., 1995. Introduction to Geochemical Modeling. Cambridge University Press, Cambridge. 543pp.
    35. Albarede F., Brouxel M., 1987. The Sm/Nd secular evolution of the continental crust and the depleted mantle. Earth and Planet. Sci. Lett., 82: 25-35.
    36. Allegre C. J., Turcotte D., 1986. Implications of a two-component marble-cake mantle. Nature, 323: 123-127.
    37. Amelin Y., Lee D-C., Halliday A. N., 2000. Early-middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircons Grains. Geochim. Cosmochim. Acta, 64: 4205-4225.
    38. Barfod G. H, Albarede F., Knoll A. H, et al., 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett., 201: 203-212.
    39. Barfod G. H., Otero O., Albarede F., et al., 2003. Phosphate Lu-Hf geochronology. Chemical Geology, 200: 241-253.
    40. Barovich K. M., Beard B. L., Cappel J. B., et al., 1995. A chemical method for hafnium separation from high-Ti whole-rock and zircon samples. Chemical Geology, 121: 303-308.
    41. Bennett V. C., 2003. Compositional Evolution of the mantle. In Carlson, R. W.(ed.) Treatise on Geochemistry. Volume 2: The Mantle and Core. Elsevier, 493-519.
    42. Bennett V. C., Nutman A. P., McCulloch M. T., 1993. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth and Planet. Sci. Lett., 119:299-317.
    43. Bizimis M., Salters V. J. M., Dawson J. B., 2003. The brevity of carbonatite sources in the mantle: Evidence from Hf isotopes. Contrib. Mineral. Petrol., 145: 281-300.
    44. Bizzarro M., Baker J., Haack H., et al., 2003. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites. Nature, 421: 31-933.
    45. Bizzarro M., Baker J., Ulfbeck D., 2003. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICPMS. Geostand. Newsl., 27:133-145.
    46. Black L. P., Kamo S. L., Allen C. M., et al., 2003. Temora 1: a New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200:155-170.
    47. Blichert-Toft J., 2001. On the Lu-Hf Isotope Geochemistry of Silicate Rocks. Geostand. Newsl., 25(1): 41-56.
    48. Blichert-Toft J., Albarede F., 1994. Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science, 263: 1593- 1596.
    49. Blichert-Toft J.,Albarede F.,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planet. Sci. Lett.,148: 243-258.
    50. Blichert-Toft J., Chauvel C., Albarede F., 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICPMS. Contrib. Mineral. Petrol., 127: 248-260.
    51. Blichert-Toft J., Frey F. A., Albarede R, 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science, 285: 879-882.
    52. Bodet F., Scharer U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochim. Cosmochim. Acta, 64: 2067-2091.
    53.Boyet M., Carlson R. W., 2005. ~(142)Nd Evidence for early (>4.53 Ga) global differentiation of the Silicate Earth. Science, 309: 576-581.
    
    54. Chappell B. W., White A. J. R., 1974. Two contrasting granite types. Pacific Geol., 8: 173-174.
    55. Chappell B. W., White A. J. R., Wyborn D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28: 1111-1138.
    56. Chase C. G, Patchett P. J., 1988. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth and Planet. Sci. Lett., 91: 66-72.
    57. Chauvel C., Blichert-Toft J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planet. Sci. Lett., 190: 137-151.
    58. Chen J. E, Jahn B. M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284: 101-133.
    59. David K., Birck J. L., Telouk P., et al., 1999. Application of isotope dilution for precise measurement of Zr/Hf and ~(176)Hf/~(177)Hf ratios by mass spectrometry (ID-TIMS/ID-MC-ICPMS). Chemical Geology, 157: 1-12.
    60. Davis D. W., Amelin Y., Nowell G. M., et al., 2005. Hf isotopes in zircon from the western Superior province, Canada: implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Res., 140: 132-156.
    61. DePaolo D. J., Linn A. M., Schuburt G., 1991. The continental crust age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. Journal of Geophys. Res., 96: 2071-2088.
    62. DePaolo D. J., 1981. Nd isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291: 193-196.
    63. DePaolo D. J., 1988. Neodymium Isotope Geochemistry. Springer-Verlag, Berlin. 187 pp.
    64. DePaolo D. J., Wasserburg G. J., 1976. Nd isotopic variations and petrogenetic medels. Geophys. Res. Lett., 3: 743-746.
    65.Dickin A. P., 1995. Radiogenic Isotope Geology, the first edition. Cambridge University, 452pp.
    66. Duchene S., Blichert-Toft J., Luais B., et al., 1997. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature, 387: 586-589.
    67. Faure G, 1986. Principles of Isotope Geology,the second edition. John Wiley & Sons, 589pp.
    68. Gilder S. A., Gill J., Coe R. S., et al.,1996. Isotopic and Paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysical Research, 101(B7): 16137-16154.
    69. Goolaerts A., Mattielli N., Jong J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206: 1-9.
    70. Griffin W. L., Pearson N. J., Belousova E., et al., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in Kimberites. Geochim. Cosmochim. Acta, 64: 133-147.
    71. Griffin W. L., Xiang W., Jackson S. E., et al., 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269.
    72. Halliday A. N., Lee D-C., Christensen J. N., et al.,1998. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim. Cosmochim. Acta, 62: 919-940.
    73. Halliday A. N., Lee D-C, Christensen J.N., et al., 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int. J. Mass Spec. Ion Proa, 146/147: 21-33.
    74. Harrison T. M., Blichert-Toft J., Muller W., et al.,2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science, 310: 1947-1950.
    75. Hawkesworth C, Kemp T., 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226: 144-162.
    76. Hirschmann M. M., Stolper E. M., 1996. A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB. Contrib. Mineral. Peterol., 124: 185-207.
    77. Iizuka T., Hirata T., 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology, 220:121 -137.
    78. Ionov D. A., Blichert-Toft J., Weis D., 2005. Hf isotope compositions and HREE variations in off-craton granet and spinel peridotite xenoliths from central Asia. Geochim. Cosmochim. Acta, 69: 2399-2418.
    79. IUPAC Commission on Atomic Weights and Isotopic Abundances report in 'Isotopic Compositions of the Elements 1997', Prepared for publication by Rosman K. J. R. and Taylor P. D. P. Pure Appl. Chem., 70(1): 217-235.
    80. Johnson C. M., Beard B. L., 1993. Evidence from hafnium isotopes for ancient sub-iceanic mantle beneath the Rio Grande rift. Nature, 362: 441-444.
    81. Johnson K. T. M., 1998. Experimental determination of parathion coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol., 133: 60-68.
    82. Kato T., Ohtani E., Ito Y., et al., 1996. Element partitioning between silicate perovskites and calcic ultrabasic melt. Phy. Earth Planet. Inter., 96: 201-207.
    83. Kleinhanns I. C., Kreissig K., Kamber B. S., et al., 2002. Combined chemical separation of Lu, Hf, Sm, Nd and REEs from a single rock digest: precise and accurate isotope determinations of Lu-Hf and Sm-Nd using multicollector-ICPMS. Anal. Chem., 74: 67-73.
    84. Knudsen T-L., Griffin W. L., Hartz E. H., et al., 2001. In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland: a Record of Repeated Crustal Reworking. Contrib. Mineral. Petrol., 141: 83-94.
    85. Lapen T. J., Mahlen N. J., Johnson C. M., et al.,2004. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: a new approach. Geochem. Geophys. Geosys., 5: Q01010,doi:10.1029/2003GC000582.
    86. Le Fevre B., Pin C, 2001. An extraction chromatography method for Hf separation prior to isotopic analysis using multiple collection ICP-mass spectrometry. Anal. Chem., 73: 2453-2460.
    
    87. Leake B. E., 1990. Granite magmas: their sources, initiation and consequences of emplacement. Jour. Geol. Soc. Lond., 147: 579-589.
    88. Lee D-C, Halliday A.N., Hein J.R.,et al., 1999. Hafnium isotope stratigraphy of ferromanganese crusts. Science, 285:1052-1054.
    89. Li W. X., Li X. H., Li Z. X., 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of North China and its tectonic significance. Precambrian Res., 136: 51-66.
    90. Li X. H., Li Z. X., Ge W. C, et al.,2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res., 122: 45-83.
    91. Li X. H, Liu D. Y., Sun M., et al., 2004. Precise Sm-Nd and U-Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host granite, Southeast China. Geol. Mag., 141:225-231.
    92. Li X. H., 1994. A comprehensive U-Pb, Sm-Nd, Rb-Sr and ~(40)Ar-~(39)Ar geochronological study on Guidong Granodiorite, southeast China: Records of multiple tectonothermal events in a single pluton. Chemical Geology, 115: 283-295.
    93. Li X. H., 1997. Timing of Cathaysia block formation: constraints from SHRIMP U-Pb Zircon geochronology. Episodes, 20:188-192.
    94. Li X. H., 1999. U-Pb zircon ages of granites from the southern margin of Yangtza Block: timing of the Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res., 97: 43-57.
    95. Li X. H., Sun M., Wei G. J., et al., 2000. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: evidence for an extremely depleted mantle in the Paleoproterozoic. Precambrian Res., 102: 251-262.
    96. Li X. H., Tatsumoto M., Premo W. R., et al., 1989. Age and origin of the Tanghu Granite, southeast China: Results from U-Pb single zircon and Nd isotope. Geology, 17: 395-399.
    
    97. Li Z. X., Li X. H, Kinny P. D., et al., 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res., 122: 85-109.
    
    98. Maniar P. D., Piccoli P. M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643.
    
    99. McCulloch M. T., Bennett V. C, 1994. Progressive growth of the earth's continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta, 58: 4717-4738.
    
    100.McCulloch M. T., Chappell B. W., 1982. Nd isotopic characteristics of S- and I-granites. Earth Planet. Sci. Lett., 58: 51-64.
    101.McKenzie D., Bickle M. J., 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29: 625-679.
    102.Miller C. F., McDowell S. M., Mapes R. W., 2003. Hot and cold granite? Implications of zircon saturation temperatures and preservationof inheritance. Geology, 31:529-532.
    103.Munker C., Weyer S., Scherer E., et al., 2001. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosys., 2: Art. No. 2001GC000183.
    104.Nebel-Jacobsen Y, Scherer E. E., Munker C., et al., 2005. Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chemical Geology, 220: 105-120.
    105.Nowell G. M., Kempton P. D., Noble S. R., et al.,1998. High precision Hf Isotope Measurements of MORB and OIB by Thermal Ionization Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149: 211-233.
    106.Patchett P. J., 1983. Importance of the Lu-Hf isotopic system in studies of planetary Chronology and chemical evolution. Geochim. Cosmochim. Acta., 47: 81-91.
    107.Patchett P. J., Arndt N. T., 1986. Nd isotope and tectonics of 1.9-1.7 Ga crustal genesis. Earth and Planet. Sci. Lett., 78: 329-338.
    108.Patchett P. J., Tatsumoto M., 1980a. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol., 75: 263-268.
    109.Patchett P. J., Tatsumoto M., et al., 1980b. Lu-Hf total-rock isochron for the eucrite meteorites. Nature, 288: 571-574.
    110.Patchett P. J., Vervoort J. D., Soderlund U., et al.,2004. Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth. Earth Planet. Sci. Lett., 222: 29-41.
    111.Patchett P. J., White W. M., Feldmann H., et al., 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's Mantle. Earth Planet. Sci. Lett., 69: 365-378.
    112.Pearson D. G., Nowell G. M., 2004. Re-Os and Lu-Hf Isotope Constraints on the Origin and Age of Pyroxenites from the Beni Bousera Peridotite Massif: Implications for Mixed Peridotite-Pyroxenite Mantle Soures. J. Petrol., 45: 439-455.
    113.Pin C, Joannon S., et al., 2002. Combined cation-exchange and extraction chromatography for the concomitant separation of Zr, Hf, Th, and the Lanthanides from geological materials. Talanta, 57: 393-403.
    114.Rehkamper M., Schonbachler M., Stirling C. H., 2000. Multiple collector ICP-MS: introduction to instrumentation, Measurement techniques and analytical capabilities. Geostand. Newsl., 25: 23-40.
    115.Richards A., Argles T., Harris N., et al., 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett., 236: 773-796.
    116.Rosing M. T., 1990. The theoretical effect of metasomatism on Sm-Nd isotopic system. Geochim. Cosmochim. Acta, 104: 705-709.
    117. Russell W. A., Papanastassiou D. A., Tombrello T. A., 1978. Ca Isotope Fractionation on the Earth and Other Solar System Materials. Geochim. Cosmochim. Acta, 42: 1075-1090.
    
    118. Salters V. J. M., 1994. ~(176)Hf/~(177)Hf determination in small samples by a high-temperature SIMS technique. Anal Chem., 1994,66: 4186-4189.
    
    119. Salters V. J. M, 1996. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet. Sci. Lett., 141: 109-123.
    
    120. Salters V. J. M., Hart S. R., 1989. The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. Nature, 342: 420-422.
    
    121. Salters V. J. M., Hart S. R., 1991. The Mantle sources of ocean ridges,islands and arcs: The Hf-isotope connection. Earth Planet. Sci. Lett., 104: 364-380.
    
    122. Sivell W. J., McCulloch M. T., 1991. Neodymium isotope evidence for ultra-depleted mantle in the early Proterozoic. Nature, 354: 384-387.
    123.Stevenson R. K., Patchett P. J.,1990. Implications for the Continental Crust from Hf Isotope Systematics of Archean Detrital Zircons. Geochim. Cosmochim. Acta, 54: 1683-1697.
    124.Stracke A., Salters V. J. M., Sims K. W. W., 1999. Assessing the Presence of Garnet-Pyroxenite in the Mantle Sources of Basalts Through Combined Hafnium-Neodymiurn-Thoriurn Isotope Systematics. Geochem. Geophys. Geosys., 1: Paper No. 1999GC000013.
    125. Sun S. S., McDonough W. F., 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. Magmatism in the Ocean Basins, edited by AD Saunders and MJ Norry. Geol. Soc. Spec. Pub., No.42: pp528-548.
    126.Ulfbeck D., Baker J., Waight T., et al., 2003. Rapid sample digestion by fusion and chemical separation of Hf for isotope analysis by MC-ICPMS. Talanta, 59: 65-373.
    127.Vervoort J. D., Blichert-Toft J., 1999. Evolution of the depleted Myrntle:Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63: 533-556.
    128.Vervoort J. D., Patchett P. J., Albarede F., et al., 2000. Hf-Nd isotopic evolution of the lower crust. Earth Planet. Sci. Lett., 181: 115-129.
    129.Vervoort J. D., Patchett P. J., Blichert-Toft J., et al., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedientary system. Earth Planet. Sci. Lett.,168: 79-99
    130.Vervoort J. D., Patchett P. J., Gehrels G E., et al., 1996. Constraints on early Earth differentiation from hafiiium and neodymium isotopes. Nature, 379:624-627.
    
    131.Vervoort J. D., Patchett P. J., Soderlund U., et al., 2004. Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotope Dilution using MCICP-MS. Geochem. Geophys. Geosyst.,5:Q11002, doi: 10.1029/2004GC000721.
    
    132.Watson E. B., Harrison T. M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magmatypes. Earth Planet. Sci. Lett., 64: 295-304.
    133.White A. J. R., Chappell B. W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, Southeastern Australia. Geological Society of America Memoir, 159:21-34.
    134.White A. J. R., Chappell B. W., Wyborn D., 1999. Application of the restite model to the Deddick Grano-diorite and its enclaves: a re-interpretation of the observations and data of Maas et al. J. Petrol., 40: 413-421.
    
    135.White W. M., Patchett P. J., 1984. Hf-Nd-Sr and incompatible element abundances in island arcs: Implications for Magma origins and crust-Mantle evolution. Earth Planet.Sci. Lett., 67: 167-185.
    136.Wiedenbeck M., Alle P., Corfu F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newslett., 19: 1-23.
    137.Woodhead J., Hergt J., Shelley M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chem. Geol., 209: 121-135.
    138.Wu F. Y., Yang Y. H., Xie L. W., et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol., 234: 105-126.
    
    139. Yang X. J., Pin C., 1999. Separation of hafnium and zirconium from Ti- and Fe-rich geological materials by extraction chromatography. Anal. Chem., 71:1706-1711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700