草鱼纤维素分解菌筛选、酶提纯及其相关活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素主要存在于植物的细胞壁中,是自然界中存在最广泛的一类碳水化合物,同时它也是地球上数量最大的可再生资源。由于纤维素分子是以β-1,4糖苷键相连接而形成的直链多糖,在自然状况下难以降解成可以利用的二糖或单糖等短链低聚糖,利用微生物产生的纤维素酶将其转化为人类可以直接利用的物质,解决急需的能源、食物和化工原料等,是科学界长期研究的课题之一,这对于人类社会解决环境污染、食物短缺和能源危机等具有重大的现实意义。
     研究表明,自然界中许多陆生真菌和细菌能够产纤维素酶。真菌产生的纤维素酶类通常为酸性酶,最适PH在3-5之间,在碱性范围内无活性或活性很低,且多数靠固态发酵来产纤维素酶,这使得真菌纤维素酶的应用和产量受到一定的限制;细菌所产生的纤维素酶一般适应中性至偏碱性环境,由于相应的酶对天然纤维素的水解作用较弱,长期以来其开发利用没有得到足够的重视,近年,随着中性和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,细菌纤维素酶已显示出良好的使用性能和经济价值。细菌具有结构简单、繁殖快等特点,是基因工程的主要材料,其液态深层发酵具有条件容易控制,不易染杂菌,生产效率高等优势,使得从细菌中提取纤细素酶将可能以其高效性而成为一个重要的途径。目前报道的产纤维素酶细菌主要为产芽孢梭菌(Clostridum SP)、类似黄链霉菌(Xanthomonas)、嗜酸纤维素分解菌(Acidothermus Cellulolyticus)等,这些菌株大多为陆生菌株。从水体特别是从水生动物体内筛选的能产纤维素酶的细菌菌株报道甚少。
     自然条件下,水生植物是草食性鱼类的主要食物来源,从生理适应性的角度推断,此类鱼可能具有纤维素的分解能力,从其他陆生食草动物的研究成果来分析,这种分解能力应来自于肠道中的纤维素分解菌。常见的草食性鱼类有草鱼(Ctenopharyngodon idellus)、鳊(Parabramis pekinensis)、鲂(Megalobramaamblycephala)等,其中生长速度最快,食草量最大的是草鱼。本课题以草鱼为对象,就草食性鱼类肠道纤维素分解菌进行了相关研究。
     实验中,利用刚果红选择平板法,从草鱼肠道内筛选出四株能产纤维素酶,并具有较高酶活性的细菌菌株,分别测定了各菌株的内切β—葡萄糖苷酶、纤维二糖水解酶和滤纸酶的活力。从细菌形态、生理生化和16S rRNA层面上对纤维素分解菌进行了分类鉴定,结果为阿斯布肠道杆菌(Enterobacter asburiae)和枯草芽孢杆菌(bacillus subtilis)。
     对其中X7菌株的液态发酵产酶条件进行了研究,初步确定产酶的最适培养条件为:初始PH值为7.0-7.3,接种量为5%(v/v),培养温度为37℃;最适培养基为:羧甲基纤维素钠(CMC-Na)1%(w/v),蛋白胨1%(w/v),KH_2PO_40.1%(w/v),NaCL0.5%(w/v)。
     在最适条件下,液态培养菌株,通过超声波破碎细胞壁、磁力搅拌菌体、离心过滤菌体等方法处理发酵液,检测并比较纤维素酶的活性,认为该菌株所产的酶为胞外酶。利用盐析、DEAE-Sephadex A-50离子交换层析,Sephadex G-75凝胶过滤,经过SDS-聚丙烯酰胺电泳检验,初步判定该酶为多亚基结构。
     对纯化后的纤维素酶的酶学性质进行了研究。以羧甲基纤维素作为底物时,该菌株所产纤维素酶的最适宜的催化温度为55℃,酶反应的温度范围较宽,在45℃-65℃的温度范围内,热稳定性良好,在80℃条件下仍残存有30%的酶活。最适宜的PH值为7.0,在4.0-7.0之间的PH值范围内,酶的活力较稳定。Mn~(2+)、Mg~(2+)对酶的活性有激活作用;Fe~(2+)、Ca~(2+)、Zn~(2+)对酶的活性有抑制作用;Cu~(2+)、Co~(2+)有明显的毒害作用。以羧甲基纤维素钠(CMC-Na)为底物的Km值为5.3×10~(-3)g/ml。
     为了解药物对纤维素酶产生菌的生长和活性影响,以指导渔用药物的使用,进行了相应菌株的药物试验。抑菌实验表明:四种菌株对诺氟沙星、头孢哌酮、庆大霉素等药物高度敏感,对磺胺二甲嘧啶和土霉素相对不敏感。MIC和MBC的实验表明:氟苯尼考、诺氟沙星对四种菌的纤维素酶活性有较强的抑制作用;土霉素的抑制影响相对较弱;磺胺二甲嘧啶无明显影响。
Cellulose exists in the plant cell wall and is one of the most extensive carbohydrate in nature and is the largest renewable resources in the earth.It is hard to degrade to available short chain oligosaccharide such as disaccharide and monosaccharide due to its straight chain polyose throughβ-1,4- linkage that occurs in the cell wall of superior plants in strong association with hemicelluloses and lignin.So it has great realistic meaning for human being to solve environment pollution,food shortage and energy crisis that using cellulase produced by microorganism transform cellulose to energy,chemical and food.
     The research about cellulase has been performed for several decades.The reports showed that the fungi were the dominant contributor to producing cellulase strains both at home and abroad at present study.The cellulase is acid enzyme whose optimum pH value was 3-5 and the activity disappeared or markedly decreased in alkaline condition.The application range and yield were limited due to cellulase producing by solid state fermentation.In the research of cellulose producing condition,little attention has been put on cellulase producing by bacteria which adapt to the neutral or partial alkaline condition and its enzyme preparation has weak hydrolytic action on natural cellulose for a long time. Bacteria cellulose enzyme preparation showed good operational performance and huge economic value on the application of cotton fabrics washing processes and detergent industry over the past decade.Bacteria are also main materials of gene engineering which shows simple structure and rapid reproduction characteristic.Gene research has recently made great progress.The liquid deep layer fermentation of bacteria has the advantage of easy-controlled operating conditions,unease contaminated bacteria and higher production efficiency etc,and therefore cellulase extracted directly from bacteria has become an important and effective enzyme abstraction approach.The bacteria producing cellulose reported at present mostly were terrestrial strains such as Clostridum SP,Xanthomonas, and Acidothermus Cellulolyticus etc.Present research dealt with screen cellulose producing bacteria from water environment especially in aquatic animal is very limited.
     Water plants are the major source of herbivorous fish under natural condition.These fishes may have cellulose decomposed capacity in the view of physiological adaptation. Cellulose decomposing bacteria have the ability in intestine of terricolous herbivore.We presumed that some enzyme existed in the intestine of herbivorous fish have similar capacity.Grass carp(Ctenopharyngodon idellus),white bream(Parabramis pekinensis) and black bream(Megalobrama amblycephala) are common herbivorous,of which, grass carp is the quickest growth rate and the highest intensity grazing species.The study aimed to cellulose decomposing bacteria in grass carp.
     The activities of bacterial strains and cellulase in the intestine of grass carp were analyzed using congo red choice plate method.Filter paper and absorbent cotton as substrate and the concentration of glucose measured by the colorimetry of DNS,FPase, CMCase and absorbent cotton enzyme activity of liquid culture filtrates were measured. Based on analyses of bacterial form,physiology and biochemistry and 16S rRNA gene sequence,it was confirmed that the strain belonged to Enterobacter asburiae and bacillus subtilis.
     The optimal condition of strains X7 for solid state fermentation was pH=7.0-7.3, inoculation amount 5%(v/v),culture temperature37℃and the optimum medium for shoots rooting was 1%sodium carboxymethyl cellulose,1%peptone,0.1%KH_2PO_4, 0.5%NaCl.
     The strain was cultivated by liquid still condition in optimal growth conditions.The bacteria was smashed by ultrasonic crashing instrument,and broth was magnetic stirred and centrifugal filtered.The activity of cellulose was examined and compared.The enzyme was a kind of extracellular enzyme.It indentified preliminary multi-subunit structure by salt-out,DEAE-Sephadex A-50,Sephadex G-75 and polyacrylamide gel electrophoresis.
     The enzymatic properties of cellulose after purification was studied:the optimal temperature and pH were 55 and 7.0.The enzyme was rather stable in the range of pH 4.0-7.0 and temperature 45-65℃.The enzyme activity was activated by Mn2~+,Mg2~+ and inhibited by Fe2~+,Ca2~+.and Zn2~+.Cu2~+ and Co2~+ had obvious toxicity to the activity. The Km value with sodium carboxymethyl cellulose as a substrate was 5.3×10~(-3) g/ml.
     Corresponding medicine test was carried out in order to understand its influence on the growth and activity of bacteria producing cellulase.Results of sensitivity to antibiotics showed that the strains were very sensitive to norfloxacin,cefoperazone and gentamicin,but insensitive to sulfamethazine and oxytetracycline.The experiments of MIC and MBC indicated that florfenicol and norfloxacin had strong inhibitory effects on enzyme activity of four strains.The inhibition of oxytetracycline was relatively weak and that of sulfamethazine was inactive.
引文
1.安登第.纤维素酶在可再生资源利用中的作用.中国饲料,2003,(24):27-28.
    2.岑沛霖.工业微生物学.北京:化学工业出版社.2000,第1版.295-296
    3.陈力宏.纤维素酶在食品发酵中的应用.中国酿造,1990,(5):2-5
    4.陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究.工业微生物,2000,(30):23-26.
    5.陈孝煊,吴志新,周文豪.鱼类消化道菌群的作用与影响因素研究进展.华中农业大学学报,2005,24(5):523-528
    6.陈春岚,李楠.纤维素酶研究进展.广西轻工业,2007,98(1):18-20
    7.陈凤风,赵平伟,陈文晓,张福元.饲用纤维素酶的开发及其在养殖上的应用.山西农业(畜牧兽医版),2007(11):17-18
    8.陈秀枢,涂勇涛.微量肉汤稀释法测定MIC的评价.中华医学检验杂志,1994,17(2):95-99
    9.陈学伟,马书林.酶法提取黄芪多糖的研究.上海中医药杂志,2005,39(1):56-58
    10.邓桂兰,彭超英,卢峰.利用微生物和酶降解粗纤维的研究.饲料工业,2004,25(11):48-51
    11.邓岳松.耐高温酶制剂对草鱼生长的影响.内陆水产,2005,30(6):45-46
    12.董志扬,林敏.纤维素酶高产菌株的诱变选育及产酶条件研究.核农学报,2001,15(1):26-31
    13.段金柱,曹淡君.固体发酵与液体发酵生产酶产率与催化性能比较.粮食与饲料工业,2000(3):24-26.
    14.范智超,张志琪.川芎多糖的提取、纯化及抗氧化活性的研究.天然产物研究与开发,2005,17(5):561-567
    15.傅力,丁友.纤维素酶测定方法的研究.新疆农业大学学报,2000(2):45-58
    16.福建部队总医院.临床医学检验.北京:军事医学出版社,1975,542-545
    17.高培基,曲音波,汪天虹.微生物降解纤维素机制的分子生物学研究进展.纤维素科学与技术,1995,3(2):16-19
    18.高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展,2003,13(1):21-29
    19.高洁,汤烈贵.纤维素科学.北京:科学出版社,1996,165-181
    20.高凤菊,陈惠,吴琦,梁如玉,韩学易,官兴颖.产纤维素酶芽孢杆菌C—36的分离筛选及其鉴定.四川农业大学学报,2006(2):175-178
    21.高伦江,董全,唐春红.纤维素酶的研究进展及前景展望.江苏食品与发酵,2007,131(4):14-17
    22.高春生,范光丽,李建华,杨国宇.纤维素酶对草鱼生长性能和饲料消化率及体成分的影 响.中国农学通报,2006,22(10):473-475
    23.管斌,孙艳玲,谢来苏.纤维素酶高产菌株的选育.中国酿造,2002(18):20-23.
    24.郭杰炎,蔡武城.微生物酶.北京:科学出版社.1986
    25.郭成栓,崔堂兵,郭勇.一株碱性纤维素酶高产菌株的分离、鉴定、系统发育分析及酶学性质的研究.化学与生物工程,2007,24(10):32-34
    26.关铜,张世华.纤维素酶在饲料工业中的研究与应用.贵州畜牧兽医,2003,27(5):7-9
    27.韩学易,陈惠,吴琦,梁如玉,高凤菊,胥斌.产纤维素酶枯草芽胞杆菌C-36的产酶条件研究.四川农业大学学报,2006,24(2):178-181
    28.郝正里,刘世民,孟宪政.反刍动物营养学[M].甘肃民族出版社,2000,319-323
    29.侯晓娟,王卫卫,李忠玲,孙继民,徐霞美.一株产碱性纤维素酶放线菌的分离及酶学特性.西北大学学报(自然科学版),2007,37(5):781-784
    30.洪俊华.细菌的鉴定.微生物学通报,1990,17(6):379-380
    31.黄勃,王林桂,李二超.杂色鲍与九孔鲍消化酶活力的比较.水产学报.2003,27(2):119-123
    32.黄峰,施培松,文华,魏开建,严安生.外源酶对草鱼鱼种生长及饲料表观消化率的影响.安徽农业科学,2008,36(3):1057-1059
    33.李宪臻,高培基.天然纤维素的微生物降解机理研究进展.食品与发酵工业,1996,(2):74-78
    34.李日强,辛小芸.天然秸杆纤维素分解菌的分离选育.上海环境科学,2002,21(1):8
    35.李金花,程远征.纤维素降解过程中金属离子作用的研究.临沂师范学院学报,2005,27(3):30-32
    36.李大婧,刘春泉,王振宇.纤维素酶及其在天然产物开发中的应用.江苏农业科学,2005,6:140-141
    37.林风.纤维素酶的生物化学和分子生物学研究新进展.生命科学,1994,6(1):18-23.2
    38.林祥木.产纤维素酶菌株的筛选及产酶条件的选择.福建农林大学学报:自然科学版,2003,32(4):510-51
    39.梁霆,王遂.纤维素酶液体深层发酵条件的研究.生物技术,1997(7):22-26
    40.刘刚,余少文,孔舒,邢苗.碱性纤维素酶及其应用的研究进展.生物加工过程,2005,3(2):9-14
    41.刘树立,王华,王春艳,盛占武.纤维素酶分子结构及作用机理的研究进展.食品科技,2007,(7):12-15
    42.刘春芬,贺稚非,蒲海燕,吴素芯.纤维素酶及应用现状.粮食与油脂,2004,(1):15-17
    43.刘佳佳,赵国玲.金银花绿原酸酶法提取新工艺研究.2002,24(6):416-418
    44.娄永新,王金良.实用临床细菌学检验与进展.科学出版社,1992,247-265
    45.娄永新.临床细菌检验与质量控制.沈阳:辽宁科学技术出版社.1987,120-132
    46.吕景春,杜丽萍.纤维素酶在棉织物抛光工艺中的应用.防治科学进展,2008,4:40-42
    47.陈东辉,马仁汀.Kossku Daimon.纤维素纤维织物的生物整理.纺织学报,1996,17(6):4-7
    48.罗果文,肖雷金娜.纤维素及其伴生物化学.北京:科学出版社,1959,132-165
    49.马成浩,刘陆游,于丽娟,彭琦匀.纤维素酶提出海藻酸钠的研究.广州食品工业科技,2004,20(4):12-14
    50.马田田.纤维素酶用于重要提取的初步研究.中草药,1994,25(3):123-123,139
    51.孟雷,陈冠军,王怡.纤维素酶的多形性.纤维素科学与技术,2002,10(2):47-55
    52.农向,伍红.纤维素酶的研究进展.西南民族大学学报(自然科学版),2005,(1)21-29
    53.彭宇辉.纤维素酶的制备及其在食品工业中的应用.企业技术开发,2000,11:11-12
    54.潘锋.秸杆微生物共发酵生产单细胞蛋白研究:[博士论文],2001
    55.齐云,袁月祥,陈飞,刘晓风,廖银章.一组纤维素分解菌的分离、筛选及其产酶条件的研究.天然产物研究与开发,2003,15:510-512
    56.乞永立,耿月霞,任章启.纤维素酶的生产及应用.河北化工,2000,(1):25-26
    57.邱雁临,孙宪迅,蔡俊,王伟平.纤维素酶耐高温高产菌株的选育.中国酿造,2004(15):15-19.
    58.史小丽,潘锋.产纤维素菌株宇佐美曲霉-Y-11产酶条件及酶性质的研究.生物学杂志,2000,17:22-23
    59.石军,李俊婷,田明雨.纤维素酶在畜牧业中的应用研究进展.饲料博览,2002,11:9-10
    60.苏玉萍,林颖.酶在纺织行业的应用及发展前景.福建轻纺,1998,(7):1-4
    61.宋向阳,余世袁.纤维素酶装备过程中不同底物质菌种的研究.生物学杂志,2001,(18):20-21
    62.宋金柱,杨谦,陈中祥,张晶.黄绿木霉纤维素酶提纯及其性质研究.哈尔滨工业大学学报,2006,38(11):1923-1926
    63.宋桂经.碱性纤维素酶及其去污机理.微生物学通报,1999,24(6):364-368
    64.孙祖莉,刘玉田.蜗牛纤维素酶提取工艺的初步研究.生态科学,2002,21(4):327-329
    65.隋思清,李显波,李伟东.纯棉针织面料酶生物光洁整理工艺研究.山东纺织科技,1998,(3):28-31
    66.沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特性的研究.林产化学与工业,2002(1):47-51
    67.沈雪亮,夏黎明.芽孢杆菌产纤维素酶的研究.林产化学与工业,2002,22(3):54-58
    68.沈爱英,谷文英.复合酶法提取姬松茸子实体多糖的研究.食用菌,2001,23(3):7-9
    69.孙正茂,肖克宇.纤维素醉在水产上的开发利用.内陆水产,2006,(6):11-13
    70.汤斌,陈阿娜,张庆庆.纤维素酶产生菌的筛选鉴定和产酶条件优化.食品与发酵工 业,2007,33(6):6-8
    71.汤莉,薛泉宏.2种真菌纤维素酶系组分活性研究初报.西北农林科技大学学报(自然科学版),2001,29(1):68-70
    72.王建平.纤维素酶的研究概况.浙江水产学院学报,1996,15(2):140-144
    73.王家芳,章文贡.纤维素及其衍生物液晶研究近况,高分子通报,1999,1:51-59
    74.王海英,吴赞敏,景改玲.纤维素酶处理与染色的研究.整染科技,2002,(6):3-6
    75.王玢,汪大虹.冷活性纤维素酶性质研究.海洋科学,2004,28:40-42
    76.王建荣,张曼夫.绿色水霉纤维素酶CBHII基因的结构研究.遗传学报,1995.22(1):74-80.
    77.王金良,黄繁嫱.实验检验医学试验技巧.天津:科学技术出版社,2006,365-372
    78.王玉芝.纤维素酶的生产和应用.湖北化工,1997,(3):56-57
    79.王骥,丁明.福寿螺(Ampullaria crossean)内源性多功能纤维素酶基因的克隆.生物化学与生物物理学报,2003,35(10):941-946
    80.汪维云.纤维素科学及纤维素酶的研究进展.江苏理工大学学报,1998,19(3):20-26
    81.汪世华,杨燕凌.黑曲霉Ⅱ-12446纤维素酶的纯化及酶学性质的研究.武汉工业学院学报,2005,24(3):51-62
    82.吴东儒.糖类的生物化学.北京:高等教育出版社,1987,338-347
    83.吴众望,潘鲁青,董双林.9种金属离子对缢蛏消化酶活力的影响.中国水产科学,2003,10(4):297-300
    84.吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向.生物工程进展,1994,14(4):25-27
    85.吴永沛、何碧烟.九孔鲍褐藻酸酶、琼脂酶及纤维素酶的提取纯化.海洋科学,2002,26(3):4-7
    86.谢正旸,吴挹芳.现代微生物培养基和试剂手册.福建科技出版社,1994,46-72
    87.肖春玲,徐常新.微生物纤维素酶的应用研究.微生物杂志,2002,22(2):33-35
    88.肖志壮,吴志红.瑞氏木霉EGⅠ3‘—UTR对基因在酿酒酵母中表达的影响.微生物学报,2001,5:587-591
    89.辛健康,薛泉宏.毛壳菌纤维素酶活及发酵产物蛋白质含量测定.安徽农业科学,2007,35(33):10561-10562
    90.华泽钊,许时婴.酶法全橙汁生产工艺的研究.食品工业,2002(2):4-6
    91.许爱国,阎春娟,许升运,赵文娟.中性纤维素酶在棉织物整理中的应用.印染,2006,32(21):11-12
    92.奚奇辉,李士敏.纤维素酶在竹叶黄酮提取中的应用.中草药,2004,35(2):166-167
    93.叶姜喻.一种纤维素分解菌鉴别培养基.微生物学通报,1997,24(4):251-252
    94.叶应妩,王毓三.全国临床检验操作规程.南京:东南大学出版社,1997,556-557
    95.叶应妩.临床检验学.天津:天津科学出版社,1998,473-475
    96.严岩,张福泉.纤维素酶的性质、应用及环保意义农业与发展.农业环境与发展,1997,第1期:17-20
    97.严民宏,周元聪.赤子爱胜蚓纤维素酶的初步研究.华东化工学院学报,1991,(2):82-86
    98.阎伯旭,齐飞,张颖舒.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展,1999,26(3):235-237
    99.阎伯旭,高培基.纤维素酶的底物专一性.生命科学,2000,12(2):86-88
    100.阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):22-26
    101.杨志刚,沈益新.纤维素酶制剂在青贮饲料中的应用.畜牧与兽医.2002,34(9):37-40
    102.杨礼富.细菌纤维素研究新进展.微生物学通报,2003,30(4):95-98
    103.杨吉霞,张昕邓.尼罗罗非鱼肠道中产酶菌株的研究.水利渔业,2005,25(3):10-12
    104.杨军宣,尹蓉莉,杨胜,王文彪.纤维素酶在三七提取工艺中的应用.中国中医药科技,2001(5):F003-F003
    105.余晓斌,具润谟.分批与流加发酵法生产纤维素酶的研究.食品与发酵工业,1999,(25):16-19
    106.余晓斌,全文海.洗涤剂用碱性纤维素酶的研究(Ⅰ).工业微生物,1997,27(4):5-8
    107.余晓斌,郝学财.纤维素酶液体发酵最佳培养基的确定.工业微生物,2005,(3):33-35
    108.余蜀宜.纤维素酶降解大豆细胞壁生产豆腐的研究.食品科技,2002,23(4):79-82
    109.余兴莲,王丽.纤维素酶降解纤维素的研究进展.宁波大学学报,2007,20(1):78-82
    110.张启先.纤维素和纤维素酶.微生物学通报,1976,3(2):31-34
    111.张树政.酶制剂工业(下册).北京:科学出版社,1998,595-624
    112.张礼星,石贵阳.里氏木酶利用麦糟生产纤维素酶.食品与发酵工业,1999,(25):23-25
    113.张瑞萍.棉织物的生物酶煮练.南通工学院学报(自然科学版),2002,1(2):41-43
    114.张红,李博.纤维素酶产生菌的分离和鉴定.齐齐哈尔师范学院学报(自然科学版),1997,17(4):62-63
    115.张鸿雁,陈锡时.微生物纤维素酶分子生物学研究进展.生物技术,2003,13(3):41-42
    116.张新武,曾辉.纤维素酶在饲料工业的应用现状与展望.饲料广角,2002,(10):23-24
    117.张颖.纤维素酶与碱性纤维素的研究进展.中山大学研究生学刊(自然科学与医学版),2005,26(2):13-21
    118.赵小蓉,林启美,孙焱鑫.纤维素分解菌对不同纤维素物质的分解作用.微生物学杂志,2000(20):12-4.
    119.赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法.微生物学通报,1999,26(1):63-65
    120.赵玉蓉,金宏,陈清华,沈维军,朱立涛.金属离子对纤维素酶及木聚糖酶活性影响的 研究.饲料博览,2005,1:1-3
    121.赵述淼,韩继宏.浅淡枯草芽胞杆菌在水产养殖上的应用.内陆水产,2003,28(5):42-43
    122.赵宁,王艳辉,马润宇.酶法提取辣椒素酶解条件的研究.中国调味品,2003,11:15-18,22
    123.邹为民,杨先乐,姜兰,吴淑勤,宜齐,吴建丽.无公害食品渔用药物使用准则.NY 5071-2009
    124.周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望.化工科技,2006,14(2):51-56
    125.周文豪,陈孝煊.摄食不同饲料对草鱼肠道菌群影响的研究.华中农业大学学报,1998,17(3):252-256
    126.周丽娜,苏昕,梁莉丽,钱林艺.产碱性纤维素酶嗜碱性芽胞杆菌AH-8的研究.微生物杂志,2006,26(3):35-39
    127.曾傲,叶君.纤维素酶水解及其在能源与环境保护中的应用.广东化工,2006,33(10):25-28
    128.祖若夫,胡宝龙,周德庆.微生物学实验教程.复旦大学出版社,1993,58-60
    129.左红梅,任大明.纤维素酶纯化方法与原生质体的制备.安徽农业科学.2005,33(6):1147-1148
    130.祝小,耿秀,潘康成,吴敏风.枯草芽孢杆菌Pab02产纤维素酶活性的研究.饲料研究,2007,(1):61-63
    131.朱国生,李中利.添加纤维素酶制作玉米秸青贮饲料喂奶山羊的试验效果.饲料博览,2002(9):42-42
    132.朱新平,李新辉,郑光明,赖子尼,陈昆慈,周瑞琼,徐忠法,马兵.无公害食品 普通淡水鱼.NY 5053-2005
    133.Abhinanda B,Sarkar G K,Kumar S S.Enzyme producing bacterial flora isolated from fish digestive tracts.Aquaculture International,2002,10(2):109-121
    134.Allison C Crawford,Neil R Richardson & Peter B Mather,comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns.Aquaculture Research 36(2005),586-592
    135.Atalla,R.H,D.L.Vanderhart(1984) Native cellulose:a composite of two distinct crystalline forms.Science.223:283-285
    136.Artur Cavaco-Paulo,Jose Morgado,Juergen Andreaus,Douglas Kilburn.Interactions of cotton with CBDpeptides.Journal of Molecular Catalysis B:Enzymatic,1999,7:233-239
    137.Arato,E.K.Pye and G.Gjennestad,The lignol approach to biorefining of woody biomass to produce ethanol and chemicals,Appl Biochem Biotechnol 121/124(2005),pp.871-882
    138.Baker J.O.,Ehrman C.I.,Adney W.S.,Thomas S.R.and Himmel M.E.,Hydrolysis of cellulose using ternary mixtures of purified cellulases,Appl Biochem Biotechnol 70/72 (1998), pp. 395-403
    
    139. Beguin P. and Aubert J.P., The biological degradation of cellulose. FEMS Microbiol. Rev. 13(1993), pp. 25-58.
    
    140. Beguin P., Cornet P. and. Aubert J.P, Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162 (1985), pp. 102-105.
    
    141. Berner R.A., The long-term carbon cycle, fossil fuels and atmospheric composition, Nature 426 (2003), pp. 323-326
    
    142. Bha M. K.t and Bhat S.. Cellulose degrading enzymes and their potential industrial applications.Biotechnology Advances. 15(1997 ) ,pp. 583-620
    
    143. Bhat K.M. and Maheshwari R., Sporotrichum thermophile: Growth, cellulose degradation and cellulase activity. Appl. Environ. Microbiol.53 (1987), pp. 2175-2182
    
    144. Bhat K.M., McCrae S.I. and Wood, T.M. The endo-(1-4)-β-D-glucanase system of Penicillium pinophilum cellulase: isolation, purification and characterization of five major endoglucanase components. Carbohydr. Res. 190 (1989), pp. 279-297
    
    145. Bonner, J.J.E.Varner. Plant Biochemistry(Third Edition). Academic Press, 1976.90: 369-379
    
    146. Chose T K. Measurement of cellulase activeties.Pare & Apple Chem,1987,59(2):257-268.
    
    147. Chong Zhang, Xin-Hui Xing, Production of multienzymes consisting of alkaline amylase and cellulose by mixed alkalophilic culture and their potential use in the saccharification of sweet potato. Biochemical Engineering Journal.2004(2):181-187
    
    148. Christian P.The Trichoderma cellulose regulatory puzzle: From the interior life of a secretory fungus. Enzyme Microb, Technol. 1993, 15(2): 90-99.
    
    149. Clinical and Laboratory Standards Institute, CLSI / National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Ninth informational supplement. 2005, M100 — S15
    
    150. Coughlan, M.P. The properties of fungal and bacterial cellulases with comment on their production and application. In: GE. Russell, Editor, Biotechnology and Genetic Engineering Reviews Vol. 3, Interscience, Newcastle-upon-Tyne (1985), pp. 39-109.
    
    151. Coughlan M.P. and Ljungdahl L.G, Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In: J.-P. Aubert, P. Beguin and J. Millet, Editors, Biochemistry and Genetics of Cellulose DegradationFEMS Symp. 43, Academic Press, London (1988), pp.11-30.
    
    152. Coward-Kelly G, Aiello-Mazzari C, Kim S., Granda C. and Holtzapple M., Suggested improvements to the standard filter paper assay used to measure cellulase activity,Biotechnol Bioeng 82 (2003), pp. 745-749
    
    153. Dabrowski K. and Glogowski J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia (1977)54: 129-134.
    
    154. Das K. M., Tripathi S. D..Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 1991, 92: 21-32
    
    155.Das H. and Singh S.K., Useful byproducts from cellulosic wastes of agriculture and food industry-a critical appraisal, Crit Rev Food Sci Nutr 44 (2004), pp. 77-89
    
    156. Davies, M.E. Cellulolytic bacteria in some ruminants and herbivores as shown by fluorescent antibody. Journal of General Microbiology (1965) 39, 139-141
    
    157. Denison, D.A. and Koehn, R.D. Cellulase activity of Poronia oedipus. Mycologia(1977) 69, 592-601
    
    158. Edward A Bayer, Henri Chanzy,etal.Cellulases and cellulosomes. Current Opinion in Structural Biology, 1998, 8(5): 548-557
    
    159. Enari T.-M. and Niku-Paavola M.-L., Enzymatic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid?. CRC Critic. Rev. Biotechnol. 53 (1987), pp.67-87.
    
    160. Enari T.-M. and Niku-Paavola M.-L., Nephelometric and turbidometric assay for cellulase.Methods Enzymol. 160 (1988), pp. 117-126
    
    161. Eriksson K.E. and Wood T.M., Biodegradation of cellulose. In: T. Higuchi, Editor,Biosynthesis and Biodegradation of Wood Components, Academic Press, New York (1985),pp. 469-503
    
    162. Fengxie Jing and Kiyoshi Toda, Isolation of new anaerobic, thermophilic and cellulolytic bacteria-JT strains and their cellulase production. Journal of Fermengtation Technology.66(1 988),pp.389-395
    
    163. Fields M.W, J. B. Russell. D .B. Wilson. The role of ruminal carboxymethylcellulases in the degradation of glucose from cereal grain. FEMS Microbiol.Ecol. 1998, 27:261-268
    
    164. Forsberg C.W., Beveridge T.J. and Hellstrom A., Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ.Microbiol. 42 (1981), pp. 886-896
    
    165. Galas E, Romanowska I. Purification and some properties of beta-glucosidase from Aspergillus nigerIBT-90. Acta Microbiol Po,1997,46:241-52
    
    166. Gao P J, Qu Y B, Zhao X, et al. Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enzyme Microb Technol, 1997,20:581-584
    
    167. George, S. P, humid, A, Rao, M. B. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresor.Technol, 2001,77: 171-175
    
    168. Garret BELLDMAN, Margo F. SEARLE-VAN LEEUWEN, Frank M.ROMB-OUTS. et al. The cellulose of Trichoderma viride, Purification, characterization and comparison of all detectable endoglucanase, exoglucanases and beta-glycosidase. Eur J.Biochem,1985,146:301-308
    
    169. Garcia-Martinez, D.V. Shinmyo A., Madia A. and Demain A.L., Studies on cellulase production by Clostridium thermocellum. Eur. J. Appl. Microbiol. Biotechnol. 9 (1980), pp.189-197
    
    170. Ghose T.K., Measurements of cellulase activities, Pure Appl. Chem. 59 (1987), pp. 257-268.
    
    171. Giligan W. and Reese, E.T. Evidence for multiple components in microbial cellulases. Can.J. Microbiol. 1 (1954), pp. 90-107
    
    172. Gould, R.F. Cellulose and Their Application, 1968,394
    
    173.Goodenough S. & Goodenough P. (1993) Who needs cellulase? Journal of Biological Education 27,97-102.
    
    174. Guegen, Y, P. Chemardin, GJanbon, A. Arnaud, and P.Galzy. A very effici- ent β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agric. Food Chem, 1996,44:2336-2340
    
    175. Guiliano C. and Khan A.W., Cellulose and sugar formation by Bacteroides cellulosolvens, a newly isolated cellulolytic anaerobe. Appl. Environ. Microbiol. 48 (1984), pp. 446-448
    
    176. Harry J. Gillbert et al. Genetic Modification of Fibre Digestion . Proceeding of the Nutrition Society, 1991,(50): 173-186
    
    177. Hassan K Sreenath, Vina W. Yang,etal. Toner Removal by Alkaline-Active Cellulases from Desert Basidiomycetes.ACS Symposium 665,1996,267-279
    
    178. Henrissat B., Claeyssens M., Tomme P., Lemesle L. and Mornon J.P., Cellulase families revealed by hydrophobic cluster analysis. Gene 81 (1989), pp. 83-95
    
    179.Holm RH , Kennepohl P, Solomon E I. Chem . Rev., 1996, 96: 2239 2314
    
    180. Horikoshi K., Nakao M., Kurono Y. and Sashihara N., Cellulases of an alkalophilic Bacillus strain isolated from soil. Can. J. Microbiol. 30 (1984), pp. 774-779
    
    181. Hungate R.E., The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14 (1950), pp.1-49
    
    182. lsenberg, HD. Clinical mi crobiology procedureshandbook, (Vol1). Washington DC: ASM,1992. 1-9.
    
    183. John R. Whitaker. Principles of Enzymology for the Food Sciences (Second Edition).Marcel Decker, Inc. New York. Basel. Hong Kong, 1994,415-416.
    
    184. Jose Cegarra, The state of the art in textile biotechnology. Jannary of the Society of Dyers and Colorists, 1996,112(11): 326-329
    
    185. Juy M,AmiitG,AlzatiM,.Crystal structure of a thermo stable bacterial cellulose degrading enzyme. J.Nature,1992,357(6373):89-91
    186. Kawai S. and Ikeda S. Studies on digestive enzymes of fishes. EL Effect of dietary change on the activities of digestive enzymes in carp intestine. Bulletin of the Japanese Society for Scientific Fisheries(1972)38: 265-270
    
    187. Koichiro Murashima, Tomoko Nishimura,etal. Purification and characterization of new endo-1,4-p-D -glucanases from Rhizopus oryzae. Enzyme and Microbial Technology, 2002,30(3):319-326
    
    188. Kunio Ohmiya, Kazuo Sakka,etal.Application of microbial genes to recalcitrant biomass utilization and environmental conservation. Journal of Bioscience and Bioengineering, 2003, 95(6):549-561
    
    189. Kuznetsov, Y.A. Consumption of bacteria by the silver carp (Hypophthalmichhthys molitrix).Journal of Ichthyology (1977) 17, 398-403
    
    190. Lesel R., Fromageot C. and Lesel M. 1986. Cellulose digestibility in grass carp,Ctenopharyngodon idella and in goldfish, Carassius auratus. Aquaculture 54: 11-17
    
    191. LeeR, Lynd.Fuel Ethanol from Cellulose Biomass. Science, 1991,1251:1318-1323
    
    192. Lin S .B & Stuzenberger F. J. Purification and characterization of the major beta-1, 4-endo glucanase from Thermomonospora curvata. J. Appl. Bacteriol,1995,79:447-453.
    
    193. Liu C, XuH. J. Inorg. Biochem. (2002)88: 77-86
    
    194. Lindsay GJ.H. and Harris J.E. Carboxymethylcellulase activity in the digestive tracts of fish.Journal of fish Biology (1980)16: 219-233
    
    195. Ljungdahl L.G and Eriksson K.E., Ecology of microbial cellulose degradation. Adv. Microb.Ecology 8 (1985), pp. 237-299
    
    196. Lonnie O. Ingram, Joy B. Doran. Conversion of cellulosic materials to ethanol. FEMS Microbiology Reviews, 1995, 16(2):235-241
    
    197. Lungisa Mayende, Brendan S. Wilhelmi and Brett I. Pletschke, Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost .Soil Biology and Biochemistry. 38(2006),pp. 2963-2966
    
    198. Lynd L R,Weimer P J,van Zyl W H,et al.Microbial cellulose utilization:Fundamentals and biotechnology.Microbiol Mol BiolRev,2002,66(3):506-577
    
    199. Malherbe S and Cloete T E. Lignocellulose biodegradation: Fundamenals and applications. Environmental Science and Biotechnology. 2002.1:105-114
    
    200. Mackenzie C.R., Patel G.B. and Bilous D., Factors involved in hydrolysis of microcrystalline cellulose by Acetivibrio cellulolyticus. Appl. Environ. Microbiol.53 (1987),pp.304-308
    
    201. Mandels M., Applications of cellulases. Biochem. Soc. Trans. 13 (1985), pp. 414-415
    
    202. Mccarter J D, Withers S G Mechanisms of enzymatic glycoside hydrolysis, Curry Opin Struct Biol, 1994 Dec; 4(6): 885-92
    
    203. Meisel C. Food Biotechnology. 1989(3): 145
    
    204. Michael P. C (1985) Cellulose hydrolysis: the potential, the problems and relevant research at Galway, Biochemistry Society Transaction. 13: 406-423
    
    205. Ohtonen R., Lahdesmaki P. and Markkola A. M, Cellulase activity in forest humus along an industrial pollution gradient in Oulu, Northern Finland.Soil Biology and Biochemistry.26(1994),pp.97-101
    
    206. Okoshi H,Ozaki K,Shikata S,.Purification and characterization of multiple carboxymethyl cellulases fromBacillussp.KSM-522.Agric Biol Chem,1990,54(1):83-89
    
    207. Rahmatullah S.M. and Beveridge M.C.M. Ingestion of bacteria in suspension by Indian major carps (Catla catla, Labeo rohita) and Chinese carps (Hypophthalmichthys molitrix,Aristichthys nobilis). Hydrobiologia (1993)264: 79-84
    
    208. Percival Zhang Y.H., Michael E. Himmel and Jonathan R. Mielenz, Outlook for cellulose improvement: Screening and selection strategies.Biotechnology Advances .24(2006),pp.452-481
    
    209. Pierre Beguin. Molecular Biology of Cellulose Degradation . Annu.Ret.Microbiol, 1990,(44): 219-248.
    
    210. Reese E.T., Siu R.GH. and Levinson H.S., The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59(1950), pp. 485-497
    
    211.Rimmer, D.W. and Wiebe, WJ. Fermentative microbial digestion in herbivorous fishes.Journal of Fish Biology (1987)31,229-236
    
    212. Ronald. M, Teather and Peter J. WOOD. Use of Congo Red-Polysaccharide Interaction in Enumeration and Characterization of Cellulilytic Bacteria from the Bovine Rumen .Appl,Environ.Microbiol, 1982,38,148-158
    
    213. Rosanne M. Measurement of Saccharification by Celluloses . Enzyme Microb.Technol,1985, (7):585
    
    214. Sang Jun Han, Yong Je Yoo, Hyen Sam Kang. Characterization of a Bifunctional Cellulose and Its Structural Gene. J Biochem, 1995,270(43):26012-26019
    
    215. Shikata S,Saeki K,Okoshi H,.Alkaline cellulase for laundrydetergents:Production by alkalophilic strains ofBacillusand some properties of the crude enzymes.Agric Biol Chem,1990,54(1):91-96
    
    216. Shoemaker S. P., Brown R. D. Jr.E Nnzymic activities of endo-1,4-6-D-glucanasea purified from Trichoderma viride. Biochimica et Biophysica Acta (BBA) - Enzymology, 1978,523:133-146
    217. Singh A, Hayashi, K. Microbial celluloses: protein architecture, molecular properties and biosynthesis. Adv.Appl.Microbiol, 1995,40:1-44
    
    218. Sinnott M L. Catalytic mechanism of enzymatic glycosyl transfers. Chem.Rev, 1990,90(12):1171-1191
    
    219. Smith,RE. Studies of cellulase system. Applied and Environmental microbiology,1977,33(4):980-981
    
    220. Spano L., Medeiros J. & Mandels M. Enzymatic Hydrolysisof CellulosicWaste to Glucose. Pollution Abatement Division,Food Services Laboratories, (1975)US Army Natick,Massachusetts, USA
    
    221. Sternberg D. and Mandels GR., Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol. (1979) 139:761-769
    
    222. Stevens C.E. Comparative Physiology of the Vertebrate Digestive System. Cambridge University Press, (1988)Cambridge, UK
    
    223. Stickney R.R. and Shumway S.E. Occurrence of cellulase activity in the stomachs of fish. Journal of Fish Biology (1974) 6:119-190
    
    224. Stickney R.R. Cellulase activity in the stomachs of freshwater fishes from Texas.Proceedings of Southeast Association of Game Fish Commision = (1975) 29: 282-287
    
    225. Teather R.M. & Wood P.J. Use of Congo-red polysaccharide interactions in enumeration and haracterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology 43 (1982),777-780.
    
    226. Tetsu Kawazu, Jia-Lin Sun,.Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. Journal of Bioscience and Bioengineering, 1999,88(4):421-425
    
    227. Tetsu Kawazu, Tsutomu Ohta, etal. Expression of a Ruminococcus albus cellulase gene in tobacco suspension cells. Journal of Fermentation and Bioengineering, 1996, 82(3):205-209
    
    228. Thomas M. Wood, Sheila I. McCrae.Celluse from Fusarium solani:Purification and properties of the C1 component. Carbohydrate Research, 1977, 57:117-133
    
    229. Tomme P., McCrae S.I., Wood T.M. and Claeyssens M., Chromatographic separation of cellulolytic enzymes. Methods Enzymol. 160 (1988), pp. 187-193
    
    230. Trust T.J. & Sparrow R.A.H. The bacterial £ ora in thealimentary tract of freshwater salmonid ¢ shes. CanadianJournal ofMicrobiology 20 (1974), 1219-1228
    
    231. Tomme P., Warren R.A.J., Gilkes N.R.. Cellulose Hydrolysis by Bacteria and Fungi.Advances in Microbial Physiology, 1995, 37: 1-81
    
    232. Tyndall R M. Improving the softness and surface of cotton fabrics and garments by treatment with cellulase enzymes. Textile Chem Color, 1992, 24(6): 23— 26
    
    233. Van Sorest, P. J. Nutritional ecology of the ruminant, 2nd Cornell University Press, Ithaca,N.Y. (1994)
    
    234. Watanbe T, Sato T, Yoshioka S,. purification and properties of Aspergillus niger beta-glucosidase. Eur J Biochem, 1992,209:651-9
    
    235. Waterbury J.B., Calloway C.B. & Turer R.D. A cellulolytic nitrogen-xing acteriumcultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). (1983)Science 221,1401-1403.
    
    236. Wee, K.L. and Wang, S.S. Nutritive value of Leucaena leaf meal in pelleted feed for Nile tilapia. Aquaculture (1987)62, 97-108
    
    237. Wilson D. B. Biochemistry and genetics of actinomycete celluloses.Crit.Rev.Biotechnol. 1992, 12:45-63.
    
    238. Woese C. R.. The rotating ribosome: A gross mechanical model for translation . Journal of Theoretical Biology, 1973, 38(1) :203-204
    
    239. Wood T.M., Microbial enzymes involved in the degradation of the cellulose component of plant cell walls. Rowett Research Institute Annual Report (1992), pp. 10-24
    
    240. Woodward J, Marquess HJ, Picker CS. Affinity Chromatography of beta-glucosidase and endo-beta-glucanase from Aspergillus niger on concanavalin A-Sepharose: implications for cellulose component purification and immobilization. Prep Biochem, 1986,16:337-52
    
    241.Xue X.M., Anderson A.J., Richardson N.A., Anderson A.J., Xue GP. & Mather P.B.Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture 180 ( 1999), 373- 386
    
    242. Yokoe Y. and Yasumasu I. The distribution of cellulase in invertebrates. Comparative Biochemistry and Physiology 1964. 13: 223-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700