基于C1G2协议的RFID系统性能影响因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着射频识别技术(RFID)在各个行业内的应用日益广泛,人们对于RFID系统性能的要求也越来越高。基于UHF RFID系统工作频段的特殊性以及读写原理的特点,不同的应用场景会存在削弱RFID读取性能的众多影响因子。尽管目前一些功能强大的读写器可以提供各种配置参数以降低这些影响因子对系统性能的影响,然而由于RFID系统实施人员缺乏对现有读写器中各种配置参数的了解,无法很好地调整这些参数,只能通过不断的现场测试以达到预期的读取效果,降低了现场实施的效率。如何提高UHF RFID系统的读取性能和现场实施的效率,成为了RFID系统部署所面临的巨大挑战。
     本文从目前UHF频段应用最广泛的C1G2协议出发,研究了实际应用场景中UHF RFID系统性能影响因子与读写器操作层配置参数之间的依赖关系,设计了基于影响因子的读写器配置参数自动调控平台,以提高现场实施的工作效率。提出了一种基于启发式排序算法的增量调控技术:根据不同的应用场景,定义一系列影响因子,分析影响因子之间的依赖关系;计算每一个读写器配置参数对系统性能指标的贡献度,并根据贡献度的大小确定参数调控的优先级顺序。贡献度一共分为四级,级数越低,贡献度越高。具有同级贡献度的参数则通过计算每个参数的得分来比较贡献度的大小,最终得到参数调控序列。通过该增量调控技术,可以提高UHF RFID系统的读取性能,并加快现场实施的速度。
     本文首先分析了UHF RFID现场实施中存在的问题,结合C1G2协议提出了RFID系统性能影响因子的网络层次;通过静态和动态实验设计,分析了读写器配置参数对读取性能的影响,确定了应用层与操作层影响因子之间的依赖关系,并在此基础上提出了基于影响因子的自动调控技术;然后,对读写器配置参数自动调控平台的架构进行设计,分析了关键模块的工作流程;最后通过实验,验证了本文提出的自动调控算法的有效性。
With the increasingly widespread application of RFID technology in various industries, the performance requirement of RFID system becomes more and more demanding. Moreover, due to the working frequency and principles of UHF RFID system, there are many impact factors which degrade RFID reading performance in different scenarios. Although there are many powerful RFID reader which can provide various configuration parameters to decrease the effect caused by these impact factors. However, many RFID system deployment personnel do not understand the function of configuration parameters, so they can’t take advantage of these parameters to achieve the expected reading performance efficiently. Therefore, how to enhance the reading performance of UHF RFID system as well as improve the efficiency of the implementation on site becomes an enormous challenge in RFID deployment field.
     From the perspective of C1G2 protocol which is most used at UHF band, this thesis studies the dependency between RFID performance impact factors and the reader configuration parameters. Also the automatic control platform for RFID reader configuration parameters is designed to improve the efficiency of implementation on site. An incremental control method is proposed based on heuristic ordering algorithm. First we define a series of impact factors according to the different application scenarios, and then we analyze the dependency between the impact factors. After that we calculate the contribution indicators for each configuration parameters and decide the operation priority accordingly. There are four levels of contribution indicators. The lower level stands for higher contribution. For the parameters which have the same contribution level, the score is calculated in order to obtain the final regulatory sequence. Through the incremental control method, the reading performance of RFID system can be improved, and the speed of the RFID deployment is also accelerated.
     This thesis first analyzes the on-site implementation problems of UHF RFID system, and then proposes a network hierarchy of performance impact factors based on C1G2 protocol. Through the static and mobile experimental design, this thesis studies the impact of reader configuration parameters on reading performance and determines the dependence between the impact factors of application layer and operation layer. On this basis, we propose heuristic ordering algorithm, then design the framework of automatic control platform for reader configuration parameters as well as analyze the workflow of key modules. Finally we verify the effectiveness of automatic control algorithm through experiments.
引文
[1] EPCglobal. Class 1 Generation 2 UHF Air Interface Protocol Standard Version 1.0.9, 2005.
    [2] Michael Buettner, David Wetherall.An empirical study of UHF RFID performance. Proceedings of the 14th ACM international conference on Mobile computing and networking .2008:223-234
    [3] C. Floerkemeier. Bayesian transmission strategy for framed aloha based rfid protocols. In Proceedings of the IEEE International Conference on RFID.2007: 228–235
    [4] H. Vogt. Efficient object identification with passive rfid tags. Lecture Notes in Computer Science– Pervasive Computing. 2002:98–113
    [5] C. Floerkemeier. Transmission control scheme for fast rfid object identification. In Fourth IEEE International Conference on Pervasive Computing and Communications Workshops, 2006: 457–462
    [6] P. Nikitin and V. Rao. Performance limitations of passive uhf rfid systems.In Proceedings of the IEEE Antennas and Propagation Symposium. 2006: 1011–1014
    [7] Y. Kawakita and J. Mitsugi.Anti-collision performance of gen2 air protocol in random error communication link. In International Symposium on Applications and Internet Workshops (SAINTW’06, 2006: 68–71,
    [8]中科院自动化所RFID研究中心测试实验室,http://irdc.ia.ac.cn/intro.asp,http://www.rfidworld.com.cn/jswk/news/200579174341.htm
    [9]台湾正隆RFID包装整合验测中心,http://www.clc.com.tw/;http://rfid.clc.com.tw/
    [10]Edmund Chan Ming Hoong.Application of paired t-test and DOE methodologies on RFID tag placement testing using free space read distance. IEEE International Conference .2007
    [11] J. D. Porter, R. E. Billo and M. H. Mickle, A standard test protocol for evaluation of radio frequency identification systems for supply chain applications, Journal of Manufacturing Systems, ABI/INFORM Global. 2004, 23(1):46
    [12] L. Syndanheimo, L. Ukkonen and M. Kivikovski.Effects of size and shape of metallic objects on performance of passive radio frequency identification, International Journal of Advanced Manufacturing Technology.2006:897-905
    [13] EPC Global Inc. Community, "Dynamic Test: Conveyor Portal Test Methodology", white paper, 2006, Rev 1. 1.4.
    [14] EPC Global Inc. Community, "Dynamic Test: Door Portal Test Methodology ", white paper, 2006, Rev 1.0.9.
    [15] EPC Global Inc. Community, "EPCglobal Physical Operation Requirements for Fast Moving Consumer Goods (FMCG): Informative Report", white paper, 2004.
    [16] F. Schoute. Dynamic frame length aloha.IEEE Transaction on Communications. 1983,31(4):565–568
    [17]康东,石喜勤,李勇鹏等.射频识别(RFID)核心技术与典型应用开发案例,北京:人民邮电出版社,2008,165-166
    [18] Karthik Moncombu Ramakrishnan.Performance Benchmarks for Passive UHF RFID Tags, Chennai, India, College of Engineering, Guindy– Anna University, Electronics and Communication Engineering. 2003
    [19] Jin MITSUGI and Hisakazu HADA, Auto-ID lab Japan, Keio University, Proceedings of the International Symposium on Applications and the Internet Workshops (SAINTW’06)
    [20] ODIN Technologies Inc.The RFID Gen2 Tag Benchmark, white paper,2006
    [21] Supreetha Rao Aroor and Daniel D. Deavours, Evaluation of the State of Passive UHF RFID, IEEE system journal.2007,1(2):168-1760
    [22] Ozguir KabadurmuU, Serdar Kiling, Huilya Behret and Gtilgin Uygun.Performance Evaluation of Operational Parameters on RFID Controlled Conveyor System, RFID Eurasia, 2007:1-6
    [23] Edmund Chan Ming Hoong, Shortest Travel Distance For Full Reads On Least RFID Friendly Carton Stacking Configuration Using Advance DOE Techniques and Gage Reproducibility and Repeatability, IEEE International Conference on RFID. 2008:16-17
    [24]朗为民.射频识别(RFID)技术原理与应用.机械工业出版社.2006: 58
    [25]Aleksey Popov, Sergey Dudnikov, Andrey Mikhaylov, Passive UHF RFID tag with increased read range, Proceedings of the 38th European Microwave Conference, 2008:1106-1108
    [26] Bo Gao, Matthew M.F. Yuen, Passive UHF RFID with Ferrite Electromagnetic Band Gap(EBG) Materical for Metal Objects Tracking, Electronic Components and Technology Conference.2008:1990-1994
    [27]香港科技大学射频技术应用与测试中心,http://lscm.rflab.org/index.html
    [28]陈实.基于EPC-C1G2标准的RFID读写器的研究.成都:电子科技大学微电子学与固体电子学. 2009
    [29]罗海勇,李锦涛,郭俊波等.新一代超高频RFID无线接口标准*EPC CLASS-1/C1G2研究.电子技术应用. 2006:131-133
    [30] Kin Seong Leong, Mun Leng Ng, Member, IEEE, Peter H. Cole,The reader collision problem in RFID systems, IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies For Wireless Communications (MAPE 2005).
    [31] T. S Rappaport.Wireless Communications– Principles and Practice.Prentice Hall, Second Edition, 2002.
    [32]张赛.面向方面程序中的影响分析及应用.上海:上海交通大学软件学院.2008.
    [33] Nikhil Ayer, Daniel W.Engels. Evaluation of ISO 18000-6C Artifacts. IEEE International Conference on RFID.2009:123-130
    [34] Ki Yong Jeon and Sung Ho Cho. Performance of RFID EPC C1 Gen2 Anti-collision in Multi-path Fading Environments. Second International Conference on Communication Theory, Reliability, and Quality of service. 2009:125-128
    [35] Bi-Sheng Wang, Qi-Shan Zhang, Dong-Kai Yang.Transmission Control Solution Using Interval Estimation Method for EPC C1G2 RFID Tag Identification, Wireless Communications, Networking and Mobile Computing. 2007:2105-2108
    [36]胡益.基于EPCClass1Gen2的读写器软件设计与实现.湖南:湖南大学电气与信息工程学院. 2008
    [37]刘文卿.实验设计.北京:清华大学出版社. 2005:3-10.
    [38]苑少娜.超高频射频标签协议芯片的设计与实现.西安:西安电子科技大学微电子学与固体电子学. 2008
    [39]蔡庆玲,詹宜居,史斌宁.一种符号EPC C1G2标注的RFID随机化密钥双向认证协议.电信科学. 2007, 28(4):70-71
    [40]于宇,杨玉庆,闵昊. RFID标签的安全建模及对EPC C1G2协议的改进.小型微型计算机系统. 2007,28(7):1339-1340
    [41]余松森.物联网RFID反碰撞问题研究.广东:广东工业大学控制理论和控制工程. 2006
    [42]陈柯.基于软件无线电的RFID测试系统.第三届RFID技术发展国际会议. 2008
    [43]刘庆华.基于EPC Gen2协议的超高频RFID技术研究.安徽:安徽大学电磁场与微波技术. 2007
    [44]郑玉杰.基于ISO 18000-6的RFID标签数字系统及防冲突实现.天津:天津大学. 2008
    [45]Jiju Antony.Design of Experiments for Engineers and Scientists.2003: 7-10
    [46]Sheldon, D.Vahid and F. Lonardi. Soft-core Processor Customization using the Design of Experiments.Design, Automation & Test in Europe Conference & Exhibition, 2007:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700