黄牛垂体转录因子SIX3和SIX6基因的遗传变异及其与生长性状关联的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以南阳牛,秦川牛,郏县红牛,中国荷斯坦牛和哈萨克牛5个牛品种共1075个个体为研究材料,采用混合DNA池测序、PCR-SSCP、PCR-RFLP和PCR-ACRS技术,检测了黄牛垂体关键转录因子SIX3和SIX6基因在5个牛群体中的单核苷酸多态性,分析了各自的群体遗传结构和遗传多样性及其与南阳牛、秦川牛和郏县红牛3个黄牛群体的生长性状(体重、体高、体斜长、日增重等)关联的分析,以期发现对重要经济性状具有显著效应的遗传标记,为黄牛遗传资源的保护、开发与利用,为中国黄牛的高效选育和分子标记数据库的建立提供遗传学依据。同时利用生物软件,预测牛SIX6同源异型框蛋白的结构域及空间二级结构,以期从结构上更深入的探讨SIX6基因结构变化对功能的影响。
     本研究获得了以下结果:
     1.五个牛品种SIX3基因单核苷酸多态性分析及其与南阳牛、秦川牛和郏县红牛生长性状的关联分析
     在秦川牛、南阳牛、郏县红牛、中国荷斯坦牛和哈萨克牛5个群体中检测了SIX3基因编码区全部外显子(共2个)及部分内含子区和侧翼非翻译区序列的单核苷酸多态性。在第一内含子处首次检测到2个SNPs:(IVS1+2791:g.T>C),(IVS1+2699:g.G>A)。Alw26I-RFLP基因座检测到三种基因型:TT、TC和CC。其中,CC基因型在秦川牛群体中未检测到,C等位基因在秦川牛、南阳牛、郏县红牛、中国荷斯坦牛和哈萨克牛中的基因频率分别为0.025,0.074,0.057,0.340,0.386。在TaqI-ACRS-RFLP基因座检测到三种基因型:GG,GA和AA,AA基因型仅在中国荷斯坦牛和哈萨克牛群体中检测到,A等位基因在上述牛群体中的基因频率分别为0.042,0.046,0.044,0.309,0.375。2个基因座在中国荷斯坦牛和哈萨克牛群体中均处于Hardy-Weinberg不平衡状态(P<0.05)。基因型分布独立卡方检验显示,2个基因座基因型分布在中国荷斯坦奶牛群体和哈萨克牛群体与南阳牛、秦川牛、郏县红牛3个地方牛群体间都是差异极显著(P<0.01);中国荷斯坦牛群体与哈萨克牛群体间差异亦极显著(P<0.01)。2个基因座在5个牛群体中的连锁不平衡分析显示:在中国荷斯坦牛群体中保持中度连锁状态(r2>0.33)。
     经GLM模型统计分析,Alw26I-RFLP位点与TaqI-ACRS-RFLP位点聚合与南阳牛18月龄的体重和日增重相关且差异显著(P<0.05),其中GG-TC基因型个体显著大于GG-CC基因型,故SIX3基因座可作为黄牛生长发育的DNA遗传标记。
     2.五个牛品种SIX6基因单核苷酸多态性分析及其与南阳牛、秦川牛和郏县红牛生长性状的关联分析
     在南阳牛、秦川牛、郏县红牛、中国荷斯坦牛和哈萨克牛5个群体中检测了SIX6基因编码区全部外显子(共3个)及部分内含子区和侧翼非翻译区的单核苷酸多态性。在SIX6基因序列的终止密码子(TGA)中检测到一处突变(NC_007308: g 2015T>C),mRNA3'非翻译区检测到一处突变(NC_007308: g 2068A>T)。在HhaI- ACRS-PCR基因座检测到三种基因型:TT、TC和CC,C等位基因在秦川牛、南阳牛、郏县红牛、中国荷斯坦牛和哈萨克牛群体中的基因频率分别为:0.263、0.262、0.310、0.255、0.614。该基因座在5个牛群体中均处于中度多态(0.25     经GLM模型统计分析,HhaI-ACRS-RFLP位点与秦川牛的体高和郏县红牛的坐骨端宽相关且差异显著(P<0.05),其中TT基因型显著大于CC基因型个体。
     3.牛SIX6同源异型蛋白的生物信息学分析
     通过对NCBI提供的人、鼠、绵羊和牛4个不同物种间的SIX6同源异型框蛋白的氨基酸序列的多重比对,初步推断牛SIX6同源异型蛋白的大概结构域。4个物种具有相同的N-端结构域(NT)和SIX-蛋白互作域(SD),而在牛上比其他物种缺少24个氨基酸且具有不同的Homeobox同源结构域(HD)和C-端结构域(CT)。利用蛋白二级结构在线预测软件对野生型和突变型SIX6同源异型蛋白二级结构进行预测和比对,发现突变型蛋白的CT端多了一个短α-螺旋。
Mixture DNA pools sequencing, PCR-SSCP, PCR-RFLP and PCR-ACRS techniques were applied to detect SNPs of anterior pituitary key transcriptional factors SIX3 and SIX6 genes in 1075 individuals from five cattle populations (Nanyang, Qinchuan, Jiaxian Red cattle, Chinese Holstein and Hasake cattle), subsequently analyzed their genetic structure and diversity in these populations as well as association with growth traits of three Chinese cattle (Nanyang, Qinchuan and Jiaxian Red cattle). The objects were to discovery the hereditary characteristics and to explore molecular markers with significant effects on economic important traits for efficient selection and improvement of Chinese cattle, and to provide genetic information for foundation of molecular marker database, protection and usage of breed resource of Chinese cattle. Meanwhile, the space secondary structure and domain of bovine SIX6 homeoprotein were predicted by biological software so as to study the change of structure for the effects of function
     The results were as follows:
     1 Association between genetic variation of SIX3 gene in five breeds of cattle and growth traits in Nanyang, Jiaxian and Qinchuan cattle
     Polymorphisms of SIX3 gene within all exon, partial intron and flanking region were detected in five cattle population. Two novel SNPs (IVS1+2791:g.T>C, IVS1+2699:g.G>A) were identified in intron1 for the first time. There were three genetypes in the Alw26I-RFLP loci of SIX3 gene: TT, TC and CC. Genetype CC were not dected in Qinchuan cattle. The frequency of C allele varied from 0.025 to 0.386 in Qinchuan, Nanyang, Jiaxian Red, Chinese Holstein and Hasake cattle respectively. There were three genetypes in the TaqI-ACRS-RFLP loci of SIX3 gene: GG, GA and AA. Genetype AA just were dected in Chinese Holstein and Hasake cattle, the frequency of allele A respectively were 0.042, 0.046, 0.044, 0.309 and 0.375 in Qinchuan, Nanyang, Jiaxian Red, Chinese Holstein and Hasake cattle. Theχ2 test showed that Chinese Holstein and Hasake population were in Hardy-Weinberg disequilibrium (P<0.05) at these two locus. Theχ2 test of genotype distributions showed that there was significant difference between Chinese Holstein, Hasake cattle and Qinchuan, Nanyang, Jiaxian Red cattle.(P<0.01). The result of linkage disequilibrium analysis in the five cattle population indicated that there was an intermediate linkage in Chinese Holstein population (r2>0.3).
     The model of GLM analysis result between Alw26I-RFLP loci with TaqI-ACRS-RFLP loci and growth traits showed that different genotypes significantly affect on body weight and average daily gain at 18months old in Nanyang cattle (P<0.05), and the individuals with GG-TC genotype had greater body weight and average daily gain than GG-CC at 18 months old. Therefore, SIX3 gene was considered as the candidate SNP of growth traits.
     2 Association between genetic variation of SIX6 gene in five breeds of cattle and growth traits in Nanyang, Jiaxian and Qinchuan cattle
     Polymorphisms of SIX6 gene within all exon, partial intron and flanking region were detected in five cattle population. A novel mutation (NC_007308: g 2015T>C) in TGA stop-codon of bovine SIX6 gene was found, which lead to the ORF shift and extension of the encoded protein for four amino acids (Arg223-Gln224-Arg225-Val226). Another mutation (NC_007308: g 2068A>T) were dected in mRNA 3'untranslate region. There were three genetypes in the HhaI- ACRS-PCR loci of SIX6 gene: TT, TC and CC. the frequency of allele C respectively were 0.263, 0.262, 0.310, 0.255 and 0.614 in Qinchuan, Nanyang, Jiaxian Red, Chinese Holstein and Hasake cattle. There were also moderate polymorphic in this locus in this five populations (0.25     The model of GLM analysis result between HhaI- ACRS-PCR loci and growth traits showed that different genotypes significantly affect on body height in Jiaxian Red cattle and hucklebone width in Qinchuan cattle, the individuals with TT genotype had greater than CC.
     3 Bioinformatics analysis of bovine SIX6 homeoprotein
     Multiple amino acid sequences alignment of SIX6 homeoprotein within human, mouse, sheep and cattle showed that there were lacks of 24 amino acids and had the same NT, SD and different HD, CT in cattle. Prediction of secondary structure showed there was a new helix in the C-terminal domains of proteins encoded by mutation type.
引文
陈宏,张春雷. 2008.中国肉牛分子育种研究进展.中国牛业科学, 4(34): 1~7
    陈宏,雷初朝,胡沈荣. 2007.分子遗传学实验指导:陕西杨凌:西北农林科技大学
    常洪. 1998中国家畜遗传资源研究[M].陕西西安:陕西人民教育出版社
    崔建勋,杜红丽,张细权. 2005.利用DNA池和测序技术快速筛查SN Ps及估算基因频率.遗传学报, 32(4):372~377
    杜荣骞. 2004.生物统计学:第二版.北京:高等教育出版社
    焦昆. 2008.南阳牛在发展中存在的问题及其对策.畜牧兽医科技信息, 92(1): 46~47
    蓝贤勇.2007.山羊重要功能基因遗传分析及其与经济性状的关系[博士学位论文].陕西杨凌:西北农林科技大学
    赖新生.2009.中国四个牛品种Hesx1、Pitx2和Weaver基因多态性及其与生长性状的关联分析[硕士学位论文].陕西杨凌:西北农林科技大学
    李密杰.2009.山羊LHX4和POU1F1基因遗传分析及其与经济性状的关联[硕士学位论文].陕西杨凌:西北农林科技大学
    刘晓牧,吴乃科. 2007.肉牛分子育种研究进展.中国牛业科学, 5(33): 66~71
    刘守木,阿德别克卡旦.2007.新疆哈萨克牛. http://www.Kzhelp.com
    马桂变李志刚2009关于郏县红牛产业发展的思考中国牛业科学, 35(2): 20~25
    牛丽莉李宏滨杜立新2008分子标记在家畜遗传多样性中的应用生物技术通讯19 (2): 299~302
    孙悦冰,郎志宏,黄大昉.2008.内含子对真核基因表达调控的影响.生物技术通报(4)
    王根林. 2006.养牛学:第二版.北京:中国农业出版社
    王建钦. 2006.南阳牛的品种介绍和育种方向.中国牛业科学, 32(5):72~73
    许尚忠,魏伍川,杨章平,马云. 20005.试论中国黄牛优质肉用新品种选育的发展战略.全国养牛科学研讨会暨中国畜牧兽医学会养牛学分会第六届会员代表大会论文集.
    张沅. 2003.家畜育种学:第三版.北京:中国农业出版社
    张岩,郭秀侠,刘文,贾永宏. 2004.秦川牛品种资源的保护与利用.黄牛杂志, 13(6): 43~45
    昝林森,刘永峰. 2006.中国肉牛产业理论与实践.中国肉牛网. http://www.chinabeef.cn/
    周士新,孙啸,陆祖宏.2004.复合同源异型结构的研究进展.遗传, 26(6):984~990
    Aijaz S, Allen J, Tregidgo R, van Heyningen V, Hanson I, Clark B J. 2005. Expression analysis of SIX3 and SIX6 in human tissues reveals differences in expression and a novel correlation between the expression of SIX3 and the genes encoding isocitrate dehydrogenase and cadherin 18. Genomics, 86:86~99
    Aijaz S, Clark B J, Williamson K, van Heyningen V, Morrison D, FitzPatrick D, Collin R, Ragge N, Christoforou A, Brown A, Hanson I. 2004. Absence of SIX6 mutations in microphthalmia, anophthalmia, and coloboma. Invest Ophth Vis Sci, 45: 3871~3876
    Benson M D, Liepnieks J J, Yazaki M, Yamashita T, Asl K H, Guenther B, Kluve-Beckerman B. 2001. A new human hereditary amyloidosis: The result of a stop-codon mutation in the apolipoprotein AII gene. Genomics, 72: 272-277
    Bryson K, McGuffin L J, Marsden R L, Ward J J, Sodhi J S. & Jones D T. 2005. Protein structure prediction servers at University College London. Nucl. Acids Res. 33(Web Server issue), W36-38.
    Cushman L J, Camper S A. 2001. Molecular basis of pituitary dysfunction in mouse and human. Mamm. Genome, 12: 485~494
    Conte I, Morcillo J, et al. 2005. Comparative analysis of SIX3 and Six6 distribution in the developing and adult mouse brain. Dev Dynam, 234: 718~725
    Gallardo M E, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller M J, Brunner H G, Bovolenta P, de Cordoba S R. 1999. Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics, 61: 82~91
    Ghanbari H, Seo H C, Fjose A, Brandli A W. 2001. Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Develop 101: 271 ~ 277
    Gaston-Massuet C, Kelberman D, et al. 2009. Absence of SIX3 Mutations in Patients with Congenital Hypopituitarism. Am J Med Genet A 149A: 2874~2876
    Gallardo M E, Schneider A S, Dwyer M A, de Cordoba S.R. 2001. De novo mutation in the SIX6 homoebox gene in a patient with bilateral anophthalmia. Am J Hum Genet, 69: 25~28
    Gaston-Massuet C, Andoniadou C L, et al. 2008. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324: 322~333
    Granadino B, Gallardo M E, Sanz R, Ramos C, Bovolenta P. 1999. Genomic Cloning, Structure, Expression Pattern, and Chromosomal Location of the Human SIX3 Gene, Genomics 55: 100–105
    Huang W, Maltecca C, et al. 2008. a proline-to-histidine mutation in POU1F1 is associated with production traits in dairy cattle. Animal Genet, 39: 554~557
    Hu S Y, Mamedova A, Hegde R S. 2008. DNA-binding and regulation mechanisms of the SIX families of retinal determination proteins. Biochemistry, 47: 3586~3594
    Hosseini S Y, Sabahi F, Amini-Bavil-Olyaee S, Alavian S M, Merat S. 2006. A novel accurate ACRS-PCR method with a digestion internal control for identification of wild type and YMDD mutants of hepatitis B virus strains. Journal of Virological Methods, 137:298~303
    Jean D, Bernier G, Gruss P. 1999. Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech Develop. 84: 31~40
    Jones D T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol, 292: 195~202
    Kobayashi M, Nishikawa K, Suzuki T, Yamamoto M. 2001. The Homeobox Protein Six3 Interacts with the Groucho Corepressor and Acts as a Transcriptional Repressor in Eye and Forebrain Formation, Developmental Biology, 232: 315~326
    Kawakami K, Sato S, et al. 2000. Six family genes - structure and function as transcription factors and their roles in development. Bioessays, 22: 616~626
    Kim S S, Kim Y, et al. 2003. Clinical characteristics and molecular analysis of PIT1, PROP1, LHX3, and HESX1 in combined pituitary hormone deficiency patients with abnormal pituitary MR imaging. Horm Res, 60: 277~283
    Kerber A R, Hepp D, et al. 2008. Polymorphisms of two indels at the PRNP gene in three beef cattle herds. Biochem Genet, 46: 1~7
    Kelberman D J, Turton P G, et al. 2009. Molecular analysis of novel PROP1 mutations associated withcombined pituitary hormone deficiency (CPHD). Clin Endocrinol, 70: 96~103
    Kumar J P. 2009. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell. Mol. Life Sciences, 66: 565~583
    Li S, Crenshaw E B, et al. 1990. Dwarf locus mutants lacking 3 pituitary cell-types results from mutations in the pou-domain gene pit-1. Nature, 347: 528~533
    Lopez-Rios J, Gallardo M E, de Cordoba S R, Bovolenta P. 1999. Six9 (Optx2), a new member of the Six gene family of transcription factors, is expressed at early stages of vertebrate ocular and pituitary development. Mech Develop, 83: 155~159
    Lagutin O V, Zhu C, et al. 2003. SIX3 repression of Wnt signaling in theanterior neuroectoderm is essential for vertebrate forebrain development. Gene Dev, 17: 368~379
    Lan X Y, Pan C Y, Chen H, Zhang C L, Li J Y, Zhao M, Lei C Z, Zhang A L, Zhang L. 2007. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin Res, 73: 8~12
    Li M J, Lan X Y, Chen H, Zhang L Z, Jing Y J, Ren G, Wei T B, Wang X.. 2008. The novel missense mutation of goat LHX4 gene. Small Rumin Res, 79: 109~112
    Lai X S, Lan X Y, Chen H, Wang X, Wang K, Wang M. 2009. A novel SNP of the HESX1 gene in bovine and its associations with average daily gain. Mol Biol Rep, 36: 1677~1681
    Mullen R D, Colvin S C, et al. 2007. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol and Cel Endocrinol 265: 190~195
    Niu T, Qin Z S, Xu X and Liu J S. 2002. Bayesian haplotype inferencefor multiple linked single-nucleotide polymorphisms (J).American Journal of Human Genetics, 70(1): 157~169
    Nei M, Li W H. 1979. Mathematic model for studying genetic variation in terms of restriction endonucleaes. PNAS USA, 76: 5252~5269
    Oliver G, Wehr R, Jenkins N A, Copeland N G, Hartenstein V, Zipursky S L, Gruss P. 1995. Homeobox genes and connective tissue patterning. Development, 121: 693~705
    Procter A M, Phillips J A, Cooper D N. 1998. The molecular genetics of growth Hormone deficiency. Hum. Genet, 103: 255~272
    Pfaffle R W, Dimattia G E, et al. (1992) Mutation of the pou-specific domain of pit-1 and hypopituitarism without pituitary hypoplasia. Science, 257: 1118~1121
    Rauchman M, Hoffman W H, Hanna J D, Kulharya A S, Figueroa R E, Yang J, Tuck-Miller C M. 2001. Exclusion of SIX6 hemizygosity in a child with anophthalmia, panhypopituitarism and renal failure. Am J Med Genet, 104: 31~36
    Raghava G P. 2002. APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning. CASP5. A~132
    Romero C J, Nesi-Franca S, Radovick S. 2009. The molecular basis of Kawakami K., Sato S., Ozaki H., Ikeda K. 2000. Six family genes -Structure and function as transcription factors and their roles in development. Bioassays, 22: 616~626
    Sloop K W, Parker G E, et al. 2001. LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene, 265: 61~69
    Sambrook J., Russell D.W. 2002. Translated by Huang Pei Tang. Molecular cloning: laboratory manual.3rd edn Science Press, Beijing, China.
    Swida U, Thuroff E, et al. 1986. Intron mutations that affect the splicing efficiency of the cyh2 gene of saccharomyces-cerevisiae. Mol Gen Genet, 203: 300~304
    Savage J J, Yaden B C, Kiratipranon P, Rhodes S J. 2003. Transcriptional control during mammalian anterior pituitary development. Gene, 319: 1~19
    Toy J. & Sundin O.H. 1999. Expression of the Optx2 homeobox gene during mouse development. Mech Develop, 83: 3~6
    Tajima T, Hattorri T, et al. 2003. Sporadic heterozygous Frameshift mutation of HESX1 causing pituitary and optic nerve hypoplasia and combined pituitary hormone deficiency in a Japanese patient. J Clin Endocr Metab, 88: 45~50
    Wu W, Cogan J D, et al. 1998. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet, 18: 147~149
    Wallis D E, Roessler E, et al. 1999. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genet, 22: 196~198
    Wallefeld W, Krause S, Nowak K J, Dye D, Horvath R, Molnar Z, Szabo M, Hashimoto K, Reina C, De Carlos J, Rosell J, Cabello A, Navarro C, Nishino I, Lochmuller H, Laing N G. 2006. Severe
    nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disord. 16: 541~547
    Zhu X Y, Rosenfeld M G. 2004. Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr Opin Genet Dev, 14: 567~574
    Zhao Q, Davis M E, et al. 2004. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle. J Anim Sci, 82: 2229~2233
    Zhu X Y, Lin C R, Prefontaine G G, Tollkuhn J, Rosenfeld M G. 2005. Genetic control of pituitary development and hypopituitarism. Curr Opin Genet Dev, 15: 332~340
    Rainbow L A, Rees S A. 2005 Mutation analysis of POUF-1, PROP-1 and HESX-1 show low frequency of mutations in children with sporadic forms of combined pituitary hormone deficiency and septo-optic dysplasia.Clinic Endocrinology, 62(2): 163~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700