新型重组猪α-干扰素的结构与生物功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素是一类Ⅱ型细胞因子,具有调节机体免疫、抗病毒、抗肿瘤等多种生物功能。根据其表面受体、染色体定位、酸稳定性等的不同,可将干扰素分为Ⅰ、Ⅱ、Ⅲ三种类型。其中α-干扰素属于Ⅰ型干扰素,具有强大的抗病毒功能。为了进一步提高干扰素的生物活性以及扩大干扰素在临床上的使用,我们进行了复合猪α-干扰素的设计、表达、结构和功能的研究工作。本研究的目的在于设计重组复合猪α-干扰素,研制出安全、高效、新型的抗病毒制剂和免疫增强剂用于增强猪体的抵抗力和提高现有疫苗的保护率。我们同时还尝试解析猪a-干扰素的结构,并通过分子模拟的方法模建干扰素与其受体的空间结构,以便确定干扰素与受体的结合位点,为以后研究干扰素的功能并设计具有更高生物活性的干扰素打下基础。
     1. CoPoIFN-α的设计、基因扩增与克隆
     从NCBI网站上搜索得到17个亚型的猪α-干扰素氨基酸序列,用Bioedit序列分析软件进行比对后选取等位基因上出现频率最高的氨基酸进行组合,设计出本研究中的新型猪α-干扰素蛋白序列,命名为CoPoIFN-α。根据酵母密码子偏嗜性设计得到CoPoIFN-α基因序列。根据基因序列设计14条引物,用SOE-PCR方法扩增后,通过EcoRI和Xbal内切酶酶切后连接入毕赤酵母表达载体pPICZα,得到带有干扰素基因的阳性克隆,并经酶切鉴定及核酸序列测定确定其正确性。
     2. CoPoIFN-α的表达与纯化
     将重组质粒pPICZα-CoPoIFN-α整合进毕赤酵母X-33菌株,在毕赤酵母中用甲醇在28℃条件下诱导表达CoPoIFN-α和本实验室保存的重组野生型猪IFN-α:PoIFN-α。诱导72h后,12000r/min4℃离心15min收集酵母表达上清液。首先用30%饱和度的硫酸铵沉淀去除酵母表达上清液中的部分杂蛋白,然后再用45%饱和度的硫酸铵沉淀得到含有干扰素的粗组分,再依次经过疏水层析,阴离子交换层析和凝胶过滤层析纯化得到纯的干扰素蛋白PoIFN-α和CoPoIFN-α。用鼠抗重组猪IFN-α1单抗作为一抗,经Western blot方法鉴定,结果显示所得蛋白即为PoIFN-α和CoPoIFN-α。用圆二色谱方法对纯化的PoIFN-α和CoPoIFN-α进行二级结构分析,分析结果表明PoIFN-α和CoPoIFN-α在溶液中都主要是以α-螺旋形式存在的。
     3. CoPoIFN-α的体外生物活性测定
     我们从4个方面检测CoPoIFN-α的体外生物学功能,同时比较了CoPoIFN-α和PoIFN-a活性之间的差别。首先研究两种干扰素在MDBK、PK-15和MARC-145三个细胞系上抑制水疱性口炎病毒(VSV)感染的能力。我们发现CoPoIFN-a抑制VSV产生细胞病变的能力比PoIFN-a分别高46.4、63.6和53.5倍。其次用1ng CoPoIFN-a或者1ng PoIFN-a预处理PK-15细胞24h,然后感染PRV;同时用1ng CoPoIFN-a或者1ng PoIFN-a预处理MARC-145细胞24h,然后感染PRRSV;用TCID50测定方法测定细胞培养液中的病毒滴度,荧光定量PCR方法测定细胞中的病毒基因组拷贝数。结果表明,PoIFN-a预处理组中PRV和PRRSV的滴度分别比CoPoIFN-a预处理组高25倍和10倍;PoIFN-a预处理组中PRV和PRRSV的基因组拷贝数分别比CoPoIFN-a预处理组分别高4.8倍和5倍。另外我们用MTT方法检测并比较了两种干扰素抑制PK-15细胞增殖的能力。用两倍倍比稀释的CoPoIFN-a(0-8μg/mL)或者PoIFN-a(0-8μg/mL)处理PK-15细胞72h后,用MTT方法检测PK-15细胞的增殖情况。结果显示,在0.125μg/mL-0.5干扰素浓度范围内,CoPoIFN-a的抗增殖活性显著高于PoIFN-a;在1μg/mL-8μg/mL干扰素浓度范围内,CoPoIFN-a的抗增殖活力亦高于PoIFN-a,并呈现极显著差异。最后我们用荧光定量PCR方法比较了PoIFN-a和CoPoIFN-a在PK-15细胞上对干扰素刺激基因Mx1、OAS1和PKR基因表达的影响。用1ng CoPoIFN-a或者PoIFN-a处理PK-15细胞24h后,通过Taqman荧光定量PCR方法检测细胞中干扰素诱导基因Mx1、OAS1和PKR的mRNA水平。结果显示,CoPoIFN-a或者PoIFN-a预处理的PK-15细胞中Mx1和OAS1的mRNA水平都明显提高。其中,CoPoIFN-a预处理组的OAS1的]mRNA水平比PoIFN-a预处理组高3.2倍,而CoPoIFN-a预处理组Mx1的mRNA水平比PoIFN-a预处理组高4.6倍。本实验中没有检测到PKR mRNA的表达。
     4. CoPoIFN-a作为猪瘟多肽疫苗佐剂的研究
     为了评估CoPoIFN-a作为猪瘟病毒多肽疫苗的佐剂效果,我们将pET-32a融合表达的CSFV囊膜蛋白E2上693-716位的氨基酸纯化浓缩后与206佐剂乳化成猪瘟多肽疫苗pb,联合104U、105U和106U的CoPoIFN-a共同免疫30日龄家猪,首免后两周加强免疫一次。首免前一周和首免后每周采集外周血用ELISA方法检测血清中的CSFV抗体,首免后14d进行病毒中和抗体测定,同时采集抗凝血并分离外周血淋巴细胞,用多肽抗原刺激分离的淋巴细胞后进行淋巴细胞增殖实验,并测定淋巴细胞分泌的IL-4和IFN-y的水平。结果显示,pb多肽疫苗可以诱导家猪产生体液免疫反应,CoPoIFN-a可以提高pb多肽疫苗诱导产生的体液免疫水平,并呈剂量依赖性;105U的CoPoIFN-a能显著增加pb诱导家猪产生的CSFV特异性抗体水平,但104U的CoPoIFN-a和106U的CoPoIFN-a只能稍微增加pb诱导家猪产生的CSFV特异性抗体水平;另外,105U的CoPoIFN-a能显著增加pb诱导家猪产生的CSFV特异性中和抗体水平;在pb和CoPoIFN-α联合免疫组,随着CoPoIFN-a量的增加,淋巴细胞增殖水平和IFN-γ的分泌水平也越来越高。此结果表明,CoPoIFN-α可以提高猪瘟多肽疫苗诱导家猪产生的免疫反应水平。
     5. CoPoIFN-a的晶体生长和计算机模拟分析干扰素及其受体的三级结构
     为了准确从空间结构的角度对CoPoIFN-a的高活力进行诠释以便对其进行进一步的改造,我们尝试通过蛋白质结晶学的方法解析CoPoIFN-a的空间结构。我们将纯化的CoPoIFN-a分别浓缩至10mg/mL和20mg/mL两个浓度,并用商品化晶体生长试剂盒Crystal Scree、Crystal Screen2、Index和MembFac对干扰素晶体生长条件进行筛选。初步筛选出两个蛋白晶体生长条件。通过对在这些条件下生长得到的晶体进行初步X-光射线衍射分析发现这些晶体的分辨率并不理想。目前正在对这些结晶条件进一步优化,以便能够得到衍射能力良好的晶体。
     在对CoPoIFN-a晶体生长条件摸索的同时,我们利用discovery studio结构模拟软件分别模拟出CoPoIFN-a与猪Ⅰ型干扰素受体和PoIFN-a与猪Ⅰ型干扰素受体三元复合物的空间结构,并对干扰素与受体的相互作用进行了分析。在复合物模型中,我们没有观察到两个干扰素中有差异的残基与受体的直接相互作用。其中,PoIFN-a上的38位丝氨酸、151位丝氨酸和43位苯丙氨酸分别突变成了CoPoIFN-a中的苯丙氨酸、丙氨酸和亮氨酸,这些突变了的氨基酸残基侧链朝内指向干扰素结构的核心,它们改变了局部的疏水性。156位的苏氨酸突变成了精氨酸,蛋白质表面静电势分析结果显示此突变在干扰素和其受体结合的表面引入了更多的正的静电势。引入的正的静电势可能会促使干扰素和其受体更快更紧密的结合;另一方面,也可能是该残基变化影响了附近与干扰素受体相互作用的残基的构象,从而增强了干扰素与其受体的相互作用而导致活性的增加。
Interferon is a type Ⅱ cytokine which possesses many biological functions including immunomodulation, antiviral activities and antiproliferative activity. According to difference in receptor, chromosomal localization and acid stability, interferon can be classified into three types I, II and III. IFN-a belongs to type I interferon, which has powerful antiviral activity. In order to study the biological activity of interferon and expand their clinical application, we designed and expressed a consensus porcine IFN-a (CoPoIFN-a), and studied its structure and functions. The purpose of the experiments is to design a recombinant consensus porcine IFN-a and explore its safety and effectivity to produce a novel interferon-a to increase pig immunity and the protective capacity of current vaccines. We also screened the crystal growth conditions of CoPoIFN-a and modeled the ternary structure of the IFN-as with its receptors in order to determine the interactions between interferon and the receptors, which will help us to study the activity of interferons and design the novel interferions with higher biological activities.
     1. The design, gene synthesis and cloning of CoPoIFN-a
     We searched protein sequences of17native porcine IFN-a subtypes from NCBI, and aligned the sequences using Bioedit and assigned the most frequently observed amino acid in each corresponding position. The designed interferon-α was named as CoPoIFN-a. Based on codon usage of yeast, the nucleotide sequence of CoPoIFN-a was designed, and14primers were designed and synthesized to amplify CoPoIFN-a gene using gene splicing by overlap extension PCR (SOE-PCR) method. The full length CoPoIFN-α gene was then cloned into pPICZa expression vector using an upstream EcoRl site and a downstream XbaIsite. The positive Pichia pastoris transformant carrying CoPoIFN-a gene were confirmed by PCR and DNA sequencing.
     2. The expression and purification of CoPoIFN-α
     The Pichia pastoris X-33strain carrying CoPoIFN-a or control PoIFN-a gene was induced with methanol under28℃for72h. The supernatant was separated from the cells by centrifuging at12000r/min under4℃. The supernatant was first precipitated with30%(NH4)2SO4to remove some contaminant proteins, and the fraction containing IFN was obtained by precipitate with45%(NH4)2SO4. Further purification steps were carried out by using hydrophobic, ion exchange and gel filtration chromatography. The purified proteins were confirmed by using mouse anti-porcine IFN-al monoclonal antibody. The secondary structure of purified CoPoIFN-α and PoIFN-a were analyzed by circular dichroism spectroscopy method, the data showed they exists mainly as α-helixes in solution.
     3. The in vitro biological studies on CoPoIFN-α
     We assayed biological activities of CoPoIFN-a, and compared the differences between CoPoIFN-a and PoIFN-a. First of all, we compared their inhibitory abilities on the VSV infection in MDBK, PK-15and MARC-145cells. We observed that the antiviral activity of CoPoIFN-α was46.4,63.6,53.5-fold higher than that of PoIFN-a in MDBK, PK-15and MARC-145cells, respectively. We next compared the ability of CoPoIFN-a or PoIFN-a in inhibiting PRV and PRRSV replication in the cells that have been pretreated with CoPoIFN-a or PoIFN-a. We found that the viral titers of PRV in PK-15cells pretreated with PoIFN-a were higher than that pretreated with CoPoIFN-a by25-fold, and real-time PCR result showed that the amount of PRV mRNA in PK-15cells pretreated with PoIFN-a was4.8-fold higher than that pretreated with CoPoIFN-a. The results on PRRSV indicated that the viral titers of PRRSV in MARC-145cells pretreated with PoIFN-a were higher than that pretreated with CoPoIFN-a by10-fold, and real-time PCR result showed that the amount of PRRSV mRNA in MARC-145cells pretreated with PoIFN-a was5-fold higher than that pretreated with CoPoIFN-a. The antiproliferative activity of IFN-as against PK-15cells was investigated in vitro using the MTT assay after treating the cells with serial dilution of8-0μg/mL CoPoIFN-a or PoIFN-a, the results showed the antiproliferative activity of CoPoIFN-a was higher than that of PoIFN-a within a concentration range of0.25-0.5μg/mL, and significantly higher within a concentration range of1-8μg/mL. Finally, we assayed the stimulation ability of the CoPoIFN-a or PoIFN-a on Mxl, OAS1and PKR gene induction. The Q-PCR results showed the mRNA levels of Mx1and OAS1 gene in the PK-15cells were significantly enhanced. In the CoPoIFN-a treatment group, the mRNA level of OAS1was enhanced by about3.2-fold compared with PoIFN-α treatment group, while the level of Mxl was increased by about4.6-fold. We did not detect PKR mRNA expression in PK-15cells.
     4. The studies of adjuvant effect of CoPoIFN-a in CSFV peptide vaccine
     To assess the adjuvant effect of CoPoIFN-a in CSFV peptide vaccine, we ligated a gene corresponding to the peptide (aa693-716) from CSVF envelope protein E2downstream of trxA gene in the pET-32a vector. We purified the fusion peptide from E. coli. from inclusion body. The fusion peptide was emulsified with206adjuvant to generate CSFV peptide vaccine pb. The30-day old pigs were immunized with pb combined with104unit,105unit or106unit CoPoIFN-a and boosterd two weeks later. The peripheral blood was colleted each week before and after the first immunization. The CSFV antibody in the blood was detected using ELISA. Two weeks after the first immunization, we carried out antibody neutralizing test. We also seperated peripheral blood lymphocyte and stimulated the cells with fusion peptide antigen to test their proliferative and IL-4, IFN-y secretion ablities. The results showed pb peptide vaccine can induce the humoral immune reaction in pigs, and CoPoIFN-α can increase the reaction level in dose-dependent manner. CoPoIFN-a at105units could increase antibody level significantly based on ELISA results, while104and106units of CoPoIFN-a only slightly increased the antibody level. CoPoIFN-a at105units could increase the neutralizing antibody specific to CSFV. These results showed that CoPoIFN-a can increase immunological reaction level induced by pb.
     5. The crystallization of CoPoIFN-a and computational modeling of CoPoIFN-a/IFNAR2
     To explore the mechanism for the high biological activity of CoPoIFN-a from structure, we purified CoPoIFN-a from yeast, and concentrated the protein to10mg/mL or20mg/mL. We screened the crystal growth conditions of CoPoIFN-a using commerical crystal screening kits, including Crystal Screen、Crystal Screen2、Index and MembFac.Two protein crystal growth conditions were found. Unfortunately, the diffraction ability of these crystals was poor. We are now trying to refine the conditions to get the crystal with good diffraction quality.
     Meanwhile, we modeled the ternary structures of CoPoIFN-a or PoIFN-a with its receptors. Due to the high similarity between the terneary structures, we only analyzed the hydrogen bond and hydrophobic interations between CoPoIFN-a and the receptors. In our complex models, we did not observe the direct interactions of the different residues on CoPoIFN-a with the receptor. The original Ser-38, Ser-151and Phe-43in PoIFN-a were changed into Phe, Ala and Leu in CoPoIFN-a, respectively. The side chains of these residues are pointing inside towards the core of the structure, and they changed the local hydrophobicity distribution. Another mutation at position156to arginine seemed more significant, since such replacement introduced more positive potential at the interface in CoPoIFN-a according to surface electrostatic potential analysis. Since introduce of the positive potential on the interface can steer these two proteins to achieve fast or tight binding. On the other hand, it was also possible that mutated residues affected the conformation of the residues nearby that had interactions with the receptor, and consequently enhanced the biological activity of the engineered IFN-a.
引文
[1]Derynck R, Remaut E, Saman E, Stanssens P, De Clercq E, Content J, Fiers W. Expression of human fibroblast interferon gene in Escherichia coli. Nature,1980,287:193-197
    [2]Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL, Levinson AD, Goeddel DV. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature,1982,295:503-508
    [3]Kelley KA, Kozak CA, Pitha PM. Localization of the mouse interferon-beta gene to chromosome 4. J. Interferon Res.,1985,5:409-413
    [4]Zwarthoff EC, Mooren AT, Trapman J. Organization, structure and expression of murine interferon alpha genes. Nucleic Acids Res.,1985,13:791-804
    [5]Weissmann C, Weber H. The interferon genes. Prog. Nucleic Acid Res. Mol. Biol.,1986,33:251-300
    [6]Diaz MO, Pomykala HM, Bohlander SK, Maltepe E, Malik K, Brownstein B, Olopade OI. Structure of the human type-1 interferon gene cluster determined from a YAC clone. Genomics,1994,22:540-552
    [7]Hauptmann R, Swetly P. A novel class of human type Ⅰ interferons. Nucleic Acids Res.,1985, 13:4739-4749
    [8]LaFleur DW, Nardelli B, Tsareva T, Mather D, Feng P, Semenuk M, Taylor K, Buergin M, Chinchilla D, Roshke V, Chen G, Ruben SM, Pitha PM, Coleman TA, Moore PA. Interferon-kappa, a novel type Ⅰ interferon expressed in human keratinocytes. J. Biol. Chem.,2001,276:39765-39771
    [9]Artursson K, Gobi A, Lindersson M, Johansson M, Alm G. Molecular cloning of a gene encoding porcine interferon-beta. J. Interferon Res.,1992,12:153-160
    [10]Cheng G, Chen W, Li Z, Yan W, Zhao X, Xie J, Liu M, Zhang H, Zhong Y, Zheng Z. Characterization of the porcine alpha interferon multigene family. Gene,2006,382:28-38
    [11]Cochet M, Vaiman D, Lefevre F. Novel interferon delta genes in mammals:cloning of one gene from sheep, two genes expressed by the horse conceptus and discovery of related sequences in several taxa by genomic database screening. Gene,2009,433:88-99
    [12]Lefevre F, La Bonnardiere C. Molecular cloning and sequencing of a gene encoding biologically active porcine alpha-interferon. J. Interferon Res.,1986,6:349-360
    [13]Mege D, Lefevre F, Labonnardiere C. The porcine family of interferon-omega:cloning, structural analysis, and functional studies of five related genes. J. Interferon Res.,1991,11:341-350
    [14]Demmers KJ, Derecka K, Flint A. Trophoblast interferon and pregnancy. Reproduction,2001,121: 41-49
    [15]Lefevre F, Guillomot M, D'Andrea S. Battegay S, La Bonnardiere C. Interferon-delta:the first member of a novel type I interferon family. Biochimie,1998,80:779-788
    [16]Pestka S. The interferons:50 years after their discovery, there is much more to learn. J. Biol. Chem., 2007,282:20047-20051
    [17]Manry J, Laval G, Patin E, Fornarino S, Itan Y, Fumagalli M, Sironi M, Tichit M, Bouchier C, Casanova JL, Barreiro LB, Quintana-Murci L. Evolutionary genetic dissection of human interferons. J. Exp. Med.,2011,208:2747-2759
    [18]Klaus W, Gsell B, Labhardt AM, Wipf B, Senn H. The three-dimensional high resolution structure of human interferon α-2a determined by heteronuclear NMR spectroscopy in solution. J. Mol. Biol., 1997,274:661-675
    [19]Radhakrishnan R, Walter LJ, Hruza A, Reichert P, Trotta PP, Nagabhushan TL, Walter MR. Zinc mediated dimer of human interferon-α2b revealed by X-ray crystallography. Structure,1996, 4:1453-1463.
    [20]Karpusas M, Nolte M, Benton CB, Meier W, Lipscomb WN, Goelz S. The crystal structure of human interferon-p at 2.2-Aresolution. Proc. Natl. Acad. Sci. U S A.,1997,94:11813-11818
    [21]Hamming OJ, Lutfalla G, Levraud JP, Hartmann R. Crystal structure of Zebrafish interferons I and II reveals conservation of type 1 interferon structure in vertebrates. J. Virol.,2011,85:8181-7
    [22]Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, Nolan GP, Piehler J, Schreiber G, Garcia KC. Structural Linkage between Ligand Discrimination and Receptor Activation by Type I Interferons. Cell,2011,146:621-632
    [23]Kalie E, Jaitin DA, Podoplelova Y, Piehler J, Schreiber G. The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. J. Biol. Chem.,2008,283:32925-36
    [24]Gale M Jr, Foy EM. Evasion of intracellular host defence by hepatitis C virus. Nature,2005, 436:939-45
    [25]Clemens MJ. Interferons and apoptosis. J. Interferon Cytokine Res.,200323:277-92.
    [26]Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, Shahangian A, Zarnegar B, Shiba TL, Wang Y, Cheng G. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J.,2006,25:3257-63.
    [27]Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, Lin R. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat. Immunol.,2007, 8:592-600.
    [28]Marie I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J.,1998,17:6660-9.
    [29]Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-a/β gene induction. Immunity,2000,13:539-48.
    [30]Lin R, Genin P, Mamane Y, Hiscott J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol. Cell. Biol.,2000,20:6342-53.
    [31]Sarkar SN, Peters KL, Elco CP, Sakamoto S, Pal S, Sen GC. Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat. Struct. Mol. Biol.,2004, 11:1060-7.
    [32]Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.,2004,4:499-511.
    [33]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature,2004, 430:257-63.
    [34]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.,2004,5:987-95.
    [35]Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O, Akira S. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J. Exp. Med.,2005, 201:915-23.
    [36]Kerkmann M, Rothenfusser S, Hornung V, Towarowski A, Wagner M, Sarris A, Giese T, Endres S, Hartmann G. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol.2003,170:4465-74.
    [37]Asselin-Paturel C, Trinchieri G. Production of type I interferons:plasmacytoid dendritic cells and beyond. J. Exp. Med.,2005,202:461-5
    [38]Tsujimura H, Tamura T, Gongora C, Aliberti J, Reis e Sousa C, Sher A, Ozato K. ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood,2003,101:961-9.
    [39]Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC, Taniguchi T. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. U S A,2004,101:15416-21.
    [40]Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. Interferon-a induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol.,2004,5:1061-8.
    [41]Meinke A, Barahmand-Pour F, Wohrl S, Stoiber D, Decker T. Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol. Cell. Biol.,1996, 16:6937-6945.
    [42]Darnell JE Jr. STATs and gene regulation. Science,1997,277:1630-1635.
    [43]Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct Effects of Type I lnterferons on Cells of the Immune System. Clin. Cancer Res.,2011,17:2619-27.
    [44]Platanias LC. Mechanisms of type-Ⅰ-and type-Ⅱ-interferon-mediated signalling. Nat. Rev. Immunol. 2005,5:375-86
    [45]Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR. Interferons at age 50:past, current and future impact on biomedicine. Nat. Rev. Drug Discov.,2007,6:975-990.
    [46]Samuel CE. Antiviral actions of interferons. Clin. Microbiol. Rev.,2001,14:778-809
    [47]Yakub I, Lillibridge KM, Moran A, Gonzalez OY, Belmont J, Gibbs RA, Tweardy DJ. Single nucleotide polymorphisms in genes for 2'-5'-oligoadenylate synthetase and RNase L in patients hospitalized with West Nile virus infection. J. Infect. Dis.,2005,192:1741-8
    [48]Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, Johnson H, Pape J, Foster GA, Krysztof D, Follmann D, Strainer SL, Margolis LB, Murphy PM. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog.2009,5:e1000321.
    [49]Knapp S, Yee LJ, Frodsham AJ, Hennig BJ, Hellier S, Zhang L, Wright M, Chiaramonte M, Graves M, Thomas HC, Hill AV, Thursz MR. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection:roles of MxA, OAS-1 and PKR. Genes Immun.,2003.4:411-9.
    [50]Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, Kirikae F, Kirikae T, Kuratsuji T, Sasazuki T, Keicho N. Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem. Biophys. Res. Commun. 2005,329:1234-9.
    [51]Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL, Lin YL. Distinct antiviral roles for human 2', 5'-oligoadenylate synthetase family members against dengue virus infection. J Immunol.2009, 183:8035-43.
    [52]Eskildsen S, Justesen J, Schierup MH, Hartmann R Characterization of the 2'-5'-oligoadenylate synthetase ubiquitin-like family. Nucleic Acids Res.,2003,31:3166-73.
    [53]Marques J, Anwar J, Eskildsen-Larsen S, Rebouillat D, Paludan SR, Sen G, Williams BR, Hartmann R. The p59 oligoadenylate synthetase-like protein possesses antiviral activity that requires the C-terminal ubiquitin-like domain. J. Gen. Virol.,2008,89:2767-72.
    [54]Kajaste-Rudnitski A, Mashimo T, Frenkiel MP, Guenet JL, Lucas M, Despres P. The 2', 5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J. Biol. Chem.,2006,281:4624-37
    [55]Holzinger D, Jorns C, Stertz S, Boisson-Dupuis S, Thimme R, Weidmann M, Casanova JL, Haller O, Kochs G.2007. Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. J. Virol.,2007,81:7776-7785.
    [56]Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. IFN-lambdas mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex. Nat. Immunol.,2003,4:69-77.
    [57]Accola MA, Huang B, Masri AA, McNiven MA. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J. Biol. Chem.,2002, 277:21829-21835.
    [58]Kochs G, Haener M, Aebi U, Haller O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem.,2002,277:14172-14176.
    [59]Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O, Kochs G, Daumke O. Structural basis of oligomerisation in the stalk region of dynamin-like MxA. Nature,2010,465:502-506.
    [60]Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HW. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol.,2005,79:13974-13983.
    [61]Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, Garcia-Sastre A, Leib DA, Pekosz A, Knobeloch KP, Horak I, Virgin HW. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA,2007,104:1371-1376.
    [62]Kunzi MS, Pitha PM. Role of interferon-stimulated gene ISG-15 in the interferon-omega-mediated inhibition of human immunodeficiency virus replication. J. Interferon Cytokine Res.,1996,16:919-927.
    [63]Hsiao NW, Chen JW, Yang TC, Orloff GM, Wu YY, Lai CH, Lan YC, Lin CW. ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells. Antiviral Res.,2010,85:504-511.
    [64]Shi HX, Yang K, Liu X, Liu XY, Wei B, Shan YF, Zhu LH, Wang C. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol.,2010, 30:2424-2436.
    [65]Tang Y, Zhong G, Zhu L, Liu X, Shan Y, Feng H, Bu Z, Chen H, Wang C. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J Immunol,2010,184:5777-5790.
    [66]Durfee LA, Lyon N, Seo K, Huibregtse JM. The ISG15 conjugation system broadly targets newly synthesized proteins:implications for the antiviral function of ISG15. Mol. Cell,2010,38:722-732.
    [67]Wang C, Pflugheber J:Sumpter R Jr., Sodora DL, Hui D, Sen GC, Gale M Jr. Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J. Virol, 2003,77:3898-3912.
    [68]Terenzi F. Saikia P, Sen GC. Interferon-inducible protein, P56, inhibits HPV DNA replication by binding to the viral protein El. EMBO J.,2008,27:3311-3321.
    [69]Li Y, Li C, Xue P, Zhong B, Mao AP, Ran Y, Chen H, Wang YY, Yang F, Shu HB.1SG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc. Natl. Acad. Sci. USA,2009,106:7945-7950.
    [70]Nisole S., Stoye J.P., Saib A. TRIM family proteins:Retroviral restriction and antiviral defence. Nat. Rev. Microbiol.,2005,3,799-808
    [71]Ozato K., Shin D.M., Chang T.H., Morse 3rd H.C. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol.,2008,8:849-860
    [72]Hogg M, Paro S, Keegan LP, O'Connell MA. RNA editing by mammalian ADARs. Adv. Genet., 2011,73:87-120
    [73]Fierro-Monti I, Mathews MB. Proteins binding to duplexed RNA:one motif, multiple functions. Trends Biochem. Sci.,2000,25:241-246.
    [74]Pfaller CK, Li Z, George CX, Samuel CE. Protein kinase PKR and RNA adenosine deaminase ADARI:new roles for old players as modulators of the interferon response. Curr. Opin. Immunol.,2011, 23:573-582
    [75]Seo JY, Yaneva R, Cresswell P. Viperin:a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe.,2011,10:534-9.
    [76]Wang S, Wu X, Pan T, Song W, Wang Y, Zhang F, Yuan Z. Viperin inhibits hepatitis C virus replication by interfering with binding of NS5A to host protein hVAP-33. J. Gen. Virol.2012,93: 83-92
    [77]Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe.,2007,2:96-105
    [78]Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic,2003,4:694-709.
    [79]Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature,2008,451:425-30.
    [80]Arias JF, Iwabu Y, Tokunaga K. Structural Basis for the Antiviral Activity of BST-2/Tetherin and Its Viral Antagonism. Front Microbiol.,2011,2:250.
    [81]Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol.,2001,19:65-91.
    [82]Gallagher KM, Lauder S, Rees IW, Gallimore AM, Godkin AJ. Type I interferon (IFN alpha) acts directly on human memory CD4+T cells altering their response to antigen. J. Immunol.,2009,183: 2915-2920
    [83]Gao Y, Majchrzak-Kita B, Fish EN, Gommerman JL. Dynamic accumulation of plasmacytoid dendritic cells in lymph nodes is regulated by interferon-beta. Blood,2009,114:2623-2631.
    [84]Kamphuis E, Junt T, Waibler Z, Forster R, Kalinke U. Type Ⅰ interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood,2006,108:3253-3261.
    [85]Kaser A, Nagata S, Tilg H. Interferon alpha augments activation-induced T cell death by upregulation of Fas (CD95/APO-1) and Fas ligand expression. Cytokine,1999,11:736-743.
    [86]Petricoin EF 3rd, Ito S, Williams BL, Audet S, Stancato LF, Gamero A, Clouse K, Grimley P, Weiss A, Beeler J, Finbloom DS, Shores EW, Abraham R, Larner AC. Antiproliferative action of interferon-alpha requires components of T-cell-receptor signalling. Nature,1997,390:629-632.
    [87]Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J. Exp. Med.,1999, 189:521-30.
    [88]Biron C.A. Interferons alpha and beta as immune regulators-a new look. Immunity,2001,14: 661-664.
    [89]Chi B, Dickensheets HL, Spann KM, Alston MA, Luongo C, Dumoutier L, Huang J, Renauld JC, Kotenko SV, Roederer M, Beeler JA, Donnelly RP, Collins PL, Rabin RL. Alpha and lambda interferon together mediate suppression of CD4T cells induced by respiratory syncytial virus. J. Virol.,2006, 80:5032-5040.
    [90]Gimeno R, Lee CK, Schindler C, Levy DE. Statl and Stat2 but not Stat3 arbitrate contradictory growth signals elicited by alpha/beta interferon in T lymphocytes. Mol. Cell. Biol.,2005,25: 5456-5465.
    [91]Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+T cells through 1L-12 produced by Listeria-induced macrophages. Science,1993; 260:547-9.
    [92]Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin(IL)-12R beta2 subunit expression in developing T helper1(Th1) and Th2 cells. J. Exp. Med.,1997,185:817-24
    [93]Athie-Morales V, Smits HH, Cantrell DA, Hilkens CM. Sustained IL-12 signaling is required for Thl development. J. Immunol,2004,172:61-9.
    [94]Davis AM, Ramos HJ, Davis LS, Farrar JD. Cutting edge:a T-bet-independent role for IFN-alpha/beta in regulating IL-2 secretion in human CD4+central memory T cells. J. Immunol.,2008, 181:8204-8.
    [95]Havenar-Daughton C, Kolumam GA, Murali-Krishna K. Cutting edge:the direct action of type I IFN on CD4 T cells is critical for sustaining clonal expansion in response to a viral but not a bacterial infection. J. Immunol.,2006,176:3315-9.
    [96]Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K. IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. J. Immunol.,2007,178:4498-505.
    [97]Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T. IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J. Immunol.,2003, 170:5464-9
    [98]Strengell M, Sareneva T, Foster D, Julkunen I, Matikainen S. IL-21 up-regulates the expression of genes associated with innate immunity and Thl response. J. Immunol.,2002,169:3600-5
    [99]Davis AM, Ramos HJ, Davis LS, Farrar JD. Cutting edge:a T-bet-independent role for IFN-alpha/beta in regulating IL-2 secretion in human CD4+ central memory T cells. J. Immunol.,2008, 181:8204-8.
    [100]Huber JP, Ramos HJ, Gill MA, Farrar JD. Cutting edge:type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J. Immunol.,2010,185:813-7.
    [101]Ciprandi G, De Amici M, Murdaca G, Fenoglio D, Ricciardolo F, Marseglia G, Tosca M. Serum interleukin-17 levels are related to clinical severity in allergic rhinitis. Allergy,2009,64:1375-8.
    [102]Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol.,2009,21:274-80.
    [103]Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.,2005,6:1123-32.
    [104]Moschen AR, Geiger S, Krehan I, Kaser A, Tilg H. Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology,2008,213:779-87.
    [105]Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YC, Skinner SM, Zhang JZ, Killian JM, Hong J. Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T cells in MS. Eur. J. Immunol.,2009,39:2525-36.
    [106]Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol.,2003,171:5165-71.
    [107]Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells:dissociating proliferation and development of effector function. J. Exp. Med.,2003, 197:1141-51.
    [108]Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol.,2005,174:4465-9. [109] Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z. Signals required for programming effector and memory development by CD8+T cells. Immunol. Rev., 2006,211:81-92.
    [110]Sun S, Zhang X,Tough DF,Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 1998,188:2335-42.
    [111]Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K.IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. J Immunol 2007,178:4498-505.
    [112]Ramos HJ, Davis AM, Cole AG, Schatzle JD, Forman J, Farrar JD. Reciprocal responsiveness to interleukin-12 and interferon-alpha specifies human CD8+ effector versus central memory T-cell fates. Blood,2009,113:5516-25
    [113]Martin DL, Murali-Krishna K, Tarleton RL. Generation of Trypanosoma cruzi-specific CD8+ T-cell immunity is unaffected by the absence of type Ⅰ interferon signaling. Infect. Immun.,2010; 78:3154-9.
    [114]Berard M, Brandt K, Bulfone-Paus S, Tough DF. IL-15 promotes the survival of naive and memory phenotype CD8+T cells. J. Immunol.,2003,170:5018-26.
    [115]Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol.,2001,167:1179-87.
    [116]Tough DF, Zhang X, Sprent J. An IFN-gamma-dependent pathway controls stimulation of memory phenotype CD8+T cell turnover in vivo by IL-12, IL-18, and IFN-gamma. J. Immunol.,2001, 166:6007-11.
    [117]Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF. Cross-priming of CD8+T cells stimulated by virus-induced type I interferon. Nat. Immunol.,2003, 4:1009-15.
    [118]Le Bon A, Durand V, Kamphuis E, Thompson C, Bulfone-Paus S, Rossmann C, Ka-linke U, Tough DF. Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J. Immunol.,2006,176:4682-9
    [119]Montoya M, Edwards MJ, Reid DM, Borrow P. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice:analysis of the involvement of type 1 IFN. J Immunol 2005,174:1851-61.
    [120]Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, DiPucchio T,etal. Type Ⅰ interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 2000,191:1777-88.
    [121]Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD, Glaspy JA. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukoc Biol 1998,64:358-67.
    [122]Stonier SW, Ma LJ, Castillo EF, Schluns K.S. Dendritic cells drive memory CD8 T-cell homeostasis via IL-15 transpresentation. Blood 2008,112:4546-54.
    [123]Kokaji Al, Hockley DL, Kane KP. IL-15 transpresentation augments CD8+T cell activation and is required for optimal recall responses by central memory CD8+T cells. J Immunol 2008,180:4391-401.
    [124]Yajima T, Yoshihara K, Nakazato K, Kumabe S, Koyasu S, Sad S, Shen H, Kuwano H, Yoshikai Y. IL-15 regulates CD8+T cell contraction during primary infection. J Immunol 2006,176:507-15.
    [125]Schluns KS, Williams K, Ma A, Zheng XX, Lefrancois L. Cutting edge:requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002,168:4827-31.
    [126]McGill J, VanRooijen N, Legge KL. IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection.J Exp Med 2010,207:521-34.
    [127]LeBon A, Schiavoni G, D'Agostino G,Gresser I,Belardelli F, Tough DF.Type Ⅰ interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity,2001,14:461-70.
    [128]Cucak H, Yrlid U, Reizis B, Kalinke U, Johansson-Lindbom B. Type Ⅰ interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular rhelper cells. Immunity, 2009,31:491-501.
    [129]Dondi E, Roue G, Yuste VJ, Susin SA, Pellegrini S.A Dual role of IFN-alpha in the balance between proliferation and death of human CD4+T lymphocytes during primary response. J. Immunol., 2004,173:3740-7.
    [130]Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O'Shea JJ, Biron CA. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science,2002,297:2063-6.
    [131]Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type Ⅰ IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol.,2005,174:4465-9.
    [132]Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type Ⅰ interferon in vivo. Science,1996,272:1947-50.
    [133]Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J. Exp. Med., 1997,185:2089-94.
    [134]Wang JH, Li J, Wu Q, Yang P, Pawar RD, Xie S, Timares L, Raman C, Chaplin DD, Lu L, Mountz JD, Hsu HC. Marginal zone precursor B cells as cellular agents for type Ⅰ IFN-promoted antigen transport in autoimmunity. J. Immunol.,2010,184,442-451
    [135]Badr G, Borhis G, Treton D, Richard Y. IFN{alpha} enhances human B-cell chemotaxis by modulating ligand-induced chemokine receptor signaling and internalization. Int. Immunol.,2005,17, 459-467.
    [136]Chang WL, Coro ES, Rau FC, Xiao Y, Erie DJ, Baumgarth N. Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J. Immunol.,2007,178: 1457-1467.
    [137]Coro ES, Chang WL, Baumgarth N. Type Ⅰ IFN receptor signals directly stimulate local B cells early following influenza virus infection. J. Immunol.,2006,176:4343-4351.
    [138]Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, Tough DF. Cutting edge: Enhancement of antibody responses through direct stimulation of B and T cells by type Ⅰ IFN. J. Immunol.,2006,176,2074-2078.
    [139]Braun D, Caramalho I, Demengeot J. IFN-alpha/beta enhances BCR-dependent B cell responses. Int. Immunol.,2002,14:411-419.
    [140]Badr G, Saad H, Waly H, Hassan K, Abdel-Tawab H, Alhazza IM, Ahmed EA. Type Ⅰ interferon (IFN-alpha/beta) rescues B-lymphocytes from apoptosis via PI3Kdelta/Akt, Rho-A, NFkappaBandBcl-2/Bcl(XL). Cell Immunol.,2010,263:31-40.
    [141]Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. IRF-7 is the master regulator of type-Ⅰ interferon-dependent immune responses. Nature,2005,434,772-777.
    [142]Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD, Gaspy JA Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen presenting cells. J Leukoc. Biol.1998,64:358-367.
    [143]Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F Type Ⅰ interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med,2000,191:1777-1788.
    [144]Luft T, Pang KC, Thomas E, Hertzog P, Hart DNJ, Trapani J, Cebon J Type Ⅰ IFNs enhance the terminal differentiation of dendritic cells. J. Immunol 1998,161:1947-1953.
    [145]Gallucci S, Lolkema M, Matzinger P Natural adjuvants:endogenous activators of dendritic cells. Nat. Med.,1999.5:1249-1255.
    [146]Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DT Type 1 interferons produced by dendritic cells promote their phenotypic and functional activation. Blood,2002, 99:3263-71.
    [147]Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M, Giammarioli AM, Malorni W, Fais S, Belardelli F Expression of CCR-7, MIP-3β,and Th-1 chemokines in type 1 IFN-induced monocyte-derived dendritic cells:importance for the rapid acquisition of potent migratory and functional activities. Blood,2001,98:3022-3029.
    [148]Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999,189:451-460.
    [149]Foerster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell,1999,99:23-33.
    [150]Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M:Differential production of 1L-12, IFN-α and IFN-y by mouse dendritic cell subsets. J Immunol.,2001,166:5448-5455.
    [151]Mattei F, Bracci L, Tough DF, Belardelli F, Schiavoni G. Type 11FN regulate DC turnover in vivo. Eur. J. Immunol.,2009,39:1807-18.
    [152]Montoya M, Edwards MJ, Reid DM, Borrow P. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice:analysis of the involvement of type 1 IFN. J. Immunol.,2005,174:1851-61.
    [153]Peters M, Walling DM, Kelly K, Davis GL, Waggoner JG, Hoofnagle JH. Immunologic effects of interferon-alpha in man:treatment with human recombinant interferon-alpha suppresses in vitro immunoglobulin production in patients with chronic type B hepatitis. J Immunol 1986,137:3147-3152.
    [154]Hoofnagle JH, Seeff LB. Peg-interferon and ribavirin for chronic hepatitis C. N Engl J Med 2006, 355:2444-2451.
    [155]Dalgard O, Mangia A. Short-term therapy for patients with hepatitis C virus genotype 2 or 3 infection. Drugs 2006,66:1807-1815
    [156]Stockman LJ, Bellamy R, Garner P. SARS:systematic review of treatment effects. PloS Med 2006,3:e343
    [157]Farci P, Mandas A, Coiana A, Lai ME, Desmet V, Van Eyken P, Gibo Y, Caruso L, Scaccabarozzi S, Criscuolo D. Treatment of chronic hepatitis D with interferon alfa-2a. N Engl J Med 1994,330:88-94
    [158]Gaudin JL, Faure P, Godinot H, Gerard F, Trepo C. The French experience of treatment of chronic type D hepatitis with a 12-month course of interferon alpha-2B. Results of a randomized controlled trial. Liver 1995,15:45-52
    [159]Madejon A, Cotonat T, Bartolome J, Castillo I, Carreno V. Treatment of chronic hepatitis D virus infection with low and high doses of interferon-alpha 2a:utility of polymerase chain reaction in monitoring antiviral response. Hepatology 1994,19:1331-1336
    [160]Rosina F, Pintus C, Meschievitz C, Rizzetto M. A randomized controlled trial of a 12-month course of recombinant human interferon-alpha in chronic delta (type D) hepatitis:a multicenter Italian study. Hepatology 1991,13:1052-1056
    [161]Gallucci S, Lolkema M, Matzinger P. Natural adjuvants:endogenous activators of dendritic cells. Nat Med 1999,5:1249-1255.
    [162]Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001,14:461-470.
    [163]Akiko I. and Ruslan M. Toll-like receptor control of the adaptive immune responses. Nature Immunology 2004,5,987-995
    [164]Piasecki E. Synergistic action of interferons (IFN-alpha/beta and IFN-gamma) of different species origin. Arch Immunol Ther Exp (Warsz).1987,35(4):473-88.
    [165]Chinsangaram J, Piccone ME, Grubman MJ. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J Virol.1999, 73(12):9891-8.
    [166]Riffault S, Carrat C, van Reeth K, Pensaert M, Charley B.Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets. Vet Res.2001,32(1):71-9.
    [167]陈涛,刘惠莉。猪α干扰素基因家族中的一个假基因。上海农业学报2002
    [168]Moraes MP, Chinsangaram J, Brum MC, Grubman MJ. Immediate protection of swine from foot-and-mouth disease:a combination of adenoviruses expressing interferon alpha and a foot-and-mouth disease virus subunit vaccine. Vaccine.2003 12; 22(2):268-79.
    [169]Proietti E, Bracci L, Puzelli S, Di Pucchio T, Sestili P, De Vincenzi E, Venditti M, Capone I, Seif I, De Maeyer E, Tough D, Donatelli I, Belardelli F. Type I IFN as a natural adjuvant for a protective immune response:lessons from the influenza vaccine model. J. Immunol.2002; 169(1):375-83.
    [170]Grubman MJ, Moraes MP, Diaz-San Segundo F, Pena L, de los Santos T. Evading the host immune response:how foot-and-mouth disease virus has become an effective pathogen. FEMS Immunol Med Microbiol.2008; 53(1):8-17.
    [171]Cheng G, Zhao X, Yan W, Wang W, Zuo X, Huang K, Liu Y, Chen J, Wang J, Cong W, Liu M, Gao H, Chen J, Lu Y, Zheng Z. alpha interferon is a powerful adjuvant for a recombinant protein vaccine against foot-and-mouth disease virus in swine, and an effective stimulus of in vivo immune response. Vaccine.20079; 25(28):5199-208.
    [1]Isaacs, A., and J. Lindenmann.1957. Virus interference; I. The interferon. Proc. Roy. Soc. Series B 147:258-267.
    [2]Lampson GP, Tytell AA, Nercms MM and Hmleman MR. Purification and characterization of chick embryo interferon. Proc. Soc. exp. BioL Med.1963; 112,468.
    [3]Lefevre F, La Bonnardiere C. Molecular cloning and sequencing of a gene encoding biologically active porcine alpha-interferon. J Interferon Res.1986; 6(4):349-60.
    [4]Lefevre F, L'Haridon R, Borras-Cuesta F, La Bonnardiere C. Production, purification and biological properties of an Escherichia coli-derived recombinant porcine alpha interferon. J Gen Virol.1990; 71 (Pt5):1057-63.
    [5]Cheng G, Chen W, Li Z, Yan W, Zhao X, Xie J, Liu M, Zhang H, Zhong Y, Zheng Z. Characterization of the porcine alpha interferon multigene family. Gene,2006,382:28-38
    [6]Yongming Sang, Raymond R. R. Rowland, Richard A. Hesse, and Frank Blecha, Differential expression and activity of the porcine type I interferon family. Physiol Genomics 2010,42:248-258.
    [7]Alton K, Stabinsky Y, Richards R, Ferguson B., Goldstein L., Altrock B., Miller L., Stebbing N. Production, characterization and biological effects of recombinant DNA derived human IFN-α and IFN-y analogs. The Biology of the Interferon System.1983; 119-128.
    [8]Blatt LM, Davis J, Klein SB, Taylor MW. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res.1996; 16: 489-499.
    [9]Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, Walter MR, Nagabhushan TL, Trotta PP, Pestka S. Biological properties of recombinant alpha-interferons:40th anniversary of the discovery of interferons. Cancer Res 1998; 58:2489-2499.
    [10]Loignon M, Perret S, Kelly J, Boulais D, Cass B, Bisson L, Afkhamizarreh F and Durocher Y. Stable high volumetric production of glycosylated human recombinant 1FNalpha2b in HEK293 cells. BMC Biotechnology 2008; 8:65.
    [11]Shi LM, Wang DM, Chan WG, Cheng LZ. Efficient expression and purification of human interferon alpha2b in the methylotrophic yeast, Pichia pastoris. Protein Expres Purif 2007; 54:220-226.
    [12]Cao RB, Zhang SF, Cai MH, Wang Y, Chen DS, Chen PY. Molecular Cloning of a Novel Porcine Interferon-a and Its Expression on Escherichia coli. Journal of Agricultural Biotechnology 2004; 12 (3): 278-282
    [13]van Pesch V, Lanaya H, Renauld JC, Michiels T. Characterization of the murine alpha interferon gene family. J. Virol.,2004,78:8219-28.
    [1]De Maeyer E, Skup D, Prasad KS, De Maeyer-Guignard J, Williams B, Meacock P, Sharpe G, Pioli D, Hennam J, Schuch W, Atherton K, Expression of a chemically synthesized human alpha 1 interferon gene, Proc. Natl. Acad. Sci. USA 1982,79:4256-4259.
    [2]Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Expression for human gene for interferon in yeast, Nature 1981,293:717-722.
    [3]Pulido D, Vara JA, Jime'nez A, Cloning and expression in biologically active form of the gene for human interferon a2 in Streptomyces lividans, Gene 1986,45:167-174.
    [4]Breitling R, Gerlach D, Hartmann M, Behnke D, Sercretary expression in Escherichia coli and Bacillus subtillis of human interferon alpha genes directed by staphylokinase signals, Mol.Gen. Genet. 1989,217:384-391.
    [5]Nagata S, Taira H, Hall A, Johnsrud L, Streuli M, Ecsodi J, Boll W, Cantell K, and Weissmann C. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 1980,284,316 -320.
    [6]Mory Y, Chernajovsky Y, Feinstein SI, Chen L, Nir U, Weissenbach J, Malpiece Y, Tiollais P, Marks D, Ladner M, Colby C, and Revel M. Synthesis of human inter-feron blin E. coli infected by a lambda phage recombinant containing a human genomic fragment. Eur. J. Biochem.1981,120,197-202.
    [7]Remaut E, Stanssen P, and Fiers W. Inducible high level synthesis of mature human fibroblast interferon in E. coli. Nucleic Acids Res.1983,11,4677-4688.
    [8]Feinstein, SI, Chernajovsky, Y, Chen, L., Maroteaux, L., and Mory, Y. Expression of human interferon genes using the recApromoter of E. coli. Nucleic Acids Res.1983,11,2927-2941.
    [9]Dworkin-Rastl, E., Swetly, P., and Dworkin, M. B. Construction of expression plasmids producing high levels of human leukocyte-type interferon in E. coli. Gene 1983,21,237-248.
    [10]Mizoguchi, J., Pitha, P., and Raj, N. B. K. Efficient expression in E. coliof two species of human interferon-a and their hybrid molecules. DNA 1985,4,221-232.
    [11]Hitzeman, R. A., Hagie, F. E., Levine, H. L., Goeddel, D. V., Ammerer, G., and Hall, B. D. Expression of a human gene for interferon in yeast. Nature 1981,293,717-722.
    [12]Zsebo, K. M., Lu, H-S., Fieschko, J. C., Goldstein, L., Davis, J., Duker, K., Suggs, S. V., Lai, P-H., and Bitter, G. A. Protein secretion from S. cerevisiae directed by the prepro-a-factor leader region. J. Biol. Chem.1986,261,5858-5865.
    [13]Smith, G. E., Summers, M. D., and Fraser, M. J. Production of human beta interferon in insect cells infected with a baculovirus expression vector.Mol. Cell. Biol.1983,3,2156-2165.
    [14]Sugyiama, K., Ahorn, H., Maurer-Fogy, I., and Voss, T. Expression of human interferon-a2 in Sf9 cells.Eur. J. Biochem.1993,217,921-927.
    [15]Voss, T., Ergulen, E., Ahorn, H., Kubelka, V., Sugyiama, K., Maurer-Fogy, I., and Glossl, J. Expression of human interferon omega 1 in Sf9 cells. Eur. J. Biochem.1993,217,913-919.
    [16]Van Heuvel, M., Goveart-Siemerink, M., Bosveld, I. J., Zwar-thoff, E. C, and Trapman, J. Interferon-a producing CHO cell lines are resistant to the antiproliferative activity of IFN:A correlation with gene expression. J. Cell. Biochem.1988,38,269-278.
    [17]Page, M. J. Expression of amplified human beta interferon genes using heavy metal induction in Chinese hamster ovary cells. Gene 1985,37,139-144.
    [18]Haynes, J., and Weissmann, C. Constitutive, long-term production of human interferons by hamster cells containing multiple copies of a cloned interferon gene.Nucleic Acids Res.1983,11,687-706.
    [19]Devos, R., Opsomer, C, Scahill, S., Van Der Heyden, J., and Fiers, W. Purification of recombinant glycosylated human gamma interferon expressed in transformed chinese hamster ovary cells. J. Interferon Res.1984,4,461-468.
    [20]Margolles, E., Paifer, E., Delgado, J., High secretion levels of bacterial a -amylase in yeast P. pastoris. Biotechnol. Apl.1992,9,38-47.
    [21]Cregg, J.M., Vedvick, T.S., Raschke, W.C. Recent advances in the expression of foreign gene in Pichia pastoris. Biotechnology 1993,11,905-910.
    [22]Laroche, Y., Storme, V., De Meatler, J., Messens, J., Lauwereys, M., High level secretion and very efficient isotopic labeling of tick anticoagulant peptide (TAP) expressing in the methylotrophic yeast Pichia pastoris. Biotechnology 1994,12,1119-1124.
    [23]Rodri guez, V.M., Rubiera, R., Penichet, M., Montesino, R., Cremata, J., Falcon, V., Sanchez, G., Bringas, R., Cordoves, C., Valdes, M., Lleonart, R., Herrera, L., de la Fuente, J., High level expression of the B. microphus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particle for cattle. J. Biotechnol.1994,33:135-146.
    [24]Hallewell, R.A., Mills, R., Olsen, P.T., Blacher, R., Rosenberg, S., Otting, F., Masiarz, F.R., Seandella, C.J. Amino terminal acetylation of authentic human Cu, Zn superoxide dismutase produce in yeast. Biotechnology 1987,5:363-366.
    [25]Cereghino G.P., Cereghino J.L., Ilgen C., Cregg J.M., Production of recombinant proteins in fermentor cultures of the yeast Pichia pastoris, Curr. Opin. Biotechnol.2002,13:329-332.
    [26]Holzwarth, G., Gratzer, W. B. and Doty, P., The optical activity of polypeptides in the far ultraviolet J. Amer. Chem. Soc.1962,84:3194-3198.
    [27]Mar tin SR, Schilstra MJ. Circular dichroism and its application to the study of biomolecules. Methods Cell Biol 2008; 84:263-293.
    [28]Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006; 6:2876-2890.
    [29]Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochimica et Biophysica Acta 2005; 1751:119-139.
    [30]Pelton JT, McLean LR. Review of spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry,2000,277:167-176.
    [31]Green field NJ. Analysis of circular dichroism data. Methods Enzymology,2004,383:282-291.
    [1]Paucker K, Cantell K. Neutralization of interferon by specific antibody. Virology 1962,18:145-147
    [2]Gresser I, Bourali C, Levy JP, Fontaine-Brouty-Boye D, Thomas MT. Increased survival in mice inoculated with tumor cells and treated with interferon preparations. Proc Natl Acad Sci U S A 1969, 63:51-57
    [3]Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994,264:1415-1421
    [4]Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature,2007,449:919-22.
    [5]Chebath J, Benech P, Revel M, Vigneron M. Constitutive expression of (2'-5') oligo A synthetase confers resistance to picornavirus infection. Nature 1987,330:587-588
    [6]Samuel CE. Mechanism of interferon action:phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci U S A 1979,76:600-604
    [7]Kumar A, Haque J, Lacoste J, Hiscott J, Williams BR. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphory-lating I kappa B. Proc Natl Acad Sci U S A 1994,91:6288-6292
    [8]Stojdl DF, Abraham N, Knowles S, Marius R, Brasey A, Lichty BD, Brown EG, Sonenberg N and Bell JC, The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol 2000,74:9580-9585
    [9]Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol.,2006,80:7009-19.
    [10]Gimeno R, Lee CK, Schindler C, Levy DE. Stall and Stat2 but not Stat3 arbitrate contradictory growth signals elicited by alpha/beta interferon in T lymphocytes. Mol. Cell Biol.,2005,25:5456-65.
    [11]Tanabe Y, Nishibori T, Su L, Arduini RM, Baker DP, David M. Cutting edge:role of STAT1, STAT3, and STAT5 in IFN-alpha beta responses in T lymphocytes. J. Immunol.,2005,174:609-13.
    [12]Li GM, Huang J, Jiang P, Li YF, Jiang WW, Wang XW. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region. Virus Genes 2007; 35:673-679.
    [13]Zhou J, Huang F, Hua X, Cui L, Zhang W, Shen Y, et al. Inhibition of porcine transmissible gastroenteritis virus (TGEV) replication in mini-pigs by shRNA. Virus Res 2010; 149:51-55.
    [14]Brassard DL, Grace MJ. Bordens RW. Interferon-alpha as an immunotherapcutic protein. J Leukoc Biol 2002;71:565-581.
    [15]Moraes MP, de los Santos T., Koster M, Turecek T, Wang H, Andreyev VG, et al. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of Type Ⅰ and Ⅱ porcine interferons. J Virol 2007; 81:7124-7135.
    [16]Chun X, Wu D, Wu WX, Wan JQ, Wang L, Yang TY, et al. Cloning and expression of interferon-a/y from a domestic porcine breed and its effect on classical swine fever virus. Vet Immunol Immunopathol 2005; 104:81-89.
    [17]Loignon M, Perret S, Kelly J, Boulais D, Cass B, Bisson L, et al. Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells. BMC Biotechnology 2008; 8:65.
    [18]Cheng G, Chen WZ, Li ZF, Yan WY, Zhao X, Xie J, et al. Characterization of the porcine alpha interferon multigene family. Gene 2006; 382:28-38.
    [19]Katze MG, He Y, Jr GM. Viruses and interferon:a fight for supremacy. Nat Rev Immunol 2002; 2: 675-87.
    [20]Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, et al. Variability in the 2'-5',-Oligoadenylate Synthetase Gene Cluster Is Associated with Human Predisposition to Tick-Borne Encephalitis Virus-Induced Disease. J Infect Dis 2010; 202:1813-1818.
    [21]Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes:The 2'-5'oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18:351-361.
    [22]Knapp S, Yee LJ, Frodsham AJ, Hennig BJW, Hellier S, Zhang L, et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection:roles of MxA, OAS-1 and PKR. Genes 2003; Immun 4:411-419.
    [1]Bukowski JF, Welsh RM. Interferon enhances the susceptibility of virus-infected fibroblasts to cytotoxic T cells. J Exp Med 1985,161:257-262
    [2]Karp CL, Biron CA, Irani DN. Interferon beta in multiple sclerosis:is IL-12 sup-pression the key? Immunol Today 2000,21:24-28
    [3]Sareneva T, Matikainen S, Kurimoto M,Julkunen I. Influenza A virus-induced IFN-alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells. J Immunol 1998, 160:6032-6038
    [4]Durbin JE, Fernandez-Sesma A, Lee CK, Rao TD, Frey AB, Moran TM, Vukmanovic S, Garcia-Sastre A, Levy DE. Type I IFN modulates innate and specific antiviral immunity. J Immunol 2000,164:4220-4228
    [5]Garcia-Sastre A, Biron CA. Type 1 interferons and the virus-host relationship:a lesson in detente. Science 2006,312:879-882
    [6]Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+T cells in vivo by IL-1. Immunity 1998,8:591-599
    [7]Marrack P, JKappler, and Tmitchell. Type I interferons keep activated T cells alive. JExp Med 1999, 189:521-30
    [8]Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T, Belardelli F. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 2000,191:1777-1788
    [9]Biron CA. Interferons alpha and beta as immune regulators-a new look. Immunity 2001, 14:661-664
    [10]Coro ES, Chang WL, Baumgarth N. Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol 2006,176:4343-4351
    [11]Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000,1:305-310
    [12]Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 2002,14:432-436
    [13]Biron CA. Interferons alpha and beta as immune regulators-a new look. Immunity 2001,14: 661-664
    [14]Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epi-demiology of classical swine fever:a review of new knowledge. Vet J2003; 165 (1):11-20.
    [15]Terpstra C. Hog cholera:an update of present knowledge. Br Vet J 1991; 147 (5):397-406.
    [16]Terpstra C, Woortmeyer R, Barteling SJ. Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain. Dtsch Tierartzl Wschr 1990; 97(2):77-9.
    [17]Edwards S, Fukusho A, Lefevre PC. Classical swine fever:the global situation. Vet Microbiol 2000; 73(2-3):103-19.
    [18]Cawthorne RJ. Swine fever in Germany and The Netherlands. Vet Rec 1997; 140:187.
    [19]Hulst MM, Westra DF, Wensvoort G, Moormann RJM. Glycoprotein El of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol 1993; 67 (9):5435-42.
    [20]vanRijn PA, Bossers A, Wensvoort G, Moormann RJM. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 1996; 77:2737-45.
    [21]Andrew ME, Morrissy CJ, Lenghaus C, et al. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine 2000; 18 (18):1932-8.
    [22]de Smit AJ, van Gennip HGP, Miedema GKW, van Rijn PA, Terpstra C, Moormann RJM. Recombinant classical swine fever (CSF) viruses derived from the Chinese vaccine strain (C-strain) of CSF virus retain their avirulent and immunogenic characteristics. Vaccine 2000; 18 (22):2351-8.
    [23]Moennig V. Classical swine fever and related viral infections. Animal science 1987,320,55-88.
    [24]Van Regenmortel MHV, Fauquet CM, Bishop DHL, et al. Virus Taxonomy:The Classification and Nomenclature of Viruses. Report of International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000.
    [25]Rumenapf T, Unger G, Strauss JH, Thiel HJ. Processing of the envelope glycoproteins of pestiviruses. J Virol 1993; 67:3288-94.
    [26]Weiland E, Stark R, Hass B, Rumenapf T, Meyers G, Thiel H-.I. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol 1990,64:3563-9.
    [27]Rumenapf T, Stark R, Meyers G, Thiel H-J. Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity. J Virol 1991,65:589-97.
    [28]Weiland E, Ahl R, Stark R, Weiland F, Thiel H-J. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol 1992,66:3677-82.
    [29]Van Zijl M, Wensvoort G, de Kluyver E, Hulst M, van der Gulden H, Gielkens A, et al. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol 1991,65:2761-5.
    [30]Konig M, Lengsfeld T, Pauly T, Stark R, Thiel H-J. Classical swine fever virus:independent induction of protecive immunity by two structural glycoproteins. J Virol 1995,69:6479-86.
    [31]Dong XN, Chen YH. Strategies for mapping neutralizing epitopes:One way and two sides. Vaccine, 2006,24(22):4689-4691.
    [32]Dong XN, Wei K, Liu ZQ, Chen YH. Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine,2002,21(3-4):167-173.
    [33]Dong XN, Chen Y, Wu Y, Chen YH. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine,2005,23(28):3630-3633.
    [34]Dong Xiaonan, Qi Yun, Ying Jian, Chen YH. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine,2006,24(4): 426-434.
    [35]Dong XN, Chen YH. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine,2006,24(11): 1906-1913.
    [36]Dong XN, Chen YH. Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine,2006,24(19):4029-4034.
    [37]Armengol E, Wiesmuller K H, Buttner M, Pfaff E, Jung G and Saalmuller A. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J. Gen. Virol.,2002, 83:551-560.
    [38]Terpstra C, Wensvoort G. The protective value of vaccine-induced neutralising antibody titres in swine fever. Vet Microbiol 1988; 16:123-8.
    [39]Suradhat S, Intrakamhaeng M, Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Immunol Immunopathol 2001; 83:177-89.
    [40]Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I interferons act directly on CD8 T cells to al low clonal expansion and memory formation in response to viral infection. J Exp Med 2005,202:637-650
    [41]Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996,272:1947-1950
    [42]Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med 1999, 189:521-530
    [43]So EY, Park HH, Lee CE. IFN-gamma and IFN-alPha Posttranscriptionally down-regulate the IL-4-induced IL-4 receptor gene expression. The Journal of Immunology 2000,165,5472-5479.
    [44]Janeway Jr., C.A., Travers, P., Walport, M., Capra, J.D. Host defense against infection. In: Immunobiology:The Immune System in Health and Disease. Elsevier/Garland, Amsterdam/London, 1999,363-415.
    [45]Remond, M., Plateau, E., Cruciere, C. In vitro study of the cellular response of pigs vaccinated against classical swine fever. Zbl. Vet. Med. B 1981,28,743-748.
    [46]Kimman, T.G., Bianchi, A.T.J., Wensvoort, G., de Bruin, T.G.M., Meliefste, C. Cellular immune response to hog cholera virus (HCV):T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the E1 envelope glycoprotein is not a major T-cell antigen. J. Virol.1993,67,2922-2927'.
    [47]Pauly, T., Elbers, K., Koning, M., Lengdfeld, T., Saalmuller, A., Thiel, H.-J. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol.1995,76, 3039-3049.
    [48]Wood, P.R., Seow, H.F. T cell cytokines and disease prevention. Vet. Immunol. Immunopathol.1996, 54,33-34.
    [49]Pescovits, M.D. Immunology of the pigs. In:Pastoret, P.-P., Griebel, P., Bazin, H., Govaerls, A. (Eds.), Handbook of Vertebrate Immunology. Academic Press, San Diego, CA,1998,373-420.
    [50]Ge FF, Qiu YF, Yang YW, and Chen PY. An hsp70 fusion protein vaccine potentiates the immune response against Japanese encephalitis virus. Arch Virol 2007,152:125-135
    [51]Zhang XP, Yu CM, Zhao J, Fu L, Yi SQ, Liu SL, Yu T, Chen W. Vaccination with a D NA vaccine based o n human PSCA and H SP70 adjuvant enhances the antigen-specific CD8+T-cell response and inhibits the P SCA+ tumors growth in mice. J Gene Med 2007; 9:715-726.
    [52]Li P, Zheng QS, Wang Q, Li Y, Wang EX, Liu JJ, Cao RB, Chen PY, Immune responses of recombinant adenoviruses expressing immunodominant epitopes against Japanese encephalitis virus. Vaccine 2008; 26(46):5802-7.
    [53]Le Bon A, Schiavoni G, D'Agostin G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001; 14:461-70.
    [54]Proitti E, Bracci L, Puzelli S, Di Pucchio T, Sestill P, De Vincenzi E, et al. Type I IFN as a natural adjuvant for a productive immune response:Lessons from the influenza vaccine model. J Immunol 2002; 169:375-83.
    [55]Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19: 225-34.
    [56]Estes DM. Tuo W, Brown WC, Goin J. Effects of type Ⅰ/type Ⅱ IFNs and transforming growth factor-β on B cell differentiation and proliferation. Definition of costimulation and cytokine requirements for immunoglobulin synthesis and expression. Immunol 1998; 95:604-611.
    [57]Cull VS, Broomfield S, Bartlett EJ, Brekalo NL and James CM, Coimmunisation with type I IFN genes enhances protective immunity against cytomegalovirus and myocarditis in gB DNA-vaccinated mice. Gene Therapy 2002,9,1369-1378
    [58]Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, and Tough DF. Type I Interferons Potently Enhance Humoral Immunity and Can Promote Isotype Switching by Stimulating Dendritic Cells In Vivo. Immunity,2001; 14,461-470
    [1]Josephson K, Logsdon NJ, and Walter MR. Crystal Structure of the IL-10/IL-10R1 Complex Reveals a Shared Receptor Binding Site. Immunity,2001,14,35-46.
    [2]Harlos, K., Martin, D.M., O'Brien, D.P., Jones, E.Y., Stuart, D.I., Polikarpov, I., Miller, A., Tuddenham, E.G., and Boys, C.W. Crystal structure of the extracellular region of human tissue factor. Nature 1994,370,662-666.
    [3]Randal, M., and Kossiakoff, A.A. The structure and activity of a monomeric interferon-γ:α-chain receptor signaling complex. Structure 2001,9,155-163.
    [4]Zdanov, A., Schalk-Hihi, C., and Wlodawer, A. Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with its soluble receptor. Protein Sci.1996,5,1955-1962.
    [5]Nagem, R. A., Colau, D., Dumoutier, L., Renauld, J. C., Ogata, C.& Polikarpov, I. Crystal structure of recombinant human interleukin-22. Structure (Camb),2002,10,1051-1062.
    [6]Miller, D.L., Kung, H.-F., and Pestka, S. Crystallization of Recombinant Human Leukocyte Interferon A, Science 1982.215,689-690.
    [7]Senda T., Shimazu T., Matsuda S., Kawano G., Shimizu H., Nakamura K.T., and Mitsui Y. Three-dimensional crystal structure of recombinant murine interferon-beta. EMBO J.1992,11(9): 3193-3201
    [8]Radhakrishnan R., Walter L.J., Subramaniam P.S., Johnson H.M., and Walter M.R. Crystal structure of ovine interferon-T at 2.1 A resolution. J. Mol. Biol.1999,286,151.
    [9]M. Karpusas, M. Nolte, C.B. Benton, W. Meier, W.N.Lipscomb, and S. Goelz. Proc. The crystal structure of human interferon β at 2.2-A resolution. Natl. Acad. Sci. U.S.A.1997,94,11813-11818.
    [10]Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, Nolan GP, Piehler J, Schreiber G, Garcia K.C. Structural Linkage between Ligand Discrimination and Receptor Activation by Type 1 Interferons. Cell,2011,146:621-632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700