原发性乳腺癌染色体不稳定性的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     乳腺癌目前已经成为全球女性发病率最高的恶性肿瘤,严重影响着女性的生命和健康。乳腺癌是一种多基因参与的复杂疾病,参与调控细胞生长、分化与凋亡的一系列染色体异常导致了肿瘤的发生。更好的认识其基因改变能为患者提供更为精确的诊断和合理的治疗。
     染色体不稳定性是指癌细胞较之于正常细胞,在细胞分裂时丧失和(或)获得整条染色体或染色体片段频率的升高,可以具体的分为数目改变和结构改变。染色体不稳定是恶性肿瘤的最基本特征,几乎所有人类肿瘤都存在染色体不稳定,对肿瘤恶性生物学行为的判断具有重要价值。
     过去大批基因表达图谱分析发现了一系列的乳腺癌分子异常和一些对临床诊断治疗有用的基因表达亚型。但是由于分辨率的不足,比较基因组杂交(comparative genomic hybridization,CGH)等常用方法确定基因组的DNA拷贝数的能力受到限制。最新的细胞分子遗传学技术进展为我们提供了高分辨率检测细胞染色体不稳定性的一个平台。采用代表性寡核苷酸芯片分析(representationaloligonucleotide microarray analysis,ROMA)和定量多基因荧光原位杂交(quantitative multi-gene FISH,QM-FISH)使得对肿瘤基因组进行高分辨率分析成为可能。ROMA是迄今为止敏感性和特异性最强的微阵列杂交技术。QM-FISH技术可在同一细胞核内检测多个不同基因,并且可用于石蜡包埋组织。使用ROMA技术,可以寻找有意义的染色体异常,确定研究靶向,而使用QM-FISH技术则能检测细胞内具体位点的拷贝数改变(copy number alterations,CNAs),反映单个细胞的基因改变,对有意义的基因进行深入研究。两种技术结合,可以发现更广泛的基因扩增、缺失和易位。
     p53基因是迄今发现与人类肿瘤相关性最高的基因,但并非所有的恶性肿瘤都存在p53突变。MDM2(murine double minute 2)和MDMx是是两种重要的p53负性调节因子。MDM2与MDMx扩增或过表达频发于原发性乳腺癌,其中大部分肿瘤表达野生型P53蛋白。
     本研究分为两部分。第一部分在前期对原发性乳腺癌ROMA研究的基础上,采用QM-FISH对人乳腺癌染色体改变进行高分辨率检测,筛选出一组特异性分子标记物,用于系统的鉴定不同患者的分子异常,并且检测同一肿瘤导管内癌与浸润性导管癌之间的分子表达差异,研究特定分子异常在乳腺癌发生发展中的作用机制。第二部分研究MDMx-MDM2-p53在在乳腺癌发生中的作用机制。该研究将提高我们对乳腺癌发生发展过程中遗传学改变的认识,为乳腺癌病理诊断、预后评估以及制定个体化治疗方案提供理论基础。
     【研究方法】
     收集山东大学齐鲁医院2005-2006年乳腺癌34例,所有病例均为原发性乳腺癌,同时包含原位癌和浸润癌。分别取所有石蜡标本肿瘤原位癌与浸润癌组织制作组织芯片。图像细胞学分析肿瘤细胞DNA倍体。根据ROMA检测结果,筛选在乳腺癌中扩增或缺失比较频繁的30个基因,使用UCSC(University ofCalifornia,Santa Cruz)genome browser选择设计探针,Qiagen(?)质粒纯化试剂盒分离提取BAC克隆,切口平移法对分离纯化的探针进行荧光素标记,QM-FISH法检测30个基因的拷贝数改变,同一视野照相记录。使用激光扫描共聚焦显微镜进行图像采集,Axio Vision分析软件进行图像分析。并比较30个基因在导管内癌与浸润性导管癌中的拷贝数差异,以及与临床病理指标之间的关系。FISH检测34例原发性乳腺癌p53,MDMx与MDM2的基因拷贝数,免疫组织化学技术检测P53与MDM2蛋白表达情况,分析三种基因之间的相互作用以及与临床病理指标之间的联系。
     【实验结果】
     1.34例乳腺癌中,11例为二倍体肿瘤即D-tumor(32%),23例为非整倍体肿瘤即A-tumor(68%)。
     2.QM-FISH检测34例原发性乳腺癌中30个候选基因的拷贝数,所有病例均发生了两个或两个以上的基因改变,平均每例乳腺癌6.5个基因发生数目增益或缺失。
     3.CCNE2,C-erbB2,IGF1R,CKS1a,c-myc,CCND1扩增和chk1,p53,Rb1,CDH1,chk2,Nek9缺失均见于25%以上的病例,其中MDMx扩增(59%)最为常见。
     4.34例肿瘤浸润癌成分共发生222个基因异常事件,原位癌成分共检测到194个基因异常事件,差异无显著性,部分基因拷贝数仅在少数病例的导管内癌和浸润癌中基因有差别,无显著差异。
     5.在检测的30个基因中,我们发现了多种基因异常存在相关性。包括CCND1扩增与chk1缺失呈正相关(P<0.05);c-myc扩增与C-erbB2扩增、CCNE2扩增、LZST1缺失正相关(P<0.05),其中c-myc、LZST1与CCNE2基因改变相互之间存在相关关系(p<0.01),p53缺失与MDMx扩增呈负相关(P<0.05)。
     6.CNAs在组织学分级高(Ⅱ级与Ⅲ级)的肿瘤、非整倍体肿瘤和腋窝淋巴结转移阳性肿瘤更为常见(P<0.05),并且不同的临床病理亚型有不同的CNAs。
     7.34例原发性乳腺癌中,16例存在p53杂合性缺失,20例存在MDMx扩增,MDM2扩增仅有1例,但27例显示MDM2蛋白过度表达。
     8.MDM2过表达或者p53功能异常见于33例肿瘤,但二者不同时出现(P<0.01);31例肿瘤有MDM4扩增与P53功能异常,二者呈负相关(P<0.05)。
     【结论】
     1.多种基因异常(基因扩增、缺失)参与了乳腺癌的发病与进展。
     2.MDMx,CKS1a,CCNE2,IGF1R,C-erbB2,c-myc,CCND1扩增与chk1,chk2,Rb1,p53,CDH1缺失是原发性乳腺癌常见的染色体异常,可视为乳腺癌相关基因,对于乳腺癌早期诊断和预后判断具有重要意义。
     3.原位癌和浸润癌基因拷贝数改变基本一致,即与浸润癌有同等程度的基因组不稳定性,是一种遗传学上处于进展期的病变。
     4.CNAs在体积较大的肿瘤、非整倍体肿瘤和腋窝淋巴结转移阳性肿瘤更为常见,且不同临床病理亚型的乳腺癌有不同的CNAs。
     5.乳腺癌中出现多种细胞周期调控基因扩增/缺失,细胞周期失控与恶性肿瘤发生密切相关。
     6.乳腺癌的发生发展是一个多基因参与的过程,诸多基因相互作用、相互影响,单一基因改变不能完满解释这一过程,进行多个基因之间相互作用的研究,能更好地从分子水平上阐述它们之间的联系和肿瘤发生的机制,大样本分析对于深入研究乳腺癌多基因异常之间的联系有帮助。
     7.MDMx扩增与p53缺失是原发性乳腺癌中频发事件,而MDM2则为低发事件。
     8.原发性乳腺癌中MDM2过表达/MDMx扩增与p53异常相互排斥,高水平MDM2与MDMx导致p53通路中断。
     9.MDMx通过MDM2非依赖性途径抑制p53功能、发挥致癌作用,联合应用MDM2与MDM4抑制剂能有效治疗表达野生型p53的乳腺癌患者。
[Background]
     Breast cancer is a leading cause of cancer-related morbidity and mortality among women worldwide. As cancers evolve, their genomes undergo many alterations, including point mutations, rearrangements, deletions, and amplifications (often including growth control genes, anti-apoptotic genes and cell cycle checkpoint genes). An understanding of these changes will allow the design of more rational therapies and, by providing precise diagnostic criteria, allow fitting the correct therapy to each patient according to need.
     Chromosomal instability refers to the rate with which whole chromosomes or large portions thereof are gained or lost in cancers. The accumulation of chromosomal instability is characteristic of all carcinomas, including breast cancer. Chromosomal instability has been proposed to play an important role in cancer by accelerating the accumulation of genetic changes responsible for cancer cell evolution.
     More recently, molecular profiling methods have been used to identify clinically-relevant tumor features. Expression profiling has been very effective at revealing phenotypic subtypes of breast cancer and clinically useful diagnostic patterns of gene expression in tumors. But microarray studies have not had sufficient resolution to detect copy number. Recent technological advances have provided platforms that allow genomic amplifications and deletions to be analyzed in association studies. The combination of the two newly developed techniques ROMA (representational oligonucleotide microarray analysis) and QM-FISH(quantitative multi-gene fluorescent in situ hybridization) allow high resolution genomic analysis of specific deletions and amplifications. ROMA is a high sensitive and specific microarray technique and measures copy number values across the genome averaged over the population of a tumor. QM-FISH is a cytological technique that measures copy number values in individual cells. It has recently been shown that the QM-FISH technique works on formaldehyde fixed tumour cells in paraffin blocks. QM-FISH is therefore a very suitable technique for large-scale retrospective clinical studies. In summary ROMA is the technique to identify interesting chromosomal regions and genes, but QM-FISH is the technique of choice to quantify copy number changes of these genes or chromosomal regions in clinical tumour samples. These two powerful tools open the possibility for high resolution genome wide analysis and a detailed study of chromosomal instabilities.
     The p53 gene is often referred as the gene most related to tumours. The p53 gene is mutated in many, but not all human malignancies.MDM2 and MDM4 are the key negative regulators of p53 function in vivo. MDM2 and MDMx overexpression have been observed in a subset of human tumors, some of which retain wild-type p53.
     The thesis composed of two parts. The specific aim of the first study was scanning a panel of specific molecular markers for identifying the genetic aberration of individual patients, defining the distinct genetic subtypes of breast cancer and comparison of patterns of chromosomal alterations in DCIS(ductal carcinoma in situ) and their concurrent invasive breast cancer. High resolution genome analysis in primary breast cancer was performed by QM-FISH based on the previous ROMA analysis. Furthermore, we explored associations between CNAs and clinicopathological parameters in breast cancer. The second study was focused on evaluation of abnormalities of p53, MDMx and MDM2 genes and the relationships between each other. Here we assessed the genetic instability at p53, MDMx and MDM2 using FISH protocol and detected the expression status of P53 and MDM2 proteins by immunohistochemistry in 34 archived primary breast cancers. This study may provide a basis for improved patient prognostication, as well as a starting point to define important genes contributing to breast cancer development and progression.
     [Methods]
     The first part was based on thirty-four primary invasive breast carcinoma samples with foci DCIS diagnosed at the Department of Pathology, Qilu Hospital of Shandong University. The part of the tissue that contains normal ducts or lobules, DCIS and invasive carcinoma was cored and placed in the recipient block forming the array. Frequently amplified and deleted loci were chosen based on the previous ROMA data and CGH data. Hybridization probes for FISH were created from bacterial artificial chromosomes (BAC) selected using the UCSC Genome Browser. QM-FISH for 30 genes were performed on 4μm slides. Evaluation of signals was carried out in an epifluorescence microscope. Selected cells were photographed in a Zeiss Axioplan 2 microscope equipped with an Axio Cam MRM CCD camera and Axio Vision software. The difference of patterns of chromosomal alterations in DCIS and invasive breast cancer and the correlation between FISH data and clinicopathological parameters were evaluated.
     In the second study, to evaluate the abnormalities of p53, MDMx and MDM2 genes and the relationship between each other, we assessed the genetic instability at p53, MDMx and MDM2 loci using FISH protocol and detected the expression status of p53 and MDM2 by immunohistochemistry in 34 archived primary breast cancers. The interaction of three genes and their correlation with clinicopathological parameters were also assessed.
     [Results]
     1. Overall, among the 34 breast cancers,11 were D-tumors(32%) and 23 were A-tumors (68%).
     2. All cases had at least two chromosomal aberrations out of 30 loci. The mean number of chromosomal alterations was 6.5.
     3. Gains of CCNE2, C-erbB2, IGF1R,CKS1a,c-myc,CCND1 and loss of chkl,p53, Rbl,CDHl,chk2, Nek9 were observed in more than 25% of the analyzed cases .Gain of MDMx is the most frequently affected chromosomal region in breast cancer.
     4. The invasive component of individuals breast carcinoma totally presented 222 CNAs by QM-FISH, however the DCIS component presented 194 CNAs (P>0.05). All the pairs showed a strong similarity between the DCIS and IDC with few differences.
     5. There are significant association between CCND1 amplification and chk1 deletion (P <0.05), c-myc amplification and LZST1 deletion (P<0.01), MAPK3 amplification and JARID2 deletion (P<0.001), WTAP amplification and TPTE deletion(P <0.001), c-myc amplification and CCNE2 amplification(P <0.001).Inverse relationship between LOH (loss of heterozygosity) of p53 and MDMx amplification was found(P <0.05).
     6. The frequencies of occurrence of the gene copy number gains/losses in larger tumors(>2cm), A-tumors, and node positive tumors were higher than in smaller tumors, D-tumors and node negative tumors (P<0.05) .
     7. Allelic loss of p53 was detected in 47% (16/34) of the cases and amplification of MDMx was found in 20 cases (59%), while MDM2 amplification was identified only in one of these samples. But 27 out of 34 cases (79%) showed MDM2 overexpression indicating MDM2 amplification is an uncommon event in primary breast cancer.
     8. Most tumors contained either p53 dysfunction or MDM2 alteration, but not both. This distribution was significant (P < 0.01). Significant inverse correlation between MDM4 amplification and p53 expression was also observed (P < 0.05).
     [Conclusions]
     1. Breast cancer develops multiple chromosomal alteration (including gene amplifications and deletions) as they evolve.
     2. Frequently affected gene aberrations include loss of chk1, chk2, Rb1, Nek9, p53 and CDH1, and gains of MDMx,CKS1a,CCNE2, IGF1R,C-erbB2,c-myc and CCND1. The identified CNAs may provide a basis for improved patient prognostication, as well as a starting point to define important genes to further our understanding of the pathobiology of breast cancer.
     3. Levels of genomic instability are equivalent in DCIS lesions and advanced invasive rumors. DCIS lesions have the same extent of genomic instability as the synchronous invasive carcinomas; thus supporting the notion that invasive carcinomas evolve from or in parallel with DCIS.
     4. The frequencies of occurrence of the gene copy number gains/losses in larger tumors(>2cm), aneuploid tumors, and node positive tumors were higher than in smaller tumors,diploid tumors and node negative tumors (p<0.05) . Distinct spectra of CNAs underlie the different clinicopathological subtypes of breast cancer.
     5. Several genes undergo amplifications or deletions in tumorgenensis of breast cancer. Uncontrlled cell cycle is crucial for tumorigenesis
     6. Human solid tumors commonly develop multiple genetic abnormalities. Single gene alteration can not explain tumorgenensis. Study on interaction of multigenes involved in tumor development and tumor progression would be helpful to understand the mechanism of tumorgenesis.
     7. Overexpression of MDM2 or MDMx and p53 mutations in primary breast cancer are mutually exclusive events and combined use of MDM2 and MDM4 antagonists should be considered in the treatment of breast cancer expressing wild-type p53.
引文
1.Zhivotovsky B,Kroemer G.Apoptosis and genomic instability.Nat Rev Mol Cell Biol,2004,5(9):752-762.
    2.Theoder B.Boveri M,translator.The origin of malignant tumors[M].Baltimore:Waverly Press,1914.
    3.Jiricny J.Replication errors:challenging the genome.EMBO J,1998,17:6427-6436.
    4.Lengauer C,Kinzler KW,Vogelstein B.Genetic instabilities in human cancers.Nature,1998,396:643-649.
    5.Shackney SE,Shankey TV.Common patterns of genetic evolution in human solid tumors.Cytometry,1997,29(1):1-27.
    6.Pihan GA,Wallace J,Zhou Y,Doxsey SJ.Centrosome Abnormalities and Chromosome Instability Occur Together in pre-invasive Carcinomas.Cancer Research,2003,63,1398-1404.
    7.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell,2000,100:57-70.
    8.Fabarius A,Wilier A,Yerganian G,Hehlmann R,Duesberg P.Specific aneusomies in Chinese hamster cells at different stages of neoplastic transformation,initiated by nitrosomethylurea.Proc Natl Acad USA,2002,99(10):67782-67831.
    9.Basik M,Stoler DL,Kontzoglou KC,Rodriguez-Bigas MA,Petrelli NJ,Anderson GR.Genomic instability in sporadic colorectal cancer quantitated by inter simple sequence repeat PCR analysis.Genes Chromosomes Cancer,1997,18(1):19-29.
    10.Stoler DL,Chen N,Basik M,Kahlenberg MS,Rodriguez-Bigas MA,Petrelli NJ,Anderson GR.The onset and extent genomic instability in sporadic colorectal tumor progression.Proc Natl Acad Sci USA,1999,96(26):15121-15126.
    11.Przybytkowski E,Girouard S,Allard B,Lamarre L,Basik M.Widespread biomodal intrachromosomal genomic instability in sporadic breast cancer associated with 13q allelic imbalance.Cancer Res,2003,63(15):4588-4593.
    12.Zhou W,Goodman SN,Galizia G,Lieto E,Ferraraccio F,Pignatelli C,Purdie CA,Piris J,Morris R,Harrison DJ,Paty PB,Culliford A,Romans KE,Montgomery EA,Choti MA,Kinzler KW,Vogelstein B.Counting alleles to predict recurrence of early-stage colorectal cancers.Lancet,2002,359:219-225.
    13.Struski S,Doco-Fenzy M,Trussardi A,Masson L,Gruson N,Ulrich E,Proult M,Jardillier JC,Potron G,Cornillet-Lefebvre P.Identification of chromosomal loci associated with non-P-glycoprotein-mediated multidrug resistance to topoisomerase Ⅱ inhibitor in lung adenocarcinoma cell line by comparative genomic hybridization.Genes Chromosomes.Cancer,2001,30:136-142
    14.Yeon CH,Pegram MD.Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer.Invest New Drugs,2005,23:391-409.
    15.Balmain A,Gray J,Ponder B.The genetics and genomics of cancer.Nat Genet,2003,33 Suppl:238-244.
    16.DePinho RA,Polyak K.Cancer chromosomes in crisis.Nat Genet,2004,36(9):932-934.
    17.Nathanson KL,Wooster R,Weber BL.Breast cancer genetics:what we know and what we need.Nat Med,2001,7(5):552-556.
    18.Ralph S,David ML.In search of the tumour-suppressor functions of BRCA1 and BRCA2.Nature,2000,408:429-432.
    19.Miki Y,Swensen J,Shattuck-Eidens D,Futreal PA,Harshman K,Tavtigian S,Liu Q,Cochran C,Bennett LM,Ding W.A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.Science,1994,266(5182):66-71.
    20.Wooster R,Neuhausen SL,Mangion J,Quirk Y,Ford D,Collins N,Nguyen K,Seal S,Tran T,Averill D.Localization of a breast cancer susceptibility gene,BRCA2,to chromosome 13q 12-13.Science,1994,265(5181):2088-2890.
    21.Robson M,Dabney MK,Rosenthal G,Ludwig S,Seltzer MH,Gilewski T,Haas B,Osborne M,Norton L,Gilbert F,Offit K.Prevalence of recurring BRCA mutations among Ashkenazi Jewish women with breast cancer.Genet Test,1997,1(1):47-51.
    22.Kallioniemi A,Kallioniemi OP,Piper J,Tanner M,Stokke T,Chen L,Smith HS,Pinkel D,Gray JW,Waldman FM.Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization.Proc Natl Acad Sci U S A,1994,91:2156-60.
    23.Cingoz S,Altungoz O,Canda T,Saydam S,Aksakoglu G,Sakizli M.DNA copy number changes detected by comparative genomic hybridization and their association with clinicopathologic parameters in breast tumors.Cancer Genet Cytogenet,2003,145(2):108-14.
    24.Nessling M,Richter K,Schwaenen C,Roerig P,Wrobel G,Wessendorf S,Fritz B,Bentz M,Sinn HP,Radlwimmer B,Lichter P.Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue.Cancer Res,2005,65(2):439-447.
    25.Hicks J,Krasnitz A,Lakshmi B,Navin NE,Riggs M,Leibu E,Esposito D,Alexander J,Troge J,Grubor V,Yoon S,Wigler M,Ye K,Bφrresen-Dale AL,Naume B,Schlicting E,Norton L,H(a|¨)gerstr(o|¨)m T,Skoog L,Auer G,Maner S,Lundin P,Zetterberg A.Novel patterns of genome rearrangement and their association with survival in breast cancer.Genome Res,2006,16(12):1465-1479.
    26.Torres L,Ribeiro FR,Pandis N,Andersen JA,Heim S,Teixeira MR.Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases.Breast Cancer Res Treat,2007,102(2):143-155.
    27.Cuny M,Kramar A,Courjal F,Johannsdottir V,Iacopetta B,Fontaine H,Grenier J,Culine S,Theillet C.Relating genotype and phenotype in breast cancer:an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations.Cancer Res,2000,60:1077-1083.
    28.Wu GJ,Sinclair CS,Paape J,Ingle JN,Roche PC,James CD,Couch FJ.17q23amplifications in breast cancer involve the PAT1,RAD51C,PS6K,and SIGMA1B.Cancer Res,2000,60:5371-1375.
    29.Wu G,Sinclair C,Hinson S,Ingle JN,Roche PC,Couch FJ.Structural analysis of the 17q22-q23 amplicon identifies several independent targets of amplification in breast cancer cell lines and tumors.Cancer Res,2001,61:4951-4955.
    30.Monni O,Barlund M,Mousses S,Kononen J,Sauter G,Heiskanen M,Paavola P,Avela K,Chen Y,Bittner ML,Kallioniemi A.Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer.Proc Natl Acad Sci USA,2001,98:5711-5716.
    31.Anzick SL,Kononen J,Walker RL,Azorsa DO,Tanner MM,Guan XY,Sauter G,Kallioniemi OP,Trent JM,Meltzer PS.AIB1,a steroid receptor coactivator amplified in breast and ovarian cancer.Science,1997,277:965-968.
    32.Sen S,Zhou H,White RA.A putative serine/threonine kinase encoding gene BTAK on chromosome 20q12 is amplified and overexpressed in human breast cancer cell lines.Oncogene,1997,14:2195-2200.
    33.Slamon DJ,Clark GM,Wong SG,Levin WJ,Ullrich A,McGuire WL.Human breast cancer:correlation of relapse and survival with amplification of the Her-2/neu oncogene.Science,1987,235:177.
    34.Roos G,Nilsson P,Cajander S,Nielsen NH,Amerl(o|¨)v C,Landberg G.Telomerase activity in relation to p53 status and clinico-pathological parameters in breast cancer.Int J Cancer,1998,79(4):343-348.
    35.Yamashita H,Nishio M,Toyama T,Sugiura H,Zhang Z,Kobayashi S,Iwase H.Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer.Breast Cancer Res,2004,6(1):R24-30.
    36.Pietil(a|¨)inen T,Lipponen P,Aaltomaa S,Eskelinen M,Kosma VM,Syrj(a|¨)nen K.Expression of c-myc proteins in breast cancer as related to established prognostic factors and survival.Anticancer Res,1995,15(3):959-964.
    37.Mizukami Y,Nonomura A,Takizawa T,Noguchi M,Michigishi T,Nakamura S,Ishizaki T.N-myc protein expression in human breast carcinoma:prognostic implications.Anticancer Res,1995,15(6B):2899-2905.
    38.Bergamaschi A,Kim YH,Wang P,Sφrlie T,Hernandez-Boussard T,Lonning PE,Tibshirani R,Bφrresen-Dale AL,Pollack JR.Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer.Genes Chromosomes Cancer,2006,45(11):1033-1040.
    39.Li L,Mu K,Zhou G,Lan L,Auer G,Zetterberg A.Genomic instability and proliferative activity as risk factors for distant metastases in breast cancer.British Journal of Cancer,2008,99:513-519.
    40.Bentz M,Plesch A,Stilgenbauer S,D(|¨)hner H,Lichter P.Minimal sizes of deletions detected by comparative genomic hybridization.Genes Chromosomes Cancer,1998,21:172-175.
    41.Lichter P,Joos S,Bentz M,Lampel S.Comparative genomic hybridization:uses and limitations.Semin Hematol,2000,37:348-357.
    42.Lucito R,Healy J,Alexander J,Reiner A,Esposito D,Chi M,Rodgers L,Brady A,Sebat J,Troge J,West JA,Rostan S,Nguyen KC,Powers S,Ye KQ,Olshen A,Venkatraman E,Norton L,Wigler M.Representational oligonucleotide microarray analysis:A high-resolution method to detect genome copy number variation.Genome Res,2003,13:2291-2305.
    1.Hicks J,Krasnitz A,Lakshmi B,Navin NE,Riggs M,Leibu E,Esposito D,Alexander J,Troge J,Grubor V,Yoon S,Wiglet M,Ye K,Bφrresen-Dale AL,Naume B,Schlicting E,Norton L,H(a|¨)gerstr(o|¨)m T,Skoog L,Auer G,Maner S,Lundin P,Zetterberg A.Novel patterns of genome rearrangement and their association with survival in breast cancer.Genome Res,2006,16(12):1465-1479.
    2.Steinbeck RG.The DNA content of chromosome division figures and interphase nuclei classifies ulcerative colitis.Eur.J.Cancer,1998,34:175-181.
    3.Auer G.Prognostic significance of nuclear DNA content in mammary adenocarcinomas in human.Cancer Research,1984,394:1447.
    4.Hedley DW.Influencen of celluar DNA content on disease-free survival of stage Ⅱbreast cancer patients.Cancer res,1984,44:5395.
    5.Fallenius AG,Franzen SA,Auer G.Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors.A retrospective study of 227 consecutive cases.Cancer,1988,62:521-530
    6.Hedley DW,Bauer KD,Duque RE,Shankey TV,editors.Clinical flow cytometry principles and application,1st edition.Baltimore:Williams & Wilkins,1993, 247-261.
    7.Clark GM,Dressier LG,Owens MA,Pounds G,Oldaker T,McGuire WL.Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry.N Engl J Med,1989,320:627-633.
    8.Toikkanen S,Joensuu H,Klemi P.The prognostic significance of nuclear DNA content in invasive breast cancer:a study with long term follow-up.Br J Cancer,1989,60:693-700.
    9.Stal O,Dufmats M,Hatschek T,Carstensen J,Klintenberg C,Rutqvist L-E,Skoog L,Sullivan S,Wingren S,Nordenskj(o|¨)ld B.S-phase fraction is a prognostic factor in stage I breast carcinoma.J Clin Oncol,1993,11:1717-1722.
    10.Schlotter CM,Kropp S,Wichert S,Vogt U,Krieg V,Bosse U,Wassmann K.Clinical importance of histology,grading and ploidies in primary breast cancer.Zentralbl-Gynakol,1999,121(8):384.
    11.Wong SW,Rangan AM,Bilous AM,Boyages J,Gebski V,Benson EM.The value of s-phase and DNA ploidy analysis as prognostic markers for node-negative breast cancer in the austrilian setting.Pathology,1999,31(2):90.
    12.Li L,Mu K,Zhou G,Lan L,Auer G,Zetterberg A.Genomic instability and proliferative activity as risk factors for distant metastases in breast cancer.Br J Cancer,2008,99(3):513-519.
    13.American Society of Clinical Oncology.Clinical guidelines for the use of tumor markers in breast and colorectal cancer.J Clin Oncol,1996,14:2843-2877.
    14.Railo M,Lundin J,Haglund C,von Smitten K,Nordling S.Ki-67,p53,ER Receptors,Ploidy and S Phase as Long-Term Prognostic Factors in T1Node-Negative Breast Cancer.Tumour Biol,2007,28(1):45-51.
    15.Hwang ES,DeVries S,Chew KL,Moore DH 2nd,Kedikowske K,Thor A,Ljung BM,Waldman FM.Patterns of Chromosomal Alterations in Breast Ductal Carcinoma In situ.Clin Cancer Res,2004,10(15):5160-5167.
    15.Owens MA,Horten BC,Da Silva MM.HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues.Clin Breast Cancer,2004,5(1):63-69.
    16. Wang XC, Tian LL, Tian J, Wu HL, Meng AM. Overexpression of Cks1 is associated with poor survival by inhibiting apoptosis in breast cancer. J Cancer Res Clin Oncol, 2009. [Epub ahead of print]
    17. Persons DL, Borelli KA & Hsu PH. Quantitation of HER-2/ neu and c-myc gene amplification in breast carcinoma using fluorescence in situ hybridization. Modern Pathology, 1997,10:720-727.
    18. Roig J, Mikhailov A, Belham C, Avruch, J. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors.Nerccl, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev, 2002,16:1640-1658.
    19. Jensen LB, Bartlett JM, Witton CJ, Kirkegaard T, Brown S, Muller S, Campbell F, Cooke TG, Nielsen KV. Frequent amplifications and deletions of G1/S-phase transition genes, CCND1 and MYC in early breast cancers: a potential role in G1/S escape. Cancer Biomark, 2009, 5(1):41-9.
    20. Allred DC, Mohsin SK, Fuqua SA. Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer, 2001, 8:47-61.
    21. Ellsworth RE, Ellsworth DL, Lubert SM, Hooke J, Somiari RI, Shriver CD. High-throughput loss of heterozygosity mapping in 26 commonly deleted regions in breast cancer. Cancer Epidemiol Biomarkers Prev, 2003,12:915-919.
    22. Ellsworth RE, Ellsworth DL, Deyarmin B, Hoffman LR, Love B, Hooke JA, Shriver CD. Timing of critical genetic changes in human breast disease. Ann Surg Oncol, 2005,12(12): 1054-1060.
    23. Heaphy CM, Bisoffi M, Joste NE, Baumgartner KB, Baumgartner RN, Griffith JK. Genomic instability demonstrates similarity between DCIS and invasive carcinomas. Breast Cancer Res Treat. 2008. [Epub ahead of print]
    24. Ellsworth RE, Vertrees A, Love B, Hooke JA, Ellsworth DL, Shriver CD. Chromosomal Alterations Associated with the Transition from In Situ to Invasive Breast Cancer. Ann Surg Oncol, 2008,15(9):2519-2525.
    25. Buerger H, Otterbach F, Simon R, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast evidence of multiple genetic pathways.J Pathol.1999,187:396-402.
    26.Park K,Han S,Kim HJ,Kim J,Shin E.HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry.Histopathology,2006,48(6):702-707.
    27.Guo Y,Yang K,Harwalkar J,Nye JM,Mason DR,Garrett MD,Hitomi M,Stacey DW.Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis.Oncogene,2005,24(16):2599-2612.
    28.Alt JR,Gladden AB,Diehl JA.p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export.J Biol Chem,2002,277(10):8517-8523.
    29.Vedinden L,Vanden Bempt I,Eelen G,Drijkoningen M,Vedinden I,Marchal K,De Wolf-Peeters C,Christiaens MR,Michiels L,Bouillon R,Verstuyf A.The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas.Cancer Res,2007,67(14):6574-6581.
    30.Lundgren K,Holm K,Nordenskj(o|¨)ld B,Borg A,Landberg G.Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer.Breast Cancer Res,2008,10(5):R81.
    31.Cuny M,Kramar A,Courjal F,Johannsdottir V,Iacopetta B,Fontaine H,Grenier J,Culine S,Theillet C.Relating genotype and phenotype in breast cancer:an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations.Cancer Res,2000,15;60(4):1077-1083.
    32.Courjal F,Cuny M,Slmony-Lafontaine J,Louason G,Speiser P,Zeillinger R,Rodriguez C,Theillet C.Mapping of DNA amplifications atl5 chromosomal localizations in 1875 breast tumors:definition of phenotypic groups.Cancer Res, 1997,57:4360-4367.
    33.Herman JG,Merlo A,Mao L,Lapidus RG,Issa JP,Davidson NE,Sidransky D,Baylin SB.Inactivation of the CD2 KN2/ P16/ MTS1 gene is frequently associated with aberrant DNA methylation all common human cancers.Cancer Res,1995,55:4525-4530.
    34.Arribas R,Capella G,Tortola S,Masramon L,Grizzle WE,Perucho M,Peinado MA.Assessment of genomic damage in colorectal cancer by DNA fingerprinting:prognostic applications.J Clin Oncol,1997,15(10):3230-3240.
    35.Suzuki K,Ohnami S,Tanabe C,Sasaki H,Yasuda J,Katai H,Yoshimura K,Terada M,Perucho M,Yoshida T.The genomic damage estimated by arbitrarily primed PCR DNA fingerprinting is use ful for the prognosis of gastric cancer.Gastroenterology,2003,125(5):1330-1340.
    36.Kronenwett U,Ploner A,Zetterberg A,Bergh J,Hall P,Auer G,Pawitan Y.Genomic instability and prognosis in breast carcinomas.Cancer Epidemiol Biomarkers Prev,2006,15:1630-1635.
    37.Carter SL,Eklund AC,Kohane IS,Harris LN,Szallasi Z.A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers.Nat Genet,2006,38(9):1043-1048.
    38.Musio A,Montagna C,Zambroni D,Indino E,Barbieri O,Citti L,Villa A,Ried T,Vezzoni P.Inhibition BUB1 results in genomic instability and anchorage-independent growth of normal human fibroblasts.Cancer Res,2003,63(11):2855-2863.
    39.Gollin SM.Mechanisms leading to chromosomal instability.Semin Cancer Biol.2005,15(1):33-42.
    40.Swanton C,Tomlinson I,Downward J.Chromosomal instability,colorectal cancer and taxane resistance.Cell Cycle,2006,5(8):818-823.
    41.Yeon CH,Pegram MD.Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer.Invest New Drugs,2005,23:391-409.
    42.Bergamaschi A,Kim YH,Wang P,Sφrlie T,Hemandez-Boussard T,Lonning PE,Tibshirani R,Bφrresen-Dale AL,Pollack JR.Distinct Patterns of DNA Copy Number Alteration Are Associated with Different Clinicopathological Features and Gene-Expression Subtypes of Breast Cancer. Genes Chromosomes Cancer, 2006,45(11):1033-1040.
    43. Ellsworth RE, Hooke JA, Love B, Kane JL, Patney HL, Ellsworth DL, Shriver CD. Correlation of levels and patterns of genomic instability with histological grading of invasive breast tumors. Breast Cancer Res Treat, 2008,107(2):259-265.
    44. Musgrove EA, Lee CS, Buckley MF, Sutherland RL. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA, 1994,91 (17): 8022-6.
    1.Harris SL,Levine AJ.The p53 pathway:Positive and negative feedback loops.Oncogene,2005,24:2899-2908.
    2.Liu G,Chen X.Regulation of the p53 transcriptional activity.J Cell Biochem,2006,97:448-458.
    3.Deng G,Chen LC,Schott DR,Thor A,Bhargava V,Ljung BM,Chew K,Smith HS. Loss of heterozygosity and p53 genemutations in breast cancer. Cancer Res, 1994, 54:499-505.
    4. B0rresen-Dale AL. TP53 and breast cancer.Hum Mutat, 2003,21(3):292-300.
    5. Brankovic-Magic MV, Jankovic RN, Dobricic JD, Borojevic ND, Magic ZM, Radulovic SS.TP53 mutations in breast cancer: association with ductal histology and early relapse of disease.Int J Biol Markers, 2008,23(3):147-153.
    6. Bertheau P, Espie M, Turpin E, Lehmann J, Plassa LF, Varna M, Janin A, de The H. TP53 status and response to chemotherapy in breast cancer. Pathobiology, 2008, 75(2):132-139.
    7. Langer(?)d A, Zhao H, Borgan (?), Nesland JM, Bukholm IR, Ikdahl T, Karesen R, B(?)rresen-Dale AL, Jeffrey SS. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res, 2007, 9(3):R30.
    8.Cahilly-Snyder L, Yang-Feng T, Francke U, George DL. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat. Cell Mol. Genet, 1987,13:235-244.
    9. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 1992, 358:80-83.
    10. Clegg HV, Itahana K, Zhang Y. Unlocking the Mdm2-p53 loop: ubiquitin is the key. Cell Cycle, 2008; 7: 287-292.
    11. Prives C. Signaling to p53: breaking the MDM2-p53 circuit. Cell, 1998,95: 5-8.
    12. Marine JC, Dyer MA, Jochemsen AG MDMX: from bench to bedside. J Cell Sci, 2007,20:371-378.
    13.Inoue S, Tezel E, Nakao A. Molecular diagnosis of pancreatic cancer. Hepatogastroenterology, 2001,48:933-938.
    14. Lev Bar-Or R, Maya R, Segel LA, Alon U, Levine AJ, Oren M. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Natl Acad Sci, 2000,97: 11250-11255.
    15. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res, 1998,26:3453-3459
    16. Veerakumarasivam A, Scott HE, Chin SF, Warren A, Wallard MJ, Grimmer D, Ichimura K, Caldas C, Collins VP, Neal DE, Kelly JD. High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin Cancer Res, 2008,14:2527-2534.
    17. Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ, Jochemsen AG Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics, 1997,43:34-42.
    18. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol, 2007,39(7-8): 1476-1482.
    19. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Francoz S,Gasparini P, Gobbi A, Helin K, Jochemsen A, Marine JC. Amplification of Mdmx (or Mdm4) directly contributes to tumour formation by inhibiting p53-tumour suppressor activity. Mol. Cell. Biol, 2004,24: 5835-5843.
    20. Sabbatini P, McCormick F. MDMX inhibits the p300/CBP-mediated acetylation of p53. DNA Cell Biol, 2002,21: 519-525.
    21. Migliorini D, Lazzerini-Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci P.-G, Marine J-C. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol, 2002,22: 5527-5538.
    22. Francoz S, Froment P, Bogaerts S, De Clercq S, Maetens M, Doumont G, Bellefroid E, Marine JC. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl. Acad. Sci, 2006, 103:3232-3237.
    23. Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M, Wahl GM. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell, 2006, 9:273-285.
    24. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, Rodriguez-Galindo C, Quarto M, Francoz S, Mendrysa SM, Guy RK, Marine JC, Jochemsen AG, Dyer MA. Inactivation of the p53 pathway in retinoblastoma. Nature, 2006,444:61-66
    25. Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger GH. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res, 1999, 59:6091-6096.
    26. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Joechemsen AG, Marine JC. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol, 2004,24:5835-5843.
    27. Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M, Bache M, Schimdt H, Wurl P, Taubert H, Hauptmann S. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis, Int J Cancer, 2005,117:469-475.
    28. Matsuyama H, Pan Y, Mahdy EA, Malmstrom PU, Hedrum A, Uhlen M, Busch C, Hirano T, Auer G, Tribukait B, Naito K, Lichter P, Ekman P, Bergerheim US. p53 deletion as a genetic marker in urothelial tumor by fluorescence in situ hybridization. Cancer Res, 1994, 54(23):6057-6060.
    29. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature, 1991,351:453-456.
    30. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science, 1991,253:49-53.
    31. Varley J, Brammar W, Lane D, Swallow J, Dolan C, Walker R. Loss of chromosome 17p13 sequences and mutation of p53 in human breast carcinomas. Oncogene, 1991,6:413-421.
    32. Janocko LE, Brown KA, Smith CA, Gu LP, Pollice AA, Singh SG, Julian T, Wolmark N, Sweeney L, Silverman JF, Shackney SE. Distinctive patterns of Her-2/neu,c-myc,and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers.Cytometry,2001,46:136-149.
    33.Eyfj(o|¨)rd JE,Thorlacius S,Steinarsdottir M,Valgardsdottir R,Ogmundsdottir HM,Anamthawat-Jonsson K.p53 abnormalities and genomic instability in primary human breast carcinomas.Cancer Res,1995,55(3):646-651.
    34.Gursan N,Karak(o|¨)k M,Sari I,Gursan MS.The relationship between expression of p53/Bcl-2 and histopathological criteria in breast invasive ductal carcinomas.Int J Clin Pract,2001,55:589-590.
    35.Pratap R,Shousha S.Breast carcinoma in women under the age of 50:Relationship between p53 immunostaining,tumour grade,and axillary lymph node status.Breast Cancer Res Treat,1998,49:35-39.
    36.黄越承,蔡建明.MDM2功能及其调控机制.国外医学·肿瘤学分册,2004,31:336-339.
    37.Momand,J,Zambetti,GP,Olson,DC,George,D,Levine,AJ.The mdm-2oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.Cell,1992,69:1237-1245.
    38.Schiebe M,Ohneseit P,Hoffmann W,Meyermann R,Rodemann HP,Bamberg M.Analysis of mdm2 and p53 gene alterations in glioblastomas and its correlation with clinical factors.J Neurooncol,2000,49(3):197-203.
    39.Lonardo F,Ueda T,Huvos AG,Healey J,Ladanyi M.p53 and MDM2 alterations in osteosarcomas:correlation with clinicopathologic features and proliferative rate.Cancer,1997,79(8):1541-1547.
    40.Roth J,Dobbeistein M,Freedman DA,Shenk T,Levine AJ.Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeflciency virus rev protein.EMBO J,1998,17:554-564.
    41.McCann AH,Kirley A,Carney DN,Corbally N,Magee HM,Keating G,Dervan PA.Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status.Br J Cancer,1995,71:981-985.
    42.Bueso-Ramos CE,Manshouri T,Haidar MA,Yang Y,Mc- Cown P,Ordonez N,Glassman A,Sneige N,Albitar M.Abnormal expression of MDM-2 in breast carcinomas.Breast Cancer Res Treat,1996,37:179-188.
    43.O'Neill M,Campbell SJ,Save V,Thompson AM,Hall PA.An immunochemical analysis of mdm2 expression in human breast cancer and the identification of a growth-regulated cross-reacting species p170.J Pathol,1998,186(3):254-261.
    44.G(u|¨)nther T,Schneider-Stock R,Rys J,Niezabitowski A,Roessner A.p53 gene mutations and expression of p53 and mdm2 proteins in invasive breast carcinoma.A comparative analysis with clinico-pathological factors.J Cancer Res Clin Oncol,1997,123(7):388-394.
    45.Baccouche S,Daoud J,Frikha M,Mokdad-Gargouri R,Gargouri A,Jlidi R.Immunohistochemical status of p53,MDM2,bcl2,bax,and ER in invasive ductal breast carcinoma in Tunisian patients.Ann N Y Acad Sci,2003,1010:752-763.
    46.Pietras RJ,Poen JC,Gallardo D,Wongvipat PN,Lee HJ,Slamon DJ.Monoclonal antibody to Her2/neu receptor modulates repair of radiation2induced DNA damage and enhances radiosensitivity of human breast cancer cell overexpression this oncogene.Cancer Res,1999,59:1347-1355.
    47.杜长征,李惠平,侯宽永,等.中国乳腺癌患者表皮生长因子受体22表达的Meta 分析.北京大学学报(医学版),2006,38:184-188.
    48.Casalini P,BottaL,Menard S.Role of p53 in Her2-induced proliferation or apoptosis.J Biol Chem,2001,276:12449-12453.
    49.Onel K,Cordon-Cardo C.MDM2 and prognosis.Mol Cancer Res,2004,2:1-8
    50.Nenutil R,Smardova J,Pavlova S,Hanzelkova Z,Muller P,Fabian P,Hrstka R,Janotova P,Radina M,Lane DP,Coates PJ,Vojtesek B.Discriminating functional and non-functional p53 in human tumors by p53 and MDM2immunohistochemistry.J Pathol,2005,207:251-259.
    51.Ladanyi M,Cha C,Lewis R,Jhanwar SC,Huvos AG,Healey JH.MDM2 gene amplification in metastatic osteosarcoma.Cancer Res,1993,53(1):16-18.
    52.Bankfalvi A,Tory K,Kemper M,Breukelmann D,Cubick C,Poremba C,Fuzesi L,Lelle RJ,Booker W.Clinical relevance of immunohistochemical expression of p53-targeted gene products mdm-2, p21 and bcl-2 in breast carcinoma. Pathol Res Pract, 2000,196:489-501.
    53. Hori M, Shimazaki J, Inagawa S, Itabashi M, Hori M. Overexpression of MDM2 oncoprotein correlates with possession of oestrogen receptor alpha and lack of MDM2 mRNA splice variants in human breast cancer. Breast Cancer Res Treat, 2002,71:77-83.
    54. Jiang M, Shao ZM, Wu J, Lu JS, Yu LM, Yuan JD, Han QX, Shen ZZ, Fontana JA. p21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer, 1997, 74:529-534.
    55. Turbin DA, Cheang MC, Bajdik CD, Gelmon KA, Yorida E, De Luca A, Nielsen TO, Huntsman DG, Gilks CB. MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol, 2006,19(1):69-74.
    56. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, Spichtin H, Maurer R, Mirlacher M, Kochli O, Zuber M, Dieterich H, Mross F, Wilber K, Simon R, Sauter G.Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res, 2004,64(23): 8534-8540.
    57. Cuny M, Kramar A, Courjal F, Johannsdottir V, Iacopetta B, Fontaine H, Grenier J, Culine S, Theillet C. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res, 2000,60:1077- 1083.
    58. Schmitz KJ, Grabellus F, Callies R, Wohlschlaeger J, Otterbach F, Kirnmig R, Levkau B, Schmid KW, Baba HA. Relationship and prognostic significance of phospho-(serine 166)-murine double minute 2 and Akt activation in node-negative breast cancer with regard to p53 expression.Virchows Arch, 2006,448(1):16-23.
    59. Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G. Keeping p53 in check: Essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ, 2006,13, 927-934.
    60. Toledo F, Lee CJ, Krummel KA, Rodewald LW, Liu CW, Wahl GM. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol Cell Biol, 2007, 27(4):1425-1432.
    61.Matijasevic Z,Krzywicka-Racka A,Sluder G,Jones SN.MdmX regulates transformation and chromosomal stability in p53-deficient cells.Cell Cycle,2008,7:2967-2673.
    62.Vassilev LT.Small-molecule antagonists of p53-MDM2 binding:research tools and potential therapeutics.Cell Cycle,2004,3(4):419-421.
    1.Harris SL,Levine AJ(2005) The p53 pathway:Positive and negative feedback loops.Oncogene 24:2899-2908.
    2.Liu G,Chen X(2006) Regulation of the p53 transcriptional activity.J Cell Biochem 97:448-458.
    3.Deng G,Chen LC,Schott DR,Thor A,Bhargava V,Ljung BM,Chew K,Smith HS(1994)Loss of heterozygosity and p53 genemutations in breast cancer.Cancer Res.54:499-505
    4.Cahilly-Snyder L,Yang-Feng T,Francke U,George DL(1987) Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line.Somat.Cell Mol.Genet.13:235-244
    5.Momand J,Jung D,Wilczynski S,Niland J(1998) The MDM2 gene amplification database.Nucleic Acids Res 26:3453-3459
    6.Oliner JD,Kinzler KW,Meltzer PS,George DL,Vogelstein B(1992) Amplification of a gene encoding a p53-associated protein in human sarcomas.Nature 358:80-83
    7.Veerakumarasivam A,Scott HE,Chin SF,Warren A,Wallard MJ,Grimmer D,Ichimura K,Caldas C,Collins VP,Neal DE,Kelly JD(2008)High-resolution array-based comparative genomie hybridization of bladder cancers identifies mouse double minute 4(MDM4) as an amplification target exclusive of MDM2 and TP53.Clin Cancer Res.14:2527-2534
    8.Shvarts A,Bazuine M,Dekker P,Ramos YF,Steegenga WT,Merckx G,van Ham RC,van der Houven van Oordt W,van der Eb AJ,Jochemsen AG(1997) Isolation and identification of the human homolog of a new p53-binding protein,Mdmx.Genomies 43:34-42.
    9.Laurie NA,Donovan SL,Shih CS,Zhang J,Mills N,Fuller C,Teunisse A,Lam S,Ramos Y,Mohan A,Johnson D,Wilson M,Rodriguez-Galindo C,Quarto M,Francoz S,Mendrysa SM,Guy RK,Marine JC,Jochemsen AG,Dyer MA(2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61-66
    10. Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger GH (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091-6096
    11. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Joechemsen AG, Marine JC (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835-5843
    12. Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M, Bache M, Schimdt H, Wurl P, Taubert H, Hauptmann S (2005) Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 117:469-475
    13. Matsuyama H, Pan Y, Mahdy EA, Malmstrom PU, Hedrum A, Uhlen M, Busch C, Hirano T, Auer G, Tribukait B, Naito K, Lichter P, Ekman P, Bergerheim US (1994) p53 deletion as a genetic marker in urothelial tumor by fluorescence in situ hybridization.Cancer Res 54(23):6057-6060
    14. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene.Nature 351:453-456
    15. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science, 253:49-53
    16. Varley J, Brammar W, Lane D, Swallow J, Dolan C, Walker R (1991) Loss of chromosome 17p13 sequences and mutation of p53 in human breast carcinomas. Oncogene 6:413-421.
    17. Janocko LE, Brown KA, Smith CA, Gu LP, Pollice AA, Singh SG, Julian T, Wolmark N, Sweeney L, Silverman JF, Shackney SE (2001) Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 46:136-149
    18. Eyfjord JE, Thorlacius S, Steinarsdottir M, Valgardsdottir R, Ogmundsdottir HM, Anamthawat-Jonsson K (1995) p53 Abnormalities and Genomic Instability in Primary Human Breast Carcinomas. Cancer Res 55:646-651
    19. Eyfjord JE, Thorlacius S, Steinarsdottir M, Valgardsdottir R,Ogmundsdottir HM, Anamthawat-Jonsson K (1995) p53 abnormalities and genomic instability in primary human breast carcinomas. Cancer Res 55: 646-651
    20. Gursan N, Karakok M, Sari I, Gursan MS (2001) The relationship between expression of p53/Bcl-2 and histopathological criteria in breast invasive ductal carcinomas Int J Clin Pract 55:589-590
    21. Pratap R, Shousha S (1998) Breast carcinoma in women under the age of 50: Relationship between p53 immunostaining, tumour grade, and axillary lymph node status. Breast Cancer Res Treat. 49:35-39.
    22. Roth J, Dobbeistein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17: 554-564
    23. McCann AH, Kirley A, Carney DN, Corbally N, Magee HM, Keating G, Dervan PA (1995) Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. Br J Cancer 71:981-985
    24. Quesnel B, Preudhomme C, Oscier D, Lepelley P, Collyn-d'Hooghe M, Facon T, Zandecki M, Fenaux (1994) Over-expression of the MDM2 gene is found in some cases of haematological malignancies.Br J Haematol 88:415-418
    25. Deb SP (2003) Cell cycle regulatory functions of the human oncoprotein MDM2. Mol Cancer Res 1:1009-1016
    26. Bueso-Ramos CE, Manshouri T, Haidar MA, Yang Y, Mc-Cown P, Ordonez N, Glassman A, Sneige N, Albitar M (1996) Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat 37: 179-188
    27. Marine JC, Dyer MA, Jochemsen AG (2007) MDMX: from bench to bedside. J Cell Sci. 20:371-378
    28. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Jochemsen AG, Marine JC (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumour formation by inhibiting p53-tumour suppressor activity. Mol. Cell. Biol 24:5835-5843
    29. Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A, Helin K, Pelicci PG, Marine JC (2002) Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 22:5527-5538
    30. Matijasevic Z, Krzywicka-Racka A, Sluder G, Jones SN (2008) MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 7:2967-2673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700