FGFR1信号通路在小鼠骨骼发育和重建中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成纤维细胞因子Ⅰ型受体(FGF ReceptorⅠ,FGFRⅠ)在骨骼发育和人类遗传疾病中具有重要作用。人FGFR1 P252A功能增强性点突变引起Pfeiffer综合征和OD综合征,主要引起人类颅缝早闭和趾骨发育异常。FGFR1功能丧失性点突变引起人类Kallmann综合征,但不直接调节骨骼发育。FGFR1敲除导致小鼠胚胎期死亡,条件性基因敲除技术使得研究FGFR1在骨骼发育中的作用成为可能。条件性基因敲除技术必须依赖于组织或细胞特异性Cre转基因小鼠的制备,已有研究报告指出OC-Cre转基因小鼠可以在成熟成骨细胞中特异性表达CRE重组酶,这使得研究成熟成骨细胞中FGFR1在骨骼发育中功能成为可能。已有实验室利用基因条件性敲除技术研究FGFR1在小鼠骨骼肢芽发育中的作用,结果FGFR1是肢芽(limb bud)发生、发育和趾骨图式发育(patterning)所必需,Jacob等的研究结果表明FGFR1促进间充质细胞增生,抑制前成骨细胞增生和成熟成骨细胞矿化,但FGFR1对出生后骨发育和重建的影响和分子机制还不完全清楚,同时FGFR1对出生后骨骼质量的影响还未见报道。。
     BMP受体ALK3是骨骼发育和重建过程中的负性调节分子。Mishina实验室发现成骨细胞敲除ALK3后,成骨细胞成骨功能下降,破骨细胞骨吸收功能受抑制。在骨骼发育过程中,FGF信号通路和BMP信号通路之间关系复杂:BMP和FGF信号相互抑制共同调控软骨生成;而在成骨过程中,Warren等发现FGF信号通路可以通过抑制BMP阻断分子noggin来调节BMP信号通路。Matsushita等最新的研究结果显示FGFR3激活性突变可以通过FGF信号依赖的BMP信号通路促进成骨。目前,成骨细胞中BMP信号通路与FGFR1的关系还不明确。本课题利用fgfr1CKO小鼠和OC-Cre转基因小鼠制备fgfr1OC-CKO小鼠,实现在小鼠成熟成骨细胞敲除FGFR1,从而研究FGFR1对骨骼发育、重建、出生后骨骼质量的维持和钙和磷代谢的功能。为研究FGFR1和ALK3信号通路的关系,本研究利用条件性组成性激活ALK3转基因小鼠(caALK3小鼠)和fgfr1OC-CKO小鼠交配研究BMP信号通路和FGFR1信号通路在成骨细胞中的作用。
     本课题包括以下两部分:1.探讨FGFR1对骨骼发育和骨骼重建的影响及其分子机制;2.激活fgfr1OC-CKO小鼠成骨细胞中ALK3来研究FGFR1和ALK3信号通路的关系。
     主要实验内容和方法如下:
     第一部分FGFR1信号通路在小鼠骨骼发育和重建中的作用及其分子机制实验动物:成熟成骨细胞特异性fgfr1敲除(fgfr1OC-CKO)小鼠;对照(fgfr1CKO)小鼠。
     实验方法
     (一)体内实验
     1. fgfr1OC-CKO小鼠整体表型分析
     利用X光摄片和骨密度测定对3月、4月和8月龄fgfr1OC-CKO小鼠和对照小鼠骨骼进行整体表型分析。此外,还对3月龄小鼠骨架进行茜素红染色。
     2.骨骼生物力学测定
     用Instron(5565)力学测定仪通过3点折断法(three point bending)检测3月龄和8月龄小鼠股骨力学性能。
     3.钙和磷测定
     采用Beckman DXC800全自动生化分析仪测定6周、4月和8月龄小鼠血清中钙和磷含量。用能谱仪测定骨皮质中钙和磷百分含量。
     4.使用micro CT对3月龄和8月龄fgfr1OC-CKO小鼠和对照小鼠股骨进行扫描利用Scanco公司Micro CT(μCT 80)对3月和8月龄小鼠右侧股骨进行扫描。
     5.组织形态学研究和破骨细胞功能评价
     对3月龄fgfr1OC-CKO小鼠和对照小鼠股骨进行病理切片,然后利用HE染色和TRAP染色分别对骨骼形态学分析和破骨细胞功能进行检测;利用扫描电镜对骨骼及其成骨细胞形态进行观察。
     6.骨组织中类骨质、钙和骨形成率检测
     3月龄小鼠股骨树脂包埋后行硬组织切片,然后采用Von Kossa染色检测骨骼中类骨质、钙盐,荧光显微镜直接观察钙黄绿素和四环素标记的新骨形成,并测定计算骨沉积率。
     (二)体外实验
     1.成骨细胞增生、凋亡和矿化检测
     新生小鼠颅骨来源的成骨细胞培养3天后计数检测成骨细胞增生;诱导矿化1周后用TUNEL法进行凋亡检测;诱导矿化3周后行矿化能力检测。
     2.成骨细胞中与分化和成骨相关功能基因的转录水平检测颅骨成骨细胞诱导矿化2周,提取成骨细胞总RNA,然后利用real time PCR检测osteocalcin、osteopontin、cbfa1、noggin、bmp4、bmpr1a和fgfr2的转录水平。
     3.成骨细胞中与分化和成骨相关功能基因的蛋白水平检测
     新生小鼠颅骨来源成骨细胞诱导矿化2周,提取细胞总蛋白;利用western blot检测phospho-p38、phospho-ERK、ERK、phospho-SAPK/JNK、p85、ALK3和内参β-actin。
     第二部分激活成熟成骨细胞中ALK3可恢复fgfr1OC-CKO小鼠部分骨骼异常表型
     实验动物:成熟成骨细胞中特异性敲除fgfr1并激活ALK3小鼠(fgfr1OC-CKO-caALK3小鼠);fgfr1OC-CKO小鼠和对照小鼠(fgfr1CKO小鼠)。
     实验方法
     实验方法同于第一部分。
     主要实验结果:
     一、Fgfr1OC-CKO小鼠骨量增加
     X光片和BMD测定结果显示8月龄fgfr1OC-CKO小鼠长骨、颅骨和椎骨等的骨量显著高于对照小鼠,8月龄fgfr1OC-CKO小鼠胫骨和股骨BMD显著高于对照小鼠。股骨micro CT数据显示:和对照小鼠相比,3月和8月龄fgfr1OC-CKO小鼠股骨骨干单位体积骨密度(体密度)显著降低;8月龄fgfr1OC-CKO小鼠骨小梁显著增加,骨皮质厚度和BV/TV极显著增高;3月龄fgfr1OC-CKO小鼠骨皮质厚度无显著改变,骨小梁多于对照小鼠。HE染色结果显示fgfr1OC-CKO小鼠骨细胞数量极显著减少,骨皮质小孔隙显著增加。钙黄绿素和四环素标记新骨形成结果表明:fgfr1OC-CKO小鼠骨形成率显著增加。体外成骨细胞矿化实验结果显示fgfr1OC-CKO小鼠成骨细胞诱导产生矿物含量显著高于对照小鼠。
     二、FGFR1经ALK3信号通路调节骨骼质量
     3月龄fgfr1OC-CKO小鼠部分(28/140)出现自发骨折现象,生物力学测定结果显示fgfr1OC-CKO小鼠股骨杨氏弹性模量和最大载荷均显著小鼠低于对照小鼠(P<0.01);Von Kossa染色结果显示fgfr1OC-CKO小鼠股骨骨皮质中央存在大量的红染区域,并且着色较对照小鼠浅,提示fgfr1OC-CKO小鼠骨皮质钙和磷含量较低,骨皮质中存在较多不成熟的类骨质;能谱测定结果显示骨皮质中单位面积中钙和磷百分含量显著低于对照小鼠(P<0.001)。激活fgfr1OC-CKO小鼠成骨细胞中ALK3后,3月龄小鼠股骨和胫骨生物力学测定结果显示fgfr1OC-CKO-caALK3小鼠胫骨杨氏弹性模量和最大加载与对照小鼠无显著差异,股骨最大加载与fgfr1CKO小鼠无显著差异,但杨氏弹性模量显著低于fgfr1CKO小鼠,高于fgfr1OC-CKO小鼠。
     三、FGFR1经ALK3调节骨骼和血液的钙和磷代谢
     股骨中段骨皮质能谱检测结果显示fgfr1OC-CKO小鼠股骨皮质中钙和磷百分含量极显著低于对照小鼠(P<0.01);4月和8月龄fgfr1OC-CKO小鼠血清钙和磷含量显著高于对照小鼠(分别高30.1%和27.4%);激活成熟成骨细胞中ALK3可以恢复fgfr1OC-CKO小鼠血清钙和磷水平到正常。
     四、激活成熟成骨细胞中ALK3可以恢复fgfr1OC-CKO小鼠破骨细胞活性。
     股骨石蜡切片TRAP染色结果显示,fgfr1OC-CKO小鼠破骨细胞数量减少,铺展欠佳;而fgfr1OC-CKO-caALK3小鼠破骨细胞数量和形态均恢复正常。
     五、FGFR1通过抑制PI3K和促进MAPK信号通路调节成骨细胞增生和凋亡
     新生小鼠颅骨成骨细胞增生检测结果显示,敲除FGFR1后成骨细胞增生加快。TUNEL法检测诱导一周的fgfr1OC-CKO小鼠和对照小鼠颅骨来源成骨细胞凋亡结果:fgfr1OC-CKO小鼠成骨细胞凋亡显著减少。诱导一周的fgfr1OC-CKO小鼠成骨细胞PI3K亚基p85的表达明显上调,MAPK信号通路分子ERK,p38和SAPK/JNK的磷酸化水平下调。
     六、成骨细胞中FGFR1可以调节ALK3信号通路的蛋白表达
     定量PCR结果显示fgfr1OC-CKO小鼠颅骨成骨细胞bmp4和其高亲和受体alk3转录水平下调;Western blot结果显示fgfr1OC-CKO小鼠颅骨成骨细胞LK3蛋白表达水平也明显下调。
     七、FGFR1经MAPK信号通路影响骨形成
     Western blot结果显示fgfr1OC-CKO小鼠颅骨成骨细胞MAPK信号通路蛋白分子ERK、p38和SAPK/JNK的磷酸化水平均显著下调。ERK表达水平无明显改变。
     主要结论:
     1. FGFR1抑制成骨细胞矿化和增生,通过PI3K和MAPK信号通路促进成骨细胞凋亡。
     2.成熟成骨细胞中FGFR1可能经ALK3信号通路调节血清钙和磷代谢,敲除成熟成骨细胞中FGFR1后导致血清钙和磷增高,但同时激活ALK3可恢复其血清钙和磷水平。
     3. FGFR1缺乏会导致小鼠股骨机械性能下降,成骨细胞成骨能力异常,激活ALK3可以恢复由于缺乏FGFR1导致的骨骼异常表型。
     4.成骨细胞FGFR1缺乏导致fgfr1OC-CKO小鼠破骨细胞受损,激活成骨细胞中ALK3可以恢复由于缺乏FGFR1导致的破骨细胞活性下降。
FGF receptor 1 has an important role in bone development and congenital diseases in human. Fgfr1 (P252R) mutation causes Pfeiffer syndrome. A rare mutation has been identified that causes osteoglophonic dysplasia (OD), a disease characterized by craniosynostosis, prominent supraorbital ridge, and depressed nasal bridge, as well as the rhizomelic dwarfism and nonossifying bone lesions. Loss of function mutations in fgfr1 is associated with one form of Kalmann syndrome (KS), a disease that does not directly affect skeletal development. Fgfr1 knockout leads to embryonic lethality shortly after gastrulation, necessitating a conditional knockout approaches to address fgfr1 function in later development. Conditional knockout technology makes it possible to investigate FGFR1 function in bone devemopment. Osteocalcin-Cre (OC-Cre) transgenic mice are suitable for studying fgfr1 function in differentiated osteoblast, which highly express Cre at 4 to 8 week after birth. Fgfr1 has recently been shown to be pivotal for early limb bud development and distal skeleton patterning. How FGFR1 regulates osteoblast and bone quality are not clear yet. FGFR1 is one of FGF23’s receptor, which implies a potential role of FGFR1 on calcium and phosphate metabolism.
     ALK3, one of BMP type I receptor, is a negative regulator of bone mass. Bone mass was increased in Alk3OC-CKO mice. Crosstalk between BMP signaling and FGF signaling are complicated and controversial in bone development. Conditionally Inactivating BMPRIA and BMPRIB showed that BMP and FGF coordinately regulate chondrogenesis, BMP signaling inhibits FGF signaling. FGF promotes BMP signaling by inhibiting BMP antagonist noggin. Crosstalk between FGFR1 and ALK3 is not clear. The aim of this project is to study the role of FGFR1 in bone development and the crosstalk between FGFR1 and ALK3 signaling.
     To explore the role of FGFR1 in differentiated osteoblast in bone development after birth and its mechanism, OC-Cre transgenic mice and fgfr1 floxed mice were used. And conditional caALK3 transgenic mice were used for constitutively activated ALK3 in fgfr1OC-CKO mice. Two parts of this project were included: Part one: To investigation the role of FGFR1 in osteoblast in bone development and remodeling and its mechanism.
     Part two: To investigation the relationship between FGFR1 and ALK3 in differentiated osteoblast.
     Main experiments show below:
     Part one: Role of FGFR1 signaling in bone development and remodeling Experiment animal: fgfr1OC-CKO mice and fgfr1CKO mice
     Methods:
     In vivo assay
     1. Obtaining of loss of FGFR1 function in differentiated osteoblast mice (fgfr1OC-CKO mice) and general phenotype analysis Fgfr1OC-CKO mice were obtained according to what we reported. X-Ray photograph was taken for different ages. Whole skeleton prepared according to litterature.
     2. Analysis of fgfr1OC-CKO mice and control mice femur
     Femur of 3 and 8 month-old mice were scanned byμCT 80 (scanco). Condition: 70KVp, 113μA, resolution: 20μm. Integration time: 400msec.
     3. Histology analysis
     Femurs were collected from 3 month-old mice, 24 hrs fixation, and paraffin embedding for section. H&E staining and TRAP staining were taken. SEM was applied for bone and osteoblast morphology analysis.
     4. Osteoid, phosphate and bone formation rate analysis
     Undecalcified sections were used for Von Kossa staining. Calcein was used for bone formation rate detection. EDS was applied for Ca and P content and percentage analysis.
     5. Serum Ca and PO4 detection
     Serum calcium and phosphate were analyzed by Beckman DXC800 auto biochemistry analysis machine and kit.
     6. Mechanical test
     Three bending approaches were applied to analyze 3 and 8 month-old mice femur mechanical characteristics. Speed 6 mm/min, Maximal load 5 kN load cell.
     In vivo assay
     1. Primary calvarial osteoblast proliferation, mineralization, and apoptosis detection
     Primary calvarial osteoblasts were separated from neonatal mice. Osteoblast proliferation, mineralization, and apoptosis were detected.
     2. Osteoblast gene transcription analysis by real time PCR
     Primary calvarial osteoblast was maintained in mineralization medium for two weeks, and total RNA was extracted. Osteoblast gene transcription of osteocalcin、osteopontin、cbfa1、noggin、bmp4、bmpr1a and fgfr2 were detected by real time PCR using SYBR.
     3. Osteoblast protein expression detection
     Total protein was extracted from primary calvarial osteoblast maintained in mineralization medium for two weeks. Phospho-p38, phospho-ERK, ERK, phospho-SAPK/JNK, p85, BMPRIA and internal control beta actin expression were detected by western blot.
     Part two: Conditionally constitutively activated ALK3 in differentiated osteoblast can partially rescue fgfr1OC-CKO mice bone abnormality
     Animal: fgfr1OC-CKO-caALK3 mice, fgfr1OC-CKO mice and fgfr1CKO mice (control)
     Methods: all the methods in this part were described in part one.
     Main results:
     1. Bone formation was increased after deleting FGFR1 in differentiated osteoblast
     Loss of FGFR1 signaling led to significantly increased BMD, cortical bone thickness BV/TV and trabecular bone at 8 month-old mice, though 3 month mice had no difference in cortical bone thickness compare with control mice, but had much more trabecular bone. HE staining results showed that osteocytes were impaired in FGFR1 conditional knockout mice. In vitro osteoblast mineralization test also showed that lacking of FGFR1 in differentiated osteoblast led to increased mineralization. In vivo double labeling results showed increase bone formation, which was consistent with in vitro data.
     2. FGFR1 regulates bone quality partially through ALK3 signaling
     Although bone formation was significantly increased at 8 month-old mice, part of 3 month-old mice displayed spontaneous fracture. And the mechanical properties were decreased, in the middle of cortical bone, some osteoid bone was found by Von Kossa staining and counterstained with Van Gieson’s staining. To our surprise, low mechanical properties of fgfr1OC-CKO mice could be partially rescued by constitutively activated ALK3 in differentiated osteoblast.
     3. FGFR1 signaling and BMP signaling can coregulate serum calcium and phosphate
     Fgfr1OC-CKO mouse showed increase serum calcium and phosphate, especial the serum phosphate level. At 4 and 8 month-old mice, serum phosphate was increased 30.1% and 27.4% separately. Calcium and phosphate disorder of fgfr1OC-CKO mouse could be rescued by constitutively activated ALK3 in differentiated osteoblast.
     4. FGFR1 indirectly promotes osteoclast function, ALK3 active osteoclast function.
     Compared with control mice, fgfr1OC-CKO mice showed decreased osteoclast number and osteoclast size. Activation of ALK3 could turn over this situation.
     5. FGFR1 can regulate osteoblast proliferation and apoptosis through PI3K
     Western blot results showed that p85 expression, the p-ERK, p-p38 and p-SAPK-JNK level were increased in fgfr1OC-CKO mice primary calvarial osteoblast. And the apoptosis of osteoblast lacking FGFR1 was decreased by TUNEl, the proliferation was in creased.
     6. FGFR1 can regulate BMPRIA and BMP4 expression in osteoblast
     Gene expression and transcription detection results showed that BMP4 transcription and BMPRIA transcription and expression were down regulated in the osteoblast lacking of FGFR1.
     7. FGFR1 signaling regulate bone formation through MAPK signaling
     Western blot results showed that phospho-p38, phospho-ERK and phospho-SAPK/JN were deceased, but the ERK level did not changed in fgfr1OC-CKO mice primary calvarial osteoblast. This suggested that FGFR1 can affect bone formation through MAPK signaling.
     Conclusions:
     1. Disruption of FGFR1 in differentiated osteoblast-specific led to mice tibia spontaneous fracture, decreased biomechanical properties, and could be rescued by constitutively activated ALK3 in differentiated osteoblast.
     2. FGFR1 promotes apoptosis through PI3K and MAPK, and FGFR1 inhibits osteoblast proliferation and mineralization.
     3. FGFR1 inhibits serum phosphate and calcium metabolism by promoting ALK3 signaling.
     4. FGFR1 deficiency in osteoblast led to decreased osteoclast activity, and could be rescued by constitutively activated ALK3 in differentiated osteoblast.
引文
1. Lee N.K., Sowa H., Hinoi E. et al., Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456-469.
    2. Sacchetti B., Funari A., Michienzi S. et al., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131, 324-336.
    3. Calvi L.M., Adams G.B., Weibrecht K.W. et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nat 2003, 425, 841-846.
    4. Karsenty G., Wagner E.F., Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002, 2, 389-406.
    5. Chen L., Deng C.X., Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 2005, 10, 1961-1976.
    6. Erlebacher A., Filvaroff E.H., Gitelman S.E., Derynck R., Toward a molecular understanding of skeletal development. Cell 1995, 80, 371-378.
    7. Karsenty G., The genetic transformation of bone biology. Genes Dev 1999, 13, 3037-3051.
    8. Roelen B.A., Dijke P., Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 2003, 8, 740-748.
    9. Franceschi R.T., Yang S., Rutherford R.B., Krebsbach P.H., Zhao M., Wang D., Gene therapy approaches for bone regeneration. Cells Tissues Organs 2004, 176, 95-108.
    10. Otto W.R., Rao J., Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 2004, 37, 97-110.
    11. Yamaguchi A., Komori T., Suda T., Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 2000, 21, 393-411.
    12. Franceschi R.T., Ge C., Xiao G., Roca H., Jiang D., Transcriptional Regulation of Osteoblasts. Cells Tissues Organs 2008.
    13. Ducy P., Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 2000, 219, 461-471.
    14. Nakashima K., Zhou X., Kunkel G. et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108, 17-29.
    15. Xiao G., Jiang D., Ge C. et al., Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005, 280, 30689-30696.
    16. Okamoto M., Murai J., Yoshikawa H., Tsumaki N., Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 2006, 21, 1022-1033.
    17. Amcheslavsky A., Hemmi H., Akira S., Bar-Shavit Z., Differential contribution of osteoclast- and osteoblast-lineage cells to CpG-oligodeoxynucleotide (CpG-ODN) modulation of osteoclastogenesis. J Bone Miner Res 2005, 20, 1692-1699.
    18. Dai X.M., Zong X.H., Akhter M.P., Stanley E.R., Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 2004, 19, 1441-1451.
    19. Shimoaka T., Ogasawara T., Yonamine A. et al., Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem 2002, 277, 7493-7500.
    20. Katagiri T., Takahashi N., Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 2002, 8, 147-159.
    21. Deyama Y., Takeyama S., Koshikawa M. et al., Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem Biophys Res Commun 2000, 274, 249-254.
    22. Rasheed N., Wang X., Niu Q.T., Yeh J., Li B., Atm-deficient mice: an osteoporosis model with defective osteoblast differentiation and increased osteoclastogenesis. Hum Mol Genet 2006, 15, 1938-1948.
    23. Ralston S.H., de Crombrugghe B., Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006, 20, 2492-2506.
    24. Lemaire V., Tobin F.L., Greller L.D., Cho C.R., Suva L.J., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 2004, 229, 293-309.
    25. Heino T.J., Hentunen T.A., Vaananen H.K., Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 2002, 85, 185-197.
    26. Bell L.S., Kayser M., Jones C., The mineralized osteocyte: A living fossil. Am J Phys Anthropol 2008.
    27. ten Dijke P., Krause C., de Gorter D.J., Lowik C.W., van Bezooijen R.L., Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am 2008, 90 Suppl 1, 31-35.
    28. Irie K., Ejiri S., Sakakura Y., Shibui T., Yajima T., Matrix mineralization as a trigger for osteocyte maturation. J Histochem Cytochem 2008, 56, 561-567.
    29. Ornitz D.M., FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005, 16, 205-213.
    30. Muenke M., Schell U., Hehr A. et al., A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 1994, 8, 269-274.
    31. White K.E., Cabral J.M., Davis S.I. et al., Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. American journal of human genetics 2005, 76, 361-367.
    32. Dode C., Teixeira L., Levilliers J. et al., Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2006, 2, e175.
    33. Zhou Y.X., Xu X., Chen L., Li C., Brodie S.G., Deng C.X., A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Human molecular genetics 2000, 9, 2001-2008.
    34. Deng C.X., Wynshaw-Boris A., Shen M.M., Daugherty C., Ornitz D.M., Leder P., Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes & development 1994, 8, 3045-3057.
    35. Yamaguchi T.P., Harpal K., Henkemeyer M., Rossant J., fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes & development 1994, 8, 3032-3044.
    36. Verheyden J.M., Lewandoski M., Deng C., Harfe B.D., Sun X., Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Deve 2005, 132, 4235-4245.
    37. Li C., Xu X., Nelson D.K., Williams T., Kuehn M.R., Deng C.X., FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. 2005, 132, 4755-4764.
    38. Yu K., Ornitz D.M., FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Deve 2008, 135, 483-491.
    39. Jacob A.L., Smith C., Partanen J., Ornitz D.M., Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 2006, 296, 315-328.
    40. Urakawa I., Yamazaki Y., Shimada T. et al., Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nat 2006, 444, 770-774.
    41. Strom T.M., Juppner H., PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 2008, 17, 357-362.
    42. Fukumoto S., Yamashita T., FGF23 is a hormone-regulating phosphate metabolism-- unique biological characteristics of FGF23. Bone 2007, 40, 1190-1195.
    43. Yu X., White K.E., FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 2005, 16, 221-232.
    44. Yoon B.S., Ovchinnikov D.A., Yoshii I., Mishina Y., Behringer R.R., Lyons K.M., Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005, 102, 5062-5067.
    45. Mishina Y., Starbuck M.W., Gentile M.A. et al., Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 2004, 279, 27560-27566.
    46. Hay E., Lemonnier J., Fromigue O., Marie P.J., Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 2001, 276, 29028-29036.
    47. Chen D., Zhao M., Mundy G.R., Bone morphogenetic proteins. Growth Factors 2004, 22, 233-241.
    48. Zhao M., Harris S.E., Horn D. et al., Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 2002, 157, 1049-1060.
    49. Cao X., Chen D., The BMP signaling and in vivo bone formation. Gene 2005, 357, 1-8.
    50. Chen D., Ji X., Harris M.A. et al., Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998, 142, 295-305.
    51. Ahn K., Mishina Y., Hanks M.C., Behringer R.R., Crenshaw E.B., 3rd, BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Deve 2001, 128, 4449-4461.
    52. Yoon B.S., Pogue R., Ovchinnikov D.A. et al., BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Deve 2006, 133, 4667-4678.
    53. Warren S.M., Brunet L.J., Harland R.M., Economides A.N., Longaker M.T., The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625-629.
    54. Matsushita T., Wilcox W.R., Chan Y.Y. et al., FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 2008.
    55. Xiaohong Tan, Tujun Weng, Jishuai Zhang et al., Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci 2007.
    56. Liu X., Bruxvoort K.J., Zylstra C.R. et al., Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci U S A 2007, 104, 2259-2264.
    57. Devlin R.D., Du Z., Pereira R.C. et al., Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 2003, 144, 1972-1978.
    58. Xu X., Qiao W., Li C., Deng C.X., Generation of Fgfr1 conditional knockout mice. Genesis 2002, 32, 85-86.
    59.李福兵,赵玲,鲁秀敏et al.,成熟成骨细胞中敲除基因fgfr1小鼠的制备.第三军医大学学报2008, 30, 280-283.
    60.杨晓,黄培堂,黄翠芬,基因打靶技术. 2002.
    61. von Stechow D., Fish S., Yahalom D. et al., Does simvastatin stimulate bone formation in vivo? BMC Musculoskelet Disord 2003, 4, 8.
    62. Silha J.V., Mishra S., Rosen C.J. et al., Perturbations in bone formation and resorption in insulin-like growth factor binding protein-3 transgenic mice. J Bone Miner Res 2003, 18, 1834-1841.
    63. Kartsogiannis V., Ng K.W., Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004, 228, 79-102.
    64. Declercq H., Van den Vreken N., De Maeyer E. et al., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 2004, 25, 757-768.
    65. Murshed M., Harmey D., Millan J.L., McKee M.D., Karsenty G., Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 2005, 19, 1093-1104.
    66. Coumoul X., Shukla V., Li C., Wang R.H., Deng C.X., Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 2005, 33, e102.
    67. Shimada T., Kakitani M., Yamazaki Y. et al., Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004, 113, 561-568.
    68. Liu S., Tang W., Zhou J. et al., Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 2006, 17, 1305-1315.
    69. Kruse K., Woelfel D., Strom T.M., Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 2001, 55, 305-308.
    70. Shimada T., Mizutani S., Muto T. et al., Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001, 98, 6500-6505.
    71. Benet-Pages A., Orlik P., Strom T.M., Lorenz-Depiereux B., An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005, 14, 385-390.
    72. Inoue Y., Segawa H., Kaneko I. et al., Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 2005, 390, 325-331.
    73. Liu S., Zhou J., Tang W., Jiang X., Rowe D.W., Quarles L.D., Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006, 291, E38-49.
    74. Yamashita H., Yamazaki Y., Hasegawa H. et al., Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr J 2007, 54, 465-470.
    75. Yamazaki Y., Tamada T., Kasai N. et al., Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008, 23, 1509-1518.
    76. Xu X., Li C., Takahashi K., Slavkin H.C., Shum L., Deng C.X., Murine fibroblastgrowth factor receptor 1alpha isoforms mediate node regression and are essential for posterior mesoderm development. Deve bio 1999, 208, 293-306.
    77. Pisharody S., Phillips R., Langton C.M., Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Proc Inst Mech Eng [H] 2008, 222, 367-375.
    78. Leppanen O.V., Sievanen H., Jarvinen T.L., Biomechanical testing in experimental bone interventions--May the power be with you. J Biomech 2008, 41, 1623-1631.
    79. Saito M., Fujii K., Mori Y., Marumo K., Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 2006, 17, 1514-1523.
    80. Ikeda K., Assessment of bone quality. Osteocyte function and bone quality. Clin Calcium 2008, 18, 321-325.
    81. Boyle W.J., Simonet W.S., Lacey D.L., Osteoclast differentiation and activation. Nature 2003, 423, 337-342.
    82. Bruzzaniti A., Baron R., Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 2006, 7, 123-139.
    83. Bar-Shavit Z., The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 2007, 102, 1130-1139.
    84. Nie X., Luukko K., Kvinnsland I.H., Kettunen P., Developmentally regulated expression of Shh and Ihh in the developing mouse cranial base: comparison with Sox9 expression. Anat Rec A Discov Mol Cell Evol Biol 2005, 286, 891-898.
    85. Romeo S., Bovee J.V., Jadnanansing N.A., Taminiau A.H., Hogendoorn P.C., Expression of cartilage growth plate signalling molecules in chondroblastoma. J Pathol 2004, 202, 113-120.
    86. Cohen M.M., Jr., The new bone biology: pathologic, molecular, and clinical correlates. Am J Med Genet A 2006, 140, 2646-2706.
    87. St-Jacques B., Hammerschmidt M., McMahon A.P., Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999, 13, 2072-2086.
    88. Yuasa T., Kataoka H., Kinto N. et al., Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol 2002, 193, 225-232.
    89. Schreiber R.E., Blease K., Ambrosio A., Amburn E., Sosnowski B., Sampath T.K., Bone induction by AdBMP-2/collagen implants. J Bone Joint Surg Am 2005, 87, 1059-1068.
    90. Chen L., Deng C.X., Roles of FGF signaling in skeletal development and human genetic diseases. Fronti in Biosc 2005, 10, 1961-1976.
    91. Datta H.K., Ng W.F., Walker J.A., Tuck S.P., Varanasi S.S., The cell biology of bone metabolism. J Clin Pathol 2008, 61, 577-587.
    92. Cho J.Y., Lee W.B., Kim H.J. et al., Bone-related gene profiles in developing calvaria. Gene 2006, 372, 71-81.
    93. Goldring M.B., Tsuchimochi K., Ijiri K., The control of chondrogenesis. J Cell Biochem 2006, 97, 33-44.
    94. Choi K.Y., Kim H.J., Lee M.H. et al., Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn 2005, 233, 115-121.
    95. Baroni T., Carinci P., Lilli C. et al., P253R fibroblast growth factor receptor-2 mutation induces RUNX2 transcript variants and calvarial osteoblast differentiation. J Cell Physiol 2005, 202, 524-535.
    96. Franceschi R.T., Xiao G., Jiang D., Gopalakrishnan R., Yang S., Reith E., Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 2003, 44 Suppl 1, 109-116.
    97. Xiao G., Jiang D., Thomas P. et al., MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 2000, 275, 4453-4459.
    98. Karsenty G., Bone formation and factors affecting this process. Matrix Biol 2000, 19, 85-89.
    99. Nakae J., Kido Y., Accili D., Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 2001, 22, 818-835.
    100. Cantley L.C., The phosphoinositide 3-kinase pathway. Science 2002, 296, 1655-1657.
    101. Debiais F., Lefevre G., Lemonnier J. et al., Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent, beta-catenin- independent signaling pathway. Exp Cell Res 2004, 297, 235-246.
    102. Dufour C., Guenou H., Kaabeche K., Bouvard D., Sanjay A., Marie P.J., FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblastsurvival. Bone 2008, 42, 1032-1039.
    103. Holleville N., Quilhac A., Bontoux M., Monsoro-Burq A.H., BMP signals regulate Dlx5 during early avian skull development. Deve Bio 2003, 257, 177-189.
    104. Karsenty G., Wagner E.F., Reaching a genetic and molecular understanding of skeletal development. Deve Cell 2002, 2, 389-406.
    105. Zhong N., Gersch R.P., Hadjiargyrou M., Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 2006, 39, 5-16.
    106. Ambrosetti D., Holmes G., Mansukhani A., Basilico C., Fibroblast growth factor signaling uses multiple mechanisms to inhibit Wnt-induced transcription in osteoblasts. Mol Cell Biol 2008, 28, 4759-4771.
    107. Ge C., Xiao G., Jiang D., Franceschi R.T., Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 2007, 176, 709-718.
    108. Masuyama R., Stockmans I., Torrekens S. et al., Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006, 116, 3150-3159.
    109. Kolek O.I., Hines E.R., Jones M.D. et al., 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 2005, 289, G1036-1042.
    110. Wang J., Zhou J., Cheng C.M., Kopchick J.J., Bondy C.A., Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J Endocrinol 2004, 180, 247-255.
    111. McCauley L.K., Koh A.J., Beecher C.A., Cui Y., Rosol T.J., Franceschi R.T., PTH/PTHrP receptor is temporally regulated during osteoblast differentiation and is associated with collagen synthesis. J Cell Biochem 1996, 61, 638-647.
    112. Oxlund H., Ortoft G., Thomsen J.S., Danielsen C.C., Ejersted C., Andreassen T.T., The anabolic effect of PTH in bone is attenuated by simultaneous glucocorticoid treatment. Bone 2006, 39, 244-252.
    113. Mishina Y., Suzuki A., Ueno N., Behringer R.R., Bmpr encodes a type I bonemorphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995, 9, 3027-3037.
    114. Phimphilai M., Zhao Z., Boules H., Roca H., Franceschi R.T., BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 2006, 21, 637-646.
    115. Kamiya N., Ye L., Kobayashi T. et al., Disruption of BMP Signaling in Osteoblasts through Type IA Receptor (BMPRIA) Increases Bone Mass*. J Bone Miner Res 2008.
    116. Marie P.J., Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 2003, 316, 23-32.
    117. Tokuda H., Hatakeyama D., Shibata T., Akamatsu S., Oiso Y., Kozawa O., p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am J Physiol Endocrinol Metab 2003, 284, E1202-1209.
    118. Kanno Y., Ishisaki A., Yoshida M., Tokuda H., Numata O., Kozawa O., SAPK/JNK plays a role in transforming growth factor-beta-induced VEGF synthesis in osteoblasts. Horm Metab Res 2005, 37, 140-145.
    119. Higuchi C., Myoui A., Hashimoto N. et al., Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 2002, 17, 1785-1794.
    1. Yoon B.S., Ovchinnikov D.A., Yoshii I., Mishina Y., Behringer R.R., Lyons K.M., Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005, 102, 5062-5067.
    2. Mishina Y., Starbuck M.W., Gentile M.A. et al., Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 2004, 279, 27560-27566.
    3. Hay E., Lemonnier J., Fromigue O., Marie P.J., Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 2001, 276, 29028-29036.
    4. Chen D., Zhao M., Mundy G.R., Bone morphogenetic proteins. Growth Factors 2004, 22, 233-241.
    5. Zhao M., Harris S.E., Horn D. et al., Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 2002, 157, 1049-1060.
    6. Chen D., Zhao M., Harris S.E., Mi Z., Signal transduction and biological functions of bone morphogenetic proteins. Front Biosci 2004, 9, 349-358.
    7. Cao X., Chen D., The BMP signaling and in vivo bone formation. Gene 2005, 357, 1-8.
    8. Chen D., Ji X., Harris M.A. et al., Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998, 142, 295-305.
    9. Mishina Y., Suzuki A., Ueno N., Behringer R.R., Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995, 9, 3027-3037.
    10. Ahn K., Mishina Y., Hanks M.C., Behringer R.R., Crenshaw E.B., 3rd, BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 2001, 128, 4449-4461.
    11. Kamiya N., Ye L., Kobayashi T. et al., Disruption of BMP Signaling in Osteoblasts through Type IA Receptor (BMPRIA) Increases Bone Mass*. J Bone Miner Res 2008.
    12. Yoon B.S., Pogue R., Ovchinnikov D.A. et al., BMPs regulate multiple aspects ofgrowth-plate chondrogenesis through opposing actions on FGF pathways. Deve 2006, 133, 4667-4678.
    13. Warren S.M., Brunet L.J., Harland R.M., Economides A.N., Longaker M.T., The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625-629.
    14. Matsushita T., Wilcox W.R., Chan Y.Y. et al., FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 2008.
    15. Hoffman M.P., Kidder B.L., Steinberg Z.L. et al., Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Deve 2002, 129, 5767-5778.
    16. Kobayashi T., Lyons K.M., McMahon A.P., Kronenberg H.M., BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A 2005, 102, 18023-18027.
    17. Shimada T., Mizutani S., Muto T. et al., Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001, 98, 6500-6505.
    18. Strom T.M., Juppner H., PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 2008, 17, 357-362.
    19. Fukumoto S., Yamashita T., FGF23 is a hormone-regulating phosphate metabolism--unique biological characteristics of FGF23. Bone 2007, 40, 1190-1195.
    20. Urakawa I., Yamazaki Y., Shimada T. et al., Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770-774.
    21. Liu S., Vierthaler L., Tang W., Zhou J., Quarles L.D., FGFR3 and FGFR4 Do not Mediate Renal Effects of FGF23. J Am Soc Nephrol 2008.
    22. Ashique A.M., Fu K., Richman J.M., Signalling via type IA and type IB bone morphogenetic protein receptors (BMPR) regulates intramembranous bone formation, chondrogenesis and feather formation in the chicken embryo. Int J Dev Biol 2002, 46, 243-253.
    23. Okamoto M., Murai J., Yoshikawa H., Tsumaki N., Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 2006, 21, 1022-1033.
    24. Tsuji K., Bandyopadhyay A., Harfe B.D. et al., BMP2 activity, although dispensable forbone formation, is required for the initiation of fracture healing. Nat Genet 2006, 38, 1424-1429.
    25. Wijgerde M., Karp S., McMahon J., McMahon A.P., Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 2005, 286, 149-157.
    26. Usui M., Xing L., Drissi H. et al., Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. J Bone Miner Res 2008, 23, 314-325.
    1. Lee N.K., Sowa H., Hinoi E. et al., Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456-469.
    2. Sacchetti B., Funari A., Michienzi S. et al., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131, 324-336.
    3. Calvi L.M., Adams G.B., Weibrecht K.W. et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425, 841-846.
    4. Karsenty G., Wagner E.F., Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002, 2, 389-406.
    5. Chen L., Deng C.X., Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 2005, 10, 1961-1976.
    6. Erlebacher A., Filvaroff E.H., Gitelman S.E., Derynck R., Toward a molecular understanding of skeletal development. Cell 1995, 80, 371-378.
    7. Karsenty G., The genetic transformation of bone biology. Genes Dev 1999, 13, 3037-3051.
    8. Roelen B.A., Dijke P., Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 2003, 8, 740-748.
    9. Franceschi R.T., Yang S., Rutherford R.B., Krebsbach P.H., Zhao M., Wang D., Gene therapy approaches for bone regeneration. Cells Tissues Organs 2004, 176, 95-108.
    10. Otto W.R., Rao J., Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 2004, 37, 97-110.
    11. Yamaguchi A., Komori T., Suda T., Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 2000, 21, 393-411.
    12. Franceschi R.T., Ge C., Xiao G., Roca H., Jiang D., Transcriptional Regulation of Osteoblasts. Cells Tissues Organs 2008.
    13. Ducy P., Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 2000, 219, 461-471.
    14. Nakashima K., Zhou X., Kunkel G. et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108, 17-29.
    15. Xiao G., Jiang D., Ge C. et al., Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005, 280, 30689-30696.
    16. Deyama Y., Takeyama S., Koshikawa M. et al., Osteoblast maturation suppressed osteoclastogenesis in coculture with bone marrow cells. Biochem Biophys Res Commun 2000, 274, 249-254.
    17. Dai X.M., Zong X.H., Akhter M.P., Stanley E.R., Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 2004, 19, 1441-1451.
    18. Rasheed N., Wang X., Niu Q.T., Yeh J., Li B., Atm-deficient mice: an osteoporosis model with defective osteoblast differentiation and increased osteoclastogenesis. Hum Mol Genet 2006, 15, 1938-1948.
    19. Okamoto M., Murai J., Yoshikawa H., Tsumaki N., Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 2006, 21, 1022-1033.
    20. Ralston S.H., de Crombrugghe B., Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006, 20, 2492-2506.
    21. Lemaire V., Tobin F.L., Greller L.D., Cho C.R., Suva L.J., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 2004, 229, 293-309.
    22. Ornitz D.M., FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005, 16, 205-213.
    23. Marie P.J., Coffin J.D., Hurley M.M., FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem 2005, 96, 888-896.
    24. Lavine K.J., White A.C., Park C. et al., Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes and Development 2006, 20, 1651-1666.
    25. Freeman K.W., Gangula R.D., Welm B.E. et al., Conditional Activation of Fibroblast Growth Factor Receptor (FGFR) 1, but not FGFR2, in Prostate Cancer Cells Leads to Increased Osteopontin Induction, Extracellular Signal-regulated Kinase Activation, and in Vivo Proliferation. Cancer research 2003, 63, 6237-6243.
    26. Cotton L.M., O'Bryan M.K., Hinton B.T., Cellular Signaling by Fibroblast Growth Factors (FGFs) and Their Receptors (FGFRs) in Male Reproduction. Endocrine Reviews 2008, er.2007-0028.
    27. Coumoul X., Deng C.X., Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res C Embryo Today 2003, 69, 286-304.
    28. Dionne C.A., Crumley G., Bellot F. et al., Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. Embo J 1990, 9, 2685-2692.
    29. Kornbluth S., Paulson K.E., Hanafusa H., Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Mol Cell Biol 1988, 8, 5541-5544.
    30. Ruta M., Burgess W., Givol D. et al., Receptor for Acidic Fibroblast Growth Factor is Related to the Tyrosine Kinase Encoded by the fms-Like Gene (FLG). In 1989, 8722-8726.
    31. Powers C.J., McLeskey S.W., Wellstein A., Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000, 7, 165-197.
    32. Johnson D.E., Lu J., Chen H., Werner S., Williams L.T., The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Molecular and cellular biology 1991, 11, 4627-4634.
    33. Crumley G., Bellot F., Kaplow J.M., Schlessinger J., Jaye M., Dionne C.A., High-affinity binding and activation of a truncated FGF receptor by both aFGF and bFGF. Oncogene 1991, 6, 2255-2262.
    34. Szebenyi G., Fallon J.F., Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 1999, 185, 45-106.
    35. Ornitz D.M., Marie P.J., FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002, 16, 1446-1465.
    36. Peters K.G., Werner S., Chen G., Williams L.T., Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Deve 1992, 114, 233-243.
    37. Verheyden J.M., Lewandoski M., Deng C., Harfe B.D., Sun X., Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Deve 2005, 132, 4235-4245.
    38. Kindblom J.M., Gevers E.F., Skrtic S.M. et al., Increased adipogenesis in bone marrow but decreased bone mineral density in mice devoid of thyroid hormone receptors. Bone 2005, 36, 607-616.
    39. Naski M.C., Ornitz D.M., FGF signaling in skeletal development. Front Biosci 1998, 3, d781-794.
    40. Valverde-Franco G., Liu H., Davidson D. et al., Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet 2004, 13, 271-284.
    41. Xiao L., Naganawa T., Obugunde E. et al., Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem 2004, 279, 27743-27752.
    42. Szebenyi G., Savage M.P., Olwin B.B., Fallon J.F., Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. Dev Dyn 1995, 204, 446-456.
    43. Iseki S., Wilkie A.O., Morriss-Kay G.M., Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 1999, 126, 5611-5620.
    44. Britto J.A., Evans R.D., Hayward R.D., Jones B.M., From genotype to phenotype: the differential expression of FGF, FGFR, and TGFbeta genes characterizes human cranioskeletal development and reflects clinical presentation in FGFR syndromes. Plast Reconstr Surg 2001, 108, 2026-2039; discussion 2040-2026.
    45. Delezoide A.L., Benoist-Lasselin C., Legeai-Mallet L. et al., Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 1998, 77, 19-30.
    46. Ohbayashi N., Shibayama M., Kurotaki Y. et al., FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 2002, 16, 870-879.
    47. Hughes S.E., Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem 1997, 45,1005-1019.
    48. Britto J.A., Chan J.C., Evans R.D., Hayward R.D., Thorogood P., Jones B.M., Fibroblast growth factor receptors are expressed in craniosynostotic sutures. Plast Reconstr Surg 1998, 101, 540-543.
    49. Rice D.P., Aberg T., Chan Y. et al., Integration of FGF and TWIST in calvarial bone and suture development. Development 2000, 127, 1845-1855.
    50. Rice D.P., Rice R., Thesleff I., Fgfr mRNA isoforms in craniofacial bone development. Bone 2003, 33, 14-27.
    51. Nacamuli R.P., Song H.M., Fang T.D. et al., Quantitative transcriptional analysis of fusing and nonfusing cranial suture complexes in mice. Plast Reconstr Surg 2004, 114, 1818-1825.
    52. Lazarus J.E., Hegde A., Andrade A.C., Nilsson O., Baron J., Fibroblast growth factor expression in the postnatal growth plate. Bone 2006.
    53. Deng C.X., Wynshaw-Boris A., Shen M.M., Daugherty C., Ornitz D.M., Leder P., Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes & development 1994, 8, 3045-3057.
    54. Yamaguchi T.P., Harpal K., Henkemeyer M., Rossant J., fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes & development 1994, 8, 3032-3044.
    55. Xu X., Li C., Takahashi K., Slavkin H.C., Shum L., Deng C.X., Murine fibroblast growth factor receptor 1alpha isoforms mediate node regression and are essential for posterior mesoderm development. Developmental biology 1999, 208, 293-306.
    56. Ciruna B.G., Schwartz L., Harpal K., Yamaguchi T.P., Rossant J., Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 1997, 124, 2829-2841.
    57. Deng C., Bedford M., Li C. et al., Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev Biol 1997, 185, 42-54.
    58. Partanen J., Schwartz L., Rossant J., Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes & development 1998, 12, 2332-2344.
    59. Zhou Y.X., Xu X., Chen L., Li C., Brodie S.G., Deng C.X., A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 2000, 9, 2001-2008.
    60. Hajihosseini M.K., Lalioti M.D., Arthaud S. et al., Skeletal development is regulated by fibroblast growth factor receptor 1 signalling dynamics. Development 2004, 131, 325-335.
    61. Jacob A.L., Smith C., Partanen J., Ornitz D.M., Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Developmental biology 2006, 296, 315-328.
    62. Yu K., Ornitz D.M., FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development 2008, 135, 483-491.
    63. Li C., Xu X., Nelson D.K., Williams T., Kuehn M.R., Deng C.X., FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Deve 2005, 132, 4755-4764.
    64. Greenwald J.A., Mehrara B.J., Spector J.A. et al., In vivo modulation of FGF biological activity alters cranial suture fate. Am J Pathol 2001, 158, 441-452.
    65. Schell U., Hehr A., Feldman G.J. et al., Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Human molecular genetics 1995, 4, 323-328.
    66. Muenke M., Schell U., Hehr A. et al., A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature genetics 1994, 8, 269-274.
    67. Ibrahimi O.A., Zhang F., Eliseenkova A.V., Linhardt R.J., Mohammadi M., Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Human molecular genetics 2004, 13, 69-78.
    68. White K.E., Cabral J.M., Davis S.I. et al., Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005, 76, 361-367.
    69. Farrow E.G., Davis S.I., Mooney S.D. et al., Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. American journal of medical genetics 2006, 140, 537-539.
    70. Riley B.M., Mansilla M.A., Ma J. et al., Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci U S A 2007, 104, 4512-4517.
    71. Roscioli T., Flanagan S., Kumar P. et al., Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. American journal of medical genetics 2000, 93, 22-28.
    72. Xu X., Qiao W., Li C., Deng C.X., Generation of Fgfr1 conditional knockout mice. Genesis (New York, N.Y. 2002, 32, 85-86.
    73. Trokovic R., Trokovic N., Hernesniemi S. et al., FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. The EMBO journal 2003, 22, 1811-1823.
    74. Trokovic R., Jukkola T., Saarimaki J. et al., Fgfr1-dependent boundary cells between developing mid- and hindbrain. Developmental biology 2005, 278, 428-439.
    75. Winter S.F., Acevedo V.D., Gangula R.D., Freeman K.W., Spencer D.M., Greenberg N.M., Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2. Oncogene 2007.
    76. Zhao M., Li D., Shimazu K., Zhou Y.X., Lu B., Deng C.X., Fibroblast Growth Factor Receptor-1 Is Required for Long-Term Potentiation, Memory Consolidation, and Neurogenesis. 2007.
    77. Smith K.M., Fagel D.M., Stevens H.E. et al., Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice. Biol Psychiatry 2007.
    78. Zhao H., Yang Y., Partanen J., Ciruna B.G., Rossant J., Robinson M.L., Fibroblast growth factor receptor 1 (Fgfr1) is not essential for lens fiber differentiation in mice. Molecular vision 2006, 12, 15-25.
    79. Jacob A.L., Smith C., Partanen J., Ornitz D.M., Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 2006, 296, 315-328.
    80. Datta H.K., Ng W.F., Walker J.A., Tuck S.P., Varanasi S.S., The cell biology of bone metabolism. J Clin Pathol 2008, 61, 577-587.
    81. Yang F., Shen H., Jiang H., Deng H.W., On genetic studies of bone loss. J Bone Miner Res 2006, 21, 1676-1677.
    82. Udagawa N., Takahashi N., Yasuda H. et al., Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 2000,141, 3478-3484.
    83. Zhao Q., Shao J., Chen W., Li Y.P., Osteoclast differentiation and gene regulation. Front Biosci 2007, 12, 2519-2529.
    84. Abu-Amer Y., Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 2005, 5, 347-355.
    85. Blair H.C., Robinson L.J., Zaidi M., Osteoclast signalling pathways. Biochem Biophys Res Commun 2005, 328, 728-738.
    86. Lu X.M., The effect and its mechanism of FGFR1 on the differentiation and activation of mouse osteoclasts. In 2008.
    87. Kasper G., Dankert N., Tuischer J. et al., Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 2007, 25, 903-910.
    88. Nakajima A., Nakajima F., Shimizu S. et al., Spatial and temporal gene expression for fibroblast growth factor type I receptor (FGFR1) during fracture healing in the rat. Bone 2001, 29, 458-466.
    89. Stevens D.A., Harvey C.B., Scott A.J. et al., Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol 2003, 17, 1751-1766.
    90. Tatsuyama K., Maezawa Y., Baba H., Imamura Y., Fukuda M., Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 2000, 44, 269-278.
    91. Schlessinger J., Plotnikov A.N., Ibrahimi O.A. et al., Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000, 6, 743-750.
    92. Ullrich A., Schlessinger J., Signal transduction by receptors with tyrosine kinase activity. Cell 1990, 61, 203-212.
    93. Hoch R.V., Soriano P., Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Deve 2006, 133, 663-673.
    94. Zhang Y., McKeehan K., Lin Y., Zhang J., Wang F., Fibroblast Growth Factor Receptor 1 (FGFR1) Tyrosine Phosphorylation Regulates Binding of FGFR Substrate 2{alpha} (FRS2{alpha}) But Not FRS2 to the Receptor. Mol Endocrinol 2008, 22, 167-175.
    95. Kouhara H., Hadari Y.R., Spivak-Kroizman T. et al., A lipid-anchored Grb2-bindingprotein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997, 89, 693-702.
    96. Hadari Y.R., Gotoh N., Kouhara H., Lax I., Schlessinger J., Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci U S A 2001, 98, 8578-8583.
    97. Pawson T., Protein modules and signalling networks. Nature 1995, 373, 573-580.
    98. Eswarakumar V.P., Lax I., Schlessinger J., Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005, 16, 139-149.
    99. Zhen Y., Sorensen V., Jin Y., Suo Z., Wiedlocha A., Indirubin-3'-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene 2007.
    100. Hanafusa H., Torii S., Yasunaga T., Matsumoto K., Nishida E., Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 2004, 279, 22992-22995.
    101. Hanafusa H., Torii S., Yasunaga T., Nishida E., Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 2002, 4, 850-858.
    102. Sasaki A., Taketomi T., Kato R. et al., Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 2003, 5, 427-432.
    103. Taniguchi K., Ayada T., Ichiyama K. et al., Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 2007, 352, 896-902.
    104. Haines B.P., Wheldon L.M., Summerbell D., Heath J.K., Rigby P.W., Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development. Dev Biol 2006, 297, 14-25.
    105. Bottcher R.T., Pollet N., Delius H., Niehrs C., The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol 2004, 6, 38-44.
    106. Torii S., Kusakabe M., Yamamoto T., Maekawa M., Nishida E., Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 2004, 7, 33-44.
    107. Tsang M., Dawid I.B., Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE 2004, 2004, pe17.
    108. Ben-Zvi T., Yayon A., Gertler A., Monsonego-Ornan E., Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling. J Cell Sci 2006, 119, 380-387.
    109. Mason J.M., Morrison D.J., Basson M.A., Licht J.D., Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006, 16, 45-54.
    110. Ren Y., Li Z., Rong Z. et al., Tyrosine 330 in hSef is critical for the localization and the inhibitory effect on FGF signaling. Biochem Biophys Res Commun 2007, 354, 741-746.
    111. Rong Z., Ren Y., Cheng L. et al., Sef-S, an alternative splice isoform of sef gene, inhibits NIH3T3 cell proliferation via a mitogen-activated protein kinases p42 and p44 (ERK1/2)-independent mechanism. Cell Signal 2007, 19, 93-102.
    112. Schlessinger J., Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211-225.
    113. Lao D.H., Yusoff P., Chandramouli S. et al., Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 2007, 282, 9117-9126.
    114. Yoon B.S., Pogue R., Ovchinnikov D.A. et al., BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Deve 2006, 133, 4667-4678.
    115. Warren S.M., Brunet L.J., Harland R.M., Economides A.N., Longaker M.T., The BMP antagonist noggin regulates cranial suture fusion. Nature 2003, 422, 625-629.
    116. Yoon B.S., Ovchinnikov D.A., Yoshii I., Mishina Y., Behringer R.R., Lyons K.M., Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005, 102, 5062-5067.
    117. Mishina Y., Starbuck M.W., Gentile M.A. et al., Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem 2004, 279, 27560-27566.
    118. Hay E., Lemonnier J., Fromigue O., Marie P.J., Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinaseC-dependent signaling pathway. J Biol Chem 2001, 276, 29028-29036.
    119. Chen D., Zhao M., Mundy G.R., Bone morphogenetic proteins. Growth Factors 2004, 22, 233-241.
    120. Zhao M., Harris S.E., Horn D. et al., Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 2002, 157, 1049-1060.
    121. Matsushita T., Wilcox W.R., Chan Y.Y. et al., FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700