骨髓间充质干细胞旁分泌效应对胰岛细胞增殖及凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分骨髓间充质干细胞旁分泌效应对胰腺β细胞系的影响
     目的:
     研究胰腺提取物对骨髓间充质干细胞分泌细胞因子的影响,并分析胰腺提取物处理后的骨髓间充质干细胞条件培养液对体外培养的胰腺β细胞增殖、凋亡及胰岛素分泌的影响
     方法:
     (1)制备正常大鼠胰腺提取物(normal rat pancreatic extracts,N-RPE),再生性大鼠胰腺提取物(regenerative rat pancreatic extracts,R-RPE),分离培养鉴定大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),分别应用N-RPE和R-RPE孵育MSCs获得条件培养液(MSC conditioned media,MSC-CM),分别为N-RPE-CM,R-RPE-CM,并设立无RPE处理的对照组(CTR-CM),ELISA法分析三组CM中IGF-1,HGF,b FGF及VEGF的含量,应用RT-PCR分析RPE对MSCs中细胞因子IGF-1,HGF,b FGF及VEGF mRNA的改变。
     (2)应用RPE处理后的MSC-CM孵育体外培养的大鼠胰腺β细胞系INS-1细胞,设立单纯RPMI 1640培养基作为对照组(RPMI1640组)。应用MTT分析N-RPE-CM,R-RPE-CM及CTR-CM对INS-1细胞增殖的影响;应用IL-1β,TNF-α和IFN-γ诱导INS-1细胞凋亡,AnnexinⅤ/PI双染分析MSC-CM对INS-1细胞凋亡的影响。应用RIA分析MSC-CM对INS-1细胞分泌胰岛素影响,应用RT-PCR分析对INS-1细胞胰岛素mRNA的影响。
     结果:
     (1)骨髓间充质干细胞形态及细胞表型鉴定
     大鼠骨髓细胞原代培养10~14天细胞可达80%~90%融合,有规律的排列成放射状或旋涡状,经过3代后MSCs基本达到形态均一,流式细胞仪分析第三代MSCs细胞表型,细胞高表达CD44和CD90,而CD34、CD45低表达或表达阴性。
     (2) MSCs条件培养液IGF-1,HGF,b FGF及VEGF的测定
     四种细胞因子在三组中均可以检测到,CTR-CM,N-RPE-CM和R-RPE-CM组的IGF-1水平分别为:(123.5±15.3)pg/ml,(356.8±35.6)pg/ml和(852.3±53.9)pg/ml,P<0.01;三组中HGF的水平分别为:(110.5±11.3)pg/ml,(206.5±23.6)pg/ml和(358.5±42.8)pg/ml,P<0.01;三组中VEGF的水平分别为(78.6±12.6)pg/ml,(206.8±21.6)pg/ml和(702.3±43.6)pg/ml,P<0.01;三组中bFGF的水平分别为(89.6±11.6)pg/ml,(285.3±25.6)pg/ml和(683.6±42.6)pg/ml,P<0.01。N-RPE-CM和CTR-CM相比,三种细胞因子的水平也有显著性差异,P<0.01。
     (3)胰腺提取物对MSCs中IGF-1,HGF,VEGF及b FGF mRNA的影响
     RT-PCR结果显示,与对照组(CTR组)相比,经过N-RPE和R-RPE处理MSCs后,IGF-1,HGF,VEGF和bFGF电泳条带均变深,MSCs的IGF-1,HGF,VEGF及bFGF的mRNA相对表达量均明显升高(P<0.01)。R-RPE组与N-RPE组比较,IGF-1,HGF,VEGF及bFGF的mRNA相对表达量也均明显升高(P<0.01)。
     (4)大鼠MSCs条件培养液对INS-1细胞增殖及凋亡的影响
     应用MTT检测细胞存活及增殖。RPMI 1640组,CTR-CM组,N-RPE-CM组及R-RPE-CM吸光度值分别为0.382±0.016,0.403±0.028,0.519±0.035及0.626±0.048,有显著性差异(P<0.01),N-RPE-CM及R-RPE-CM组吸光度值升高更明显。
     应用AnnexinⅤ/PI双染分析INS-1细胞凋亡,荧光显微镜及流式细胞仪观察:凋亡细胞及坏死细胞数在RPE-CM干预组明显减少,以R-RPE-CM组凋亡细胞及坏死细胞最少。
     (4)大鼠MSCs条件培养液对INS-1细胞胰岛素分泌及胰岛素mRNA的影响
     5.6 mmol/L葡萄糖浓度刺激下各组胰岛素分泌分别为(ng/ml):0.225±0.019(RPMI1640组)vs 0.242±0.035(CTR-CM组)vs 0.351±0.052(N-RPE-CM组)vs 0.486±0.063(R-RPE-CM组),P<0.01;20mmol/L葡萄糖浓度刺激下各组胰岛素分泌分别为(ng/ml):0.318±0.021(RPMI1640组)vs 0.346±0.025(CTR-CM组)vs 0.662±0.052(N-RPE-CM组)vs 0.801±0.077(R-RPE-CM组),P<0.01。
     分析MSC-CM在葡萄糖浓度11.1mmol/L下对INS-1细胞胰岛素mRNA的影响。与RPMI 1640组相比,经过N-RPE-CM和R-RPE-CM处理INS-1细胞后,胰岛素电泳条带均变深,INS-1细胞胰岛素的mRNA相对表达量均明显升高(P<0.01)。
     结论:
     (1)胰腺提取物可以促进骨髓间充质干细胞分泌IGF-1,HGF,VEGF及b FGF,mRNA表达增加,再生性胰腺提取物促进作用更强。
     (2)胰腺提取物处理后的骨髓间充质干细胞条件培养液促进体外培养的INS-1细胞增殖,抑制其凋亡,促进INS-1细胞胰岛素分泌及mRNA表达
     (3) MSCs条件培养液的胰腺保护作用提示MSCs的旁分泌效应可能在MSCs移植治疗糖尿病中发挥重要的作用。
     第二部分骨髓间充质干细胞条件培养液对糖尿病大鼠胰岛细胞的作用
     目的:
     探讨应用骨髓间充质干细胞条件培养液对糖尿病大鼠模型的血糖控制、胰岛细胞增殖及凋亡的影响。
     方法:
     1%STZ 60mg/kg单次腹腔注射制备糖尿病大鼠模型,分为四组:糖尿病对照组(DM-CTR组,腹腔注射生理盐水),n=6;CTR-CM组(腹腔注射CTR-CM),n=8;N-RPE-CM组(腹腔注射N-RPE-CM),n=8;R-RPE-CM组(腹腔注射R-RPE-CM),n=8。分析条件培养液对糖尿病大鼠体重,血糖的影响;胰腺HE染色分析对胰岛形态的改变,应用免疫组织化学胰岛素及Ki67染色,分析对胰岛细胞增殖的影响;应用TUNEL分析条件培养液对胰岛细胞凋亡的影响。
     结果:
     (1)各组体重及血糖的变化,R-RPE-CM组腹腔注射糖耐量试验(IPGTT)情况:
     DM-CTR,CTR-CM组体重降低,到实验结束时分别降至(141.5±10.3)g及(149.2±11.2)g;N-RPE-CM组和R-RPE-CM组体重变化不明显,分别为(223.7±18.6)g和(231.8±16.9)g,N-RPE-CM组,R-RPE-CM组体重与DM-CTR及CTR-CM组之间有显著性差异,P<0.01。
     在治疗之前,四组血糖水平没有显著性差异,P>0.05;治疗一周后,N-RPE-CM组和R-RPE-CM组血糖开始下降,与DM-CTR组及CTR-CM组相比有显著性差异,P<0.01。在治疗后的第2,3,4周,N-RPE-CM组和R-RPE-CM组血糖继续下降,而DM-CTR及CTR-CM组则有升高趋势,在第四周DM-CTR组,CTR-CM组,N-RPE-CM组和R-RPE-CM组血糖分别为(25.5±2.0)mmol/L,(24.5±2.1)mmol/L,(13.6±1.7)mmol/L,(7.8±1.8)mmol/L,四组有显著性差异,P<0.01,其中R-RPE-CM组血糖比N-RPE-CM组更低,有显著性差异,P<0.01。
     IPGTT显示治疗后2周及4周与治疗前相比,R-RPE-CM组各时点的血糖均有明显降低,均P<0.01。
     (2)胰腺组织学检查
     HE染色结果:DM-CTR组及CTR-CM组动物胰岛数量明显减少,残存胰岛萎缩,变性坏死,细胞核固缩;N-RPE-CM组胰岛数目少、形态欠完整,但与DM-CTR组及CTR-CM组相比,胰岛细胞坏死明显减轻;R-RPE-CM组胰岛数目明显较DM-CTR组及CTR-CM组增多,体积增大,坏死减轻,水样变性较多。
     胰岛素染色结果:R-RPE-CM组及N-RPE-CM组胰岛素阳性表达面积与视野中总面积的比例,胰岛素阳性表达面积和胰岛素染色的平均光密度与DM-CTR组及CTR-CM组相比均有显著性差异,P<0.01。
     胰岛β细胞增殖情况:DM-CTR组及CTR-CM组Ki67阳性细胞非常少见,两组没有显著性差异,P>0.05,而N-RPE-CM组及R-RPE-CM组胰岛中Ki67阳性细胞较DM-CTR组及CTR-CM组常见,具有显著性差异,P<0.01;而R-RPE-CM组Ki67阳性细胞比N-RPE-CM组多见,P<0.01。
     胰岛β细胞凋亡情况:在DM-CTR组及CTR-CM组凋亡细胞多见,而经过N-RPE-CM治疗后,与DM-CTR组及CTR-CM组相比明显减少,有显著性差异,P<0.01;而经过R-RPE-CM治疗后凋亡细胞数与N-RPE-CM组相比明显减少,有显著性差异,P<0.01。
     结论:
     骨髓间充质干细胞条件培养液可以降低糖尿病大鼠的血糖,促进大鼠胰岛细胞的增殖,抑制其凋亡。
PartⅠTHE INFLUENCE OF PARACRINE EFFECTS OF MESENCHYMAL STEM CELLS ON THE PROLIFERATION AND APOPTOSIS OF PANCREATICβCELL LINE
     Objective:To investigate the influence of rat pancreatic extracts on the secretion of cytokines of mesenchymal stem cells and to analyze the effects of conditioned media of mesenchymal stem cells treated with rat pancreatic extractss on the proliferation, apoptosis and insulin secretion of pancreaticβcell line INS-1 cells.
     Methods:
     1.The normal rat pancreatic extracts(N-RPE) and regenerative rat pancreatic extracts (R-RPE) were prepared respectively.Mesenchymal stem cells(MSCs) were isolated, cultured and identified.N-RPE conditioned media(N-RPE-CM) and R-RPE conditioned media(R-RPE-CM) were acquired by incubating the MSCs with N-RPE and R-RPE.CTR-CM was acquired by incubation of MSCs without RPE.The levels of IGF-1,HGF,VEGF and b FGF in MSC-CM were analyzed by ELISA and the mRNA expression of IGF-1,HGF,VEGF and b FGF in MSCs was assessed by RT-PCR.
     2.The pancreaticβcell line INS-1 cells were incubated with conditioned media of MSCs treated with RPE,with the standard RPMI 1640 medium as the control group (RPMI 1640 group).The effects of N-RPE-CM,R-RPE-CM and CTR-CM on proliferation of the INS-1 cells were analyzed by MTT.The influence of MSC-CM on the INS-1 cell apoptosis induced by the mixture of IL-1β,TNF-αand IFN-γwas measured by Annexin V/PI double staining.The insulin secretion and mRNA expression of INS-1 cells were analyzed by RIA and RT-PCR,respectively.
     Results:
     1.The cell phenotype identification of MSCs
     The bone marrow cells reached 80%-90%confluence in 10-14 days after primary culture,arranged regularly with clear boundary and showed spindle-like or radiation morphology.The morphology of MSCs was about uniform at passage 3. Flow cytometric analysis of the MSCs at passage 3 showed that these cells were negative for CD34 and CD45 and expressed high levels of CD44 and CD90.
     2.Assay of IGF-1,HGF,VEGF and b FGF in MSC conditioned media
     The four cytokines were all measured in three groups.The IGF-1 levels of CTR-CM group,N-RPE-CM group and R-RPE-CM group were(123.5±15.3) pg/ml,(356.8±35.6) pg/ml and(852.3±53.9) pg/ml,respectively,P<0.01. The HGF levels of CTR-CM group,N-RPE-CM group and R-RPE-CM group were(110.5±11.3) pg/ml,(206.5±23.6) pg/ml and(358.5±42.8) pg/ml, respectively,P<0.01.The VEGF levels in three groups were(78.6±12.6) pg/ml, (206.8±21.6) pg/ml and(702.3±43.6) pg/ml,respectively,P<0.01.The b FGF levels were(89.6±11.6) pg/ml,(285.3±25.6) pg/ml and(683.6±42.6) pg/ml, respectively,P<0.01.There was significant difference in the levels of the four cytokines between N-RPE-CR and CTR-CM groups(P<0.01).
     3.The influence of RPE on the IGF-1,HGF,VEGF and b FGF mRNA expression of MSCs
     The RT-PCR electrophoresis results indicated that electrophoresis strip density of IGF-1,HGF,VEGF and bFGF in MSCs treated with N-RPE and R-RPE was higher in comparison to CTR,that is,the relative mRNA expression of IGF-1,HGF,VEGF and bFGF was significantly increased(P<0.01).The relative mRNA expression of IGF-1,HGF,VEGF and bFGF was significantly increased in the R-RPE treated group in comparison to N-RPE treated group.
     4.The effects of MSC-CM on the proliferation and apoptosis of INS-1 cells
     The viability and proliferation of INS-1 cells was assayed by MTT.The optical density of RPMI 1640 group,CTR-CM group,N-RPE-CM group and R-RPE-CM group was 0.382±0.016,0.403±0.028,0.519±0.035 and 0.626±0.048,respectively,P<0.01.The N-RPE-CM group and R-RPE-CM group have higher optical density.
     The apoptotic cells were analyzed by Annexin V/PI double staining.The fluorescence microscope and flow cytometer results indicated that the apoptotic cells and necrotic ceils in the RPE-CM groups were decreased compared with RPMI1640 control group and CTR-CM group.The R-RPE-CM group had the least number of apoptotic ceils and necrotic cells.
     4.The effects of MSC-CM on the insulin secretion and insulin mRNA expression of INS-1 cells
     The insulin levels secreted by INS-1 cells in the presence of 5.6mmol/L glucose were 0.225±0.019(RPMI 1640 group) vs 0.242±0.035(CTR-CM group) vs 0.351±0.052(N-RPE-CM group) vs 0.486±0.063(R-RPE-CM group),P<0.01. The insulin levels secreted by INS-1 cells in the presence of 20mmol/L glucose were 0.318±0.021(RPMI 1640 group) vs 0.346±0.025(CTR-CM group ) vs 0.662±0.052(N-RPE-CM group) vs 0.801±0.077(R-RPE-CM group),P<0.01.
     The insulin mRNA expression of INS-1 cells in the presence of 11.1 mmol/L glucose was assessed by RT-PCR.The electrophoresis strip density of insulin in INS-1 cells treated with N-RPE-CM,R-RPE-CM and CTR-CM was higher in comparison to RPMI 1640.
     Conclusion:
     1.The rat pancreatic extracts can promote the MSCs to secret IGF-1,HGF, VEGF and b FGF and increase the mRNA expression.The R-RPE has the strongest effect of promotion.
     2.The conditioned media of MSCs treated with rat pancreatic extracts can stimulate the proliferation,inhibit the apoptosis,and promote the insulin secretion and insulin mRNA expression of INS-1 cells.
     3.The panpreaprotective effects of MSC conditioned media indicate that paracrine action of MSCs may play an important role in the cell therapy of diabetes
     PartⅡTHE EFFECTS OF CONDITIONED MEDIA OF MESENCHYMAL STEM CELLS ON THE ISLET CELLS OF DIABETIC RATS
     Objective:To investigate the effects of conditioned media ofmesenchymal stem cells on the glycemia control,islet cell apoptosis and proliferation in diabetic rats. Methods:Diabetic rats induced by single intraperitoneal injection of 1%STZ at 60mg/kg body weight were randomly divided into four groups:diabetic control group (DM-CTR,only injecting saline,n=6),CTR-CM group(injecting CTR-CM,n=8), N-RPE-CM group(injecting N-RPE-CM,n=8) and R-RPE-CM group(injecting R-RPE-CM,n=8).The effects of conditioned media were analyzed on the body weight and blood glucose of diabetic rats.The histopathology and immunohistochemistry were essayed with H.E staining assessing the morphology of islets and insulin and Ki67 staining analyzing the proliferation of islet cells.The apoptosis of islet cells were evaluated by TUNEL assay.
     Result:
     1.The body weight and blood glucose in four groups and the IPGTT results in R-RPE-CM group
     The body weight of DM-CTR and CTR-CM groups decreased into(141.5±10.3) g and(149.2±11.2) g respectively at the end of the research.There was no obvious change in the body weight of N-RPE-CM(223.7 g±18.6 g) and R-RPE-CM(231.8 g±16.9 g) groups during the experiment.There was significant difference in the body weight among the four groups,P<0.01.
     There was no significant difference in the fasting blood glucose among the fours groups at the beginning of experiment,P>0.05.Blood glucose levels in N-RPE-CM and R-RPE-CM groups began to decline from 1 week after injection CM and continue at least four weeks.Blood glucose levels in DM-CM and CTR-CM groups did not decrease 1 week after treatment,and on the contrary,had the trend to increase from 2 weeks after treatment.There was significant difference in the blood glucose concentrations among four groups since 1 week.The blood glucose levels in the DM-CTR,CTR-CM,N-RPE-CM and R-RPE-CM groups 4 week after treatment were (25.5±2.0) mmol/L,(24.5±2.1)mmol/L,(13.6±1.7) mmol/L and(7.8±1.8)mmol/L, respectively,P<0.01.The levels of blood glucose in R-RPE-CM group were lower in comparison to N-RPE-CM group,P<0.01.However,there was no significant difference of blood glucose levels between CRT-CM and DM-CTR groups.IPGTT results showed that the blood glucose at 30min,60 min,120rain and 180min significantly declined at 2 and 4 weeks after treatment compared with the level before treatment.
     2.Histopathology,immunohistochemistry and TUNEL assays
     In diabetic rats with CTR-CM and saline,the most consistent findings were the degenerative and necrotic changes,and shrinking of the islets of Langerhans.In diabetic rats with the treatment of N-RPE-CM for seven days,the severity of degenerative and necrotic changes in the islet of Langerhans parenchyma was less than those with saline or CTR-CM.In diabetic rats with R-RPE-CM,the majority of cells showed significantly light hydropic degeneration as compared to islet cells of diabetic rats of the other three groups,and the islets of Langerhans were distinctly increased in size.The number of islet was significantly decreased in the DM-CTR and R-RPE-CM group in comparison to N-RPE-CM and R-RPE-CM groups.
     In immunohistochemical staining of the pancreatic tissues of diabetic rats with CTR-CM or saline treatment,the cells were essentially negative for insulin -immunoreactivity.In diabetic rats with N-RPE-CM treatment,a fewβcells in some islets displayed insulin immunopositivity in small granules.In diabetic rats with R-RPE-CM,both the number of insulin immunoreactiveβcells and their granules increased and insulin immunoreactiveβ-cells increased distinctly in number and displayed intense immunostaining when compared to diabetic rats with N-RPE-CM treatment.Treatment with R-RPE-CM induced a marked increase in the size of the islets.The average optical of insulin staining was obviously different among the four groups,P<0.01.
     The Ki67 positive cells in the DM-CTR and CTR-CM groups seldom appeared. There was no significant difference between DM-CTR and CTR-CM groups, P>0.05.The Ki67 positive cells were obviously increased in the N-RPE-CM and R-RPE-CM groups in comparison to DM-CTR and CTR-CM groups,P<0.01.There were more Ki67 positive cells in R-RPE-CM group compared with N-RPE-CM group,P<0.01.
     There were more apoptotic pancreatic cells in DM-CTR and CTR-CM groups. The apoptotic cells significantly declined after treatment of N-RPE-CM,P<0.01. There were significant decline in the apoptotic cells in R-RPE-CM group,compared with N-RPE-CM group,P<0.01.
     Conclusion:The conditioned media of MSCs treated with rat pancreatic extracts can lower the blood glucose levels of diabetic rats,promote the proliferation and inhibit the apoptosis of the pancreatic cell.
引文
1 Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes JT, 2004,53(7):1721-32.
    
    2 Ianus A, Holz GG, Theise ND, et al. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest JT, 2003,111(6):843-50.
    
    3 Choi JB, Uchino H, Azuma K, et al. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia JT, 2003,46(10):1366-74.
    
    4 Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol JT, 2003,21(7):763-70.
    
    5 Gao X, Song L, Shen K, et al. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun JT, 2008,371(1):132-7.
    
    6 Dormady SP, Bashayan O, Dougherty R, et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res JT, 2001,10(1):125-40.
    
    7 Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg JT, 2005,80(1):229-36; discussion 236-7.
    
    8 Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res JT, 2002,69(5):687-91.
    
    9 Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun JT, 2008,375(4):547-51.
    10 Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes JT, 2006,55(11):2965-73.
    
    11 Yamamoto T, Oida S, Inage T. Gene expression and localization of insulin-like growth factors and their receptors throughout amelogenesis in rat incisors. J Histochem Cytochem JT, 2006,54(2):243-52.
    
    12 Makino H, Shimizu H, Ito H, et al. Changes in growth factor and cytokine expression in biliary obstructed rat liver and their relationship with delayed liver regeneration after partial hepatectomy. World J Gastroenterol JT, 2006,12(13):2053-9.
    
    13 Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol JT, 1996,166(3):585-92.
    
    14 Silva WA Jr, Covas DT, Panepucci RA, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells JT, 2003,21(6):661-9.
    
    15 Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells JT, 2007,25(5): 1166-77.
    
    16 Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J JT , 2006,20(6) :661-9.
    
    17 Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med JT,2005,11(4):367-8.
    
    18 Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res JT, 2004,94(5):678-85.
    
    19 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation JT, 2004,109(12):1543-9.
    20 Lindholm D. Neurotrophic factors and neuronal plasticity: is there a link?. Adv Neurol JT ,1997,73:1-6.
    
    21 Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology JT, 2002,59(4):514-23.
    
    22 Gorin NC, Labopin M, Rocha V, et al. Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia: influence of dose and stem cell source shows better outcome with rich marrow. Blood JT,2003,102(8):3043-51.
    
    23 Lee ST, Jang JH, Cheong JW, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol JT y, 2002,118(4): 1128-31.
    
    24 Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood JT , 2002,99(10):3838-43.
    
    25 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood JT, 2005,105(4):1815-22.
    
    26 Hardikar AA, Bhonde RR. Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas. Diabetes Res Clin Pract JT, 1999,46(3):203-11.
    
    27 Kim YS, Lee JJ, Shin JS, et al. Enhancement of mouse pancreatic regeneration and HIT-T15 cell proliferation with rat pancreatic extract. Biochem Biophys Res Commun JT, 2003,309(3):528-32.
    
    28 Choi KS, Shin JS, Lee JJ, et al. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun JT, 2005,330(4): 1299-305.
    
    29 Brockenbrough JS, Weir GC, Bonner-Weir S. Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes JT, 1988,37(2):232-6.
    30 Swenne I. Pancreatic beta-cell growth and diabetes mellitus. Diabetologia JT, 1992,35(3):193-201.
    
    31 Scharfmann R, Basmaciogullari A, Czernichow P. Effect of growth hormone and glucose on rat islet cells replication using 5-bromo-2-deoxyuridine incorporation. Diabetes Res JT, 1990,15(3):137-41.
    
    32 Sadovnikova NV, Komolov IS, Fedotov VP, et al. [Effect of fibroblast growth factor and nerve growth factor on the cellular proliferation and functional activity of isolated islands of Langerhans]. Biull Eksp Biol Med JT, 1988,106(8):222-4.
    
    33 Dereli S, Fleck H, Sieradzki J, et al. Influence of growth factors on an insulin-producing cell line (RINm5F). Acta Endocrinol (Copenh) JT, 1988,118(4):559-65.
    
    34 Hugl SR, White MF, Rhodes CJ. Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem JT, 1998,273(28):17771-9.
    
    35 Mathews LS, Norstedt G, Palmiter RD. Regulation of insulin-like growth factor I gene expression by growth hormone. Proc Natl Acad Sci U S A JT, 1986,83(24):9343-7.
    
    36 Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med JT - The New England journal of medicine, 1997,336(9):633-40.
    
    37 Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev JT, 1995,16(2):117-42.
    
    38 White MF. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res JT, 1998,53:119-38.
    
    39 Kulkarni RN. Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function. Biochem Soc Trans JT, 2002,30(2):317-22.
    
    40 Van Schravendijk CF, Foriers A, Van den Brande JL, et al. Evidence for the presence of type I insulin-like growth factor receptors on rat pancreatic A and B cells. Endocrinology JT , 1987,121(5):1784-8.
    
    41 Withers DJ, Burks DJ, Towery HH, et al. Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet JT, 1999,23(1 ):32-40.
    
    42 Castrillo A, Bodelon OG, Bosca L. Inhibitory effect of IGF-I on type 2 nitric oxide synthase expression in Ins-1 cells and protection against activation-dependent apoptosis: involvement of phosphatidylinositol 3-kinase. Diabetes JT, 2000,49(2):209-17.
    
    43 Harrison M, Dunger AM, Berg S, et al. Growth factor protection against cytokine-induced apoptosis in neonatal rat islets of Langerhans: role of Fas. FEBS Lett JT, 1998,435(2-3):207-10.
    
    44 Mabley JG, Belin V, John N, et al. Insulin-like growth factor I reverses interleukin-1beta inhibition of insulin secretion, induction of nitric oxide synthase and cytokine-mediated apoptosis in rat islets of Langerhans. FEBS Lett JT, 1997,417(2):235-8.
    
    45 Giannoukakis N, Mi Z, Rudert WA, et al. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther JT, 2000,7(23):2015-22.
    
    46 Bergerot I, Fabien N, Maguer V, et al. Insulin-like growth factor-1 (IGF-1) protects NOD mice from insulitis and diabetes. Clin Exp Immunol JT, 1995,102(2):335-40.
    
    47 Kaino Y, Hirai H, Ito T, et al. Insulin-like growth factor I (IGF-I) delays the onset of diabetes in non-obese diabetic (NOD) mice. Diabetes Res Clin Pract JT, 1996,34(1):7-11.
    
    48 Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol JT, 1997,17(3): 1595-606.
    
    49 Lawlor MA, Rotwein P. Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol JT, 2000,20(23):8983-95.
    
    50 Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev JT, 1997,11(6):701 -13.
    
    51 Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science JT, 1997,275(5300):661-5.
    
    52 Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell JT, 1997,91 (2):231-41.
    
    53 Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene JT 2000,19(49):5582-9.
    
    54 Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol JT, 2002,13(1):96-107.
    
    55 Liu Y. Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens JT, 2002,11(1):23-30.
    
    56 Calvo EL, Boucher C, Pelletier G, et al. Ontogeny of hepatocyte growth factor and c-met/hgf receptor in rat pancreas. Biochem Biophys Res Commun JT, 1996,229(1):257-63.
    
    57 Otonkoski T, Beattie GM, Rubin JS, et al. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes JT, 1994,43(7):947-53.
    
    58 Beattie GM, Rubin JS, Mally MI, et al. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes JT, 1996,45(9): 1223-8.
    
    59 Hayek A, Beattie GM, Cirulli V, et al. Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes JT, 1995,44(12): 1458-60.
    
    60 Beattie GM, Cirulli V, Lopez AD, et al. Ex vivo expansion of human pancreatic endocrine cells. J Clin Endocrinol Metab JT, 1997,82(6): 1852-6.
    
    61 Gahr S, Merger M, Bollheimer LC, et al. Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations. J Mol Endocrinol JT, 2002,28(2):99-110.
    
    62 Santangelo C, Matarrese P, Masella R, et al. Hepatocyte growth factor protects rat RINm5F cell line against free fatty acid-induced apoptosis by counteracting oxidative stress. J Mol Endocrinol JT, 2007,38(1-2):147-58.
    
    63 Garcia-Ocana A, Vasavada RC, Cebrian A, et al. Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes JT, 2001,50(12):2752-62.
    
    64 Garcia-Ocana A, Takane KK, Syed MA, et al. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem JT, 2000,275(2): 1226-32.
    
    65 Garcia-Ocana A, Takane KK, Reddy VT, et al. Adenovirus-mediated hepatocyte growth factor expression in mouse islets improves pancreatic islet transplant performance and reduces beta cell death. J Biol Chem JT, 2003,278(1):343-51.
    
    66 Dai C, Li Y, Yang J, et al. Hepatocyte growth factor preserves beta cell mass and mitigates hyperglycemia in streptozotocin-induced diabetic mice. J Biol Chem JT, 2003,278(29):27080-7.
    
    67 Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol JT, 2001,2(3):REVIEWS3005.
    
    68 Le Bras S, Miralles F, Basmaciogullari A, et al. Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life. Diabetes JT, 1998,47(8): 1236-42.
    
    69 Hart AW, Baeza N, Apelqvist A, et al. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature JT, 2000,408(6814):864-8.
    
    70 Dichmann DS, Rescan C, Frandsen U, et al. Unspecific labeling of pancreatic islets by antisera against fibroblast growth factors and their receptors. J Histochem Cytochem JT, 2003,51(3):397-400.
    
    71 Dichmann DS, Miller CP, Jensen J, et al. Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas. Dev Dyn JT, 2003,226(4):663-74.
    72 Hiriart M, Vidaltamayo R, Sanchez-Soto MC. Nerve and fibroblast growth factors as modulators of pancreatic beta cell plasticity and insulin secretion. Isr Med Assoc J JT, 2001,3(2): 114-6.
    
    73 Ferrara N, Winer J, Burton T, et al. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells. J Clin Invest JT, 1993,91(1):160-70.
    
    74 Rooman I, Schuit F, Bouwens L. Effect of vascular endothelial growth factor on growth and differentiation of pancreatic ductal epithelium. Lab Invest JT , 1997,76(2):225-32.
    1 Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet JT, 2001,358(9277):221 -9.
    
    2 Weir GC, Bonner-Weir S, Leahy JL. Islet mass and function in diabetes and transplantation. Diabetes JT, 1990,39(4):401-5.
    
    3 Kloppel G, Lohr M, Habich K, et al. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res JT, 1985,4(2): 110-25.
    
    4 Tang DQ, Cao LZ, Burkhardt BR, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes JT, 2004,53(7):1721-32.
    
    5 Chang C, Niu D, Zhou H, et al. Mesenchymal stem cells contribute to insulin-producing cells upon microenvironmental manipulation in vitro. Transplant Proc JT, 2007,39(10):3363-8.
    
    6 Lechner A, Yang YG, Blacken RA, et al. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes JT, 2004,53(3):616-23.
    
    7 Choi JB, Uchino H, Azuma K, et al. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia JT, 2003,46(10):1366-74.
    
    8 Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol JT, 2003,21(7):763-70.
    
    9 Gao X, Song L, Shen K, et al. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun JT, 2008,371(1):132-7.
    
    10 Wu XH, Liu CP, Xu KF, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol JT, 2007,13(24):3342-9.
    11 Dong QY, Chen L, Gao GQ, et al. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin Invest Med JT, 2008,31(6):E328-37.
    
    12 Dormady SP, Bashayan O, Dougherty R, et al. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res JT,2001,10(1):125-40.
    
    13 Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg JT, 2005,80(1):229-36; discussion 236-7.
    
    14 Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med JT , 2000,343(4):230-8.
    
    15 Ryan EA, Lakey JR, Paty BW, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes JT, 2002,51(7):2148-57.
    
    16 Lechner A, Habener JF. Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. Am J Physiol Endocrinol Metab JT, 2003,284(2):E259-66.
    
    17 Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol JT, 2004,36(4):568-84.
    
    18 Fang B, Liao L, Shi M, et al. Multipotency of FlklCD34 progenitors derived from human fetal bone marrow. J Lab Clin Med JT, 2004,143(4):230-40.
    
    19 Fang B, Shi M, Liao L, et al. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flkl+/CD31-/CD34- Progenitors. J Hematother Stem Cell Res JT, 2003,12(6):603-13.
    
    20 Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood JT,2003,102(10):3483-93.
    
    21 Li Y, Zhang R, Qiao H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol JT, 2007,211(1):36-44.
    
    22 Choi KS, Shin JS, Lee JJ, et al. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun JT, 2005,330(4): 1299-305.
    
    23 Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun JT, 2008,375(4):547-51.
    
    24 Ianus A, Holz GG, Theise ND, et al. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest JT, 2003,111(6):843-50.
    
    25 Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J JT , 2006,20(6):661-9.
    
    26 Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology JT, 2002,59(4):514-23.
    
    27 Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res JT, 2002,69(5):687-91.
    
    28 Suarez-Pinzon WL, Yan Y, Power R, et al. Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes JT, 2005,54(9):2596-601.
    
    29 Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res JT, 1997,29(6):301-7.
    
    30 Steil GM, Trivedi N, Jonas JC, et al. Adaptation of beta-cell mass to substrate oversupply: enhanced function with normal gene expression. Am J Physiol Endocrinol Metab JT, 2001,280(5):E788-96.
    
    31 Logothetopoulos J, Bell EG. Histological and autoradiographic studies of the islets of mice injected with insulin antibody. Diabetes JT, 1966,15(3):205-11.
    
    32 Like AA, Chick WL. Studies in the diabetic mutant mouse. I. Light microscopy and radioautography of pancreatic islets. Diabetologia JT, 1970,6(3):207-15.
    
    33 Like AA, Chick WL. Mitotic division in pancreatic beta cells. Science JT, 1969,163(870):941-3.
    
    34 Davidson PM, Campbell IL, Oxbrow L, et al. Pancreatic beta cell proliferation in rabbits demonstrated by bromodeoxyuridine labeling. Pancreas JT, 1989,4(5):594-600.
    
    35 Meier JJ, Lin JC, Butler AE, et al. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia JT, 2006,49(8): 1838-44.
    
    36 Dor Y, Brown J, Martinez OI, et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature JT, 2004,429(6987):41-6.
    
    37 Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol JT, 2005,25(9):3752-62.
    
    38 Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest JT, 2004,114(7):963-8.
    
    39 Brelje TC, Parsons JA, Sorenson RL. Regulation of islet beta-cell proliferation by prolactin in rat islets. Diabetes JT, 1994,43(2):263-73.
    
    40 Meier JJ, Butler AE, Galasso R, et al. Increased islet beta cell replication adjacent to intrapancreatic gastrinomas in humans. Diabetologia JT, 2006,49(11):2689-96.
    
    41 Garcia-Ocana A, Takane KK, Reddy VT, et al. Adenovirus-mediated hepatocyte growth factor expression in mouse islets improves pancreatic islet transplant performance and reduces beta cell death. J Biol Chem JT, 2003,278(1):343-51.
    
    42 Dai C, Li Y, Yang J, et al. Hepatocyte growth factor preserves beta cell mass and mitigates hyperglycemia in streptozotocin-induced diabetic mice. J Biol Chem JT, 2003,278(29):27080-7.
    
    43 Garcia-Ocana A, Takane KK, Syed MA, et al. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem JT, 2000,275(2): 1226-32.
    
    44 George M, Ayuso E, Casellas A, et al. Beta cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest JT, 2002,109(9):l 153-63.
    
    45 Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol JT, 2000,24(3):297-302.
    
    46 Bouwens L. [Neogenesis of beta cells and islet formation]. Journ Annu Diabetol Hotel DieuJT, 1999:1-12.
    
    47 Kerr-Conte J, Pattou F, Lecomte-Houcke M, et al. Ductal cyst formation in collagen-embedded adult human islet preparations. A means to the reproduction of nesidioblastosis in vitro. Diabetes JT, 1996,45(8):1108-14.
    
    48 Baeyens L, De Breuck S, Lardon J, et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia JT, 2005,48(1):49-57.
    
    49 Gu D, Arnush M, Sarvetnick N. Endocrine/exocrine intermediate cells in streptozotocin-treated Ins-IFN-gamma transgenic mice. Pancreas JT, 1997,15(3):246-50.
    
    50 Bertelli E, Bendayan M. Intermediate endocrine-acinar pancreatic cells in duct ligation conditions. Am J Physiol JT, 1997,273(5 Pt 1):C1641-9.
    
    51 Lardon J, Huyens N, Rooman I, et al. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch JT, 2004,444(1):61-5.
    
    52 Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology JT, 2001,142(11):4956-68.
    
    53 Rosenberg L. In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells. Cell Transplant JT, 1995,4(4):371-83.
    
    54 Page BJ, du Toit DF, Muller CJ, et al. An immunocytochemical profile of the endocrine pancreas using an occlusive duct ligation model. JOP JT, 2000,1(4): 191-203.
    
    55 Rosenberg L. Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model. Microsc Res Tech JT, 1998,43(4):337-46.
    56 Tourrel C, Bailbe D, Meile MJ, et al. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes JT, 2001,50(7):1562-70.
    
    57 Tourrel C, Bailbe D, Lacorne M, et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes JT, 2002,51(5):1443-52.
    
    58 Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes JT, 1995,44(3):249-56.
    
    59 Bellone M, Iezzi G, Rovere P, et al. Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol JT, Md: 1950), 1997,159(11):5391-9.
    
    60 Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes. Nature JT, 2001,414(6865):792-8.
    
    61 Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest JT, 2002,110(6):851-60.
    
    62 Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J JT, 2001,15(2):312-21.
    
    63 Wrede CE, Dickson LM, Lingohr MK, et al. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem JT, 2002,277(51):49676-84.
    
    64 Donath MY, Storling J, Maedler K, et al. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med JT, 2003,81(8):455-70.
    
    65 Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death?. Science JT, 2005,307(5708):380-4.66
    1 Barry FP,Murphy JM.Mesenchymal stem cells:clinical applications and biological characterization.Int J Biochem Cell Biol JT,2004,36(4):568-84.
    2 Fang B,Shi M,Liao L,et al.Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34-Progenitors,2003,12(6):603-13.
    3 Fang B,Liao L,Shi M,et al.Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow.J Lab Clin Med JT,2004,143(4):230-40.
    4 Dormady SP,Bashayan O,Dougherty R,et al.Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment.J Hematother Stem Cell Res JT,2001,10(1):125-40.
    5 Tse WT,Pendleton JD,Beyer WM,et al.Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation.Transplantation JT,2003,75(3):389-97.
    6 Lee ST,Jang JH,Cheong JW,et al.Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol JT, 2002,118(4): 1128-31.
    
    7 Gorin NC, Labopin M, Rocha V, et al. Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia: influence of dose and stem cell source shows better outcome with rich marrow. Blood JT, 2003,102(8):3043-51.
    
    8 Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood JT, 2002,99(10):3838-43.
    
    9 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood JT, 2005,105(4): 1815-22.
    
    10 Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg JT, 2005,80(1):229-36
    
    11 Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J JT, 2006,20(6):661-9.
    
    12 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation JT, 2004,109(12):1543-9
    
    13 Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells JT, 2007,25(5): 1166-77.
    
    14 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol JT, 2000,164(2):247-56.
    
    15 Corti S, Locatelli F, Strazzer S, et al. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders. Curr Gene Ther JT, 2003,3(3):247-72.
    
    16 Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature JT, 2003,425(6961 ):968-73.
    
    17 Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res JT, 2002,69(5):687-91.
    
    18 Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology JT, 2002,59(4):514-23.
    
    19 Lindholm D. Neurotrophic factors and neuronal plasticity: is there a link?. Adv Neurol JT, 1997,73 (3) :1-6.
    
    20 Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol JT, 2005,289(1):F31-42.
    
    21 Imasawa T, Utsunomiya Y, Kawamura T, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol JT, 2001,12(7): 1401-9.
    
    22 Bi B, Schmitt R, Israilova M, et al. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol JT, 2007,18(9):2486-96.
    
    23 Hagiwara M, Shen B, Chao L, et al. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther. 2008;19(8):807-19.
    
    24 Kucic T, Copland IB, Cuerquis J, et al. Mesenchymal stromal cells genetically engineered to overexpress IGF-I enhance cell-based gene therapy of renal failure-induced anemia. Am J Physiol Renal Physiol. 2008;295(2):F488-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700