调强放疗中的数学规划问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调强放疗技术能够保证在杀死癌症细胞的同时最大程度地保护正常组织,避免并发症的出现,被认为是恶性肿瘤治疗的主要技术手段之一。调强放疗逆向计划系统是调强放疗软件部分的核心,主要建立在数学规划问题的精确建模与快速求解的基础之上。其中,强度图强度优化、强度图平滑优化和两步整合优化等优化问题是目前研究的热点。在解决这几个问题时尽可能使用凸规划数学建模,不仅避免了非凸规划求解过程的不确定性和不准确性,且让小规模规划整合为大规模或超大规模规划有迹可循。
     重点研究了调强放疗逆向计划系统中的几个关键技术问题,主要包括以下几个方面。
     首先,强度图强度优化问题要求依据临床医生的剂量需求逆向求解各射野所需调制的射线强度。带有剂量体积约束的强度优化以及基于等效生物剂量模型的强度优化是该类问题建模求解的难点。对于前者,指出了传统的剂量排序技术的不足,以线性约束二次规划模型作为基础,给出了更为科学的基于几何距离排序技术的迭代求解策略;对于后者,改变了传统生物剂量模型与现有医学评价系统脱节的不足,给出了基于体积剂量函数的等效均匀剂量的定义及相应的能够转化为一般的剂量体积约束问题的数学模型。利用公开的四个临床测试病例对几何距离排序技术和剂量排序技术进行了实验比较,结果显示前者能够在满足剂量体积约束时让靶区获取更高的剂量适形度。
     其次,由于抑制强度图噪音将大大降低射线调制时所需的总机器跳数,强度图平滑优化要求解决强度图过多起伏的问题。针对传统的目标项平滑策略难以解决的五大问题,首次提出了约束条件平滑策略。该策略能够进行智能平滑,将强度求解与子野分解这两个环节有机地结合。针对几种典型的叶片单向滑动子野分解模式进行了数学建模。除了部分同步/严格同步型以外,其他所有的子野分解模式都成功地转化为线性约束二次规划模型。两个临床测试病例的实验比较结果表明,在相同剂量分布的基础上,约束条件平滑策略能够使用更低的总机器跳数实现整个放疗。
     再次,两步整合优化希望解决强度图优化和子野分解优化两者脱节的问题。针对传统单步整合优化求解困难的特点,采用了带有反馈信息的两步整合优化策略来控制总机器跳数和总子野个数。在该思路的指导下,对叶片双向滑动的两种子野分解模式给出了新的整合优化算法。并在两个临床测试病例上分别对全变差整合优化算法和新整合优化算法进行了实验。结果表明,新算法在等同总机器跳数和总子野个数的条件下,能够产生更优的剂量分布。
Intensity-modulated radiation therapy technology has been considered as one of the main technical means in cancer treatment, because IMRT can guarantee killing cancer cells while protecting normal tissue from complications as much as possible. Inverse planning system is the core part of the whole IMRT software, which is mainly based on accurate mathematical modeling and fast solving methods. Where, fluence map optimization, map smoothing optimization, and two step integration optimization are research focuses currently. In solving these problems, we always adhere to create the mathematical models under the framework of convex programming, which avoids uncertainty and inaccuracy occurred in non-convex programming solving process and enables to integrate small-scale programming to large scale or enormous scale.
     We studied several key technical issues of the inverse planning system in intensity modulated radiation therapy, which included the following aspects.
     Firstly, fluence map optimization wants to inverse solve the ray intensity of each radiation field according to dose requirements from doctors. Fluence map optimization problems with dose-volume constraints as well as which based on equivalent uniform dose model are difficult to be solved. For the former, we pointed out the shortcomings of the traditional dose sorting technology, used the linear constrained quadratic programming model as a foundation, and gived the iterative solution strategy based on more scientific geometric distance sorting technique. For the latter, we changed the existing deficiencies of discrepancy in the traditional biological model and medical evaluation system, and gived the definition of equivalent uniform dose based on volume dose function as well as the corresponding mathematical model which can be transformed into a general dose-volume constraints fluence map optimization problem. The experiments of four opened clinical test cases showed that our method was able to obtain a higher degree of dose conformity while meeting the dose volume constraints.
     Secondly, ss the noise suppression could significantly reduce the total number of monitor units in intensity modulation, map smoothing optimization wants to reduce the map fluctuation. According to the five intractable issues from the traditional objective smoothing strategy, we proposed constrained smoothing strategy for the first time. The strategy could carry out intelligent smoothing and well linked the fluence map solving process and leaf sequence process. We created mathematical models for several typical unidirectional sweeping leaf sequencing patterns. Except for the partial synchronized/ strictly synchronized type, all other types have been successfully transformed into linear constrained quadratic programming models. The experimental results on two clinical testing cases showed that the new method can guarantee to use less total number of monitor units to achieve the radiotherapy under the same dose distribution.
     Thirdly, two step integration optimization hopes to reduce the gap between fluence map optimization and leaf sequencing optimization. For the reason that it was hard to solve the integration optimization model created by the traditional single-step style, we adopted the two-step integration strategy with feedback information to control the total number of monitor units and the total number of segments. With this idea, we have gived new integration optimization algorithms for two bidirectional sweeping leaf sequencing patterns. We tested the new algorithms and the total variation smoothing integration algorithms on two clinical testing cases respectively. The results showed that under the same condition of total number of monitor units and total number of segments, the new algorithm can produce better dose distribution.
引文
[1]殷蔚伯,余耘,陈波.2006年全国放疗人员及设备调查报告-纪念中华放射肿瘤学会成立20周年.中华放射肿瘤学杂志.2007,16(1):1-5
    [2]Orton C.G., Bortfeld T.R., Niemierko A., et al. The role of medical physicists and the AAPM in the development of treatment planning and optimization. Medical Physics.2008,35(11):4911-4923
    [3]Romeijn H.E., and Dempsey J.F. Intensity modulated radiation therapy treatment plan optimization. Top.2008,16(2):215-243
    [4]Shepard D.M., Ferris M.C., Olivera G.H., et al. Optimizing the delivery of radiation therapy to cancer patients. Siam Review.1999,41(4):721-744
    [5]McNair H.A., Adams E.J., Clark C.H., et al. Implementation of IMRT in the radiotherapy department. British Journal of Radiology.2003,76(912):850-856
    [6]Webb S. Intensity-modulated radiation therapy (IMRT):a clinical reality for cancer treatment," any fool can understand this":The 2004 Silvanus Thompson Memorial Lecture. British Journal of Radiology.2005,78(Special Issue 2):S64-S72
    [7]Webb S. The physical basis of IMRT and inverse planning. British Journal of Radiology.2003,76(910):678-689
    [8]Brualla L., Salvat F., and Palanco-Zamora R. Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Physics in Medicine and Biology.2009,54(13):4131-4149
    [9]Bowen S.R., Flynn R.T., Bentzen S.M., et al. On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function. Physics in Medicine and Biology.2009,54(6):1483-1501
    [10]Zhu X., Bourland J.D., Yuan Y., et al. Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment. Physics in Medicine and Biology.2009, 54(17):N393-N401
    [11]Mestrovic A., Milette M.P., Nichol A., et al. Direct aperture optimization for online adaptive radiation therapy. Medical Physics.2007,34(5):1631-1646
    [12]Zerda A., Armbruster B., and Xing L. Formulating adaptive radiation therapy (ART) treatment planning into a closed-loop control framework. Physics in Medicine and Biology.2007,52(14):4137-4153
    [13]Hatano K., Araki H., Sakai M., et al. Current status of intensity-modulated radiation therapy (IMRT). International Journal of Clinical Oncology.2007,12(6): 408-415
    [14]Ehrgott M., Guler, Hamacher H.W., et al. Mathematical optimization in intensity modulated radiation therapy.4OR:A Quarterly Journal of Operations Research. 2008,6(3):199-262
    [15]闵志方,宋恩民,金人超等.用于脂肪肝量化分级的B超图像特征提取.计算机辅助设计与图形学学报.2009,21(6):752-757
    [16]Roland T., Mavroidis P., Gutierrez A., et al. A radiobiological analysis of the effect of 3D versus 4D image-based planning in lung cancer radiotherapy. Physics in Medicine and Biology.2009,54(18):5509-5523
    [17]刘均.基于图像融合技术的放疗靶区定义研究.硕士学位论文.2005
    [18]Tacke M., Nill S., and Oelfke U. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer. Physics in Medicine and Biology.2007,52(22):505-512
    [19]Lee L., Ma Y., Ye Y, et al. Conceptual formulation on four-dimensional inverse planning for intensity modulated radiation therapy. Physics in Medicine and Biology.2009,54(13):N255-N266
    [20]Ma Y, Lee L., Keshet O., et al. Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields. Medical Physics.2009, 36(6):2215-2221
    [21]Suh Y, Sawant A., Venkat R., et al. Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm. Physics in Medicine and Biology.2009, 54(12):3821-3835
    [22]George R., Suh Y, Murphy M., et al. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Medical Physics.2008,35(6):2356-2365
    [23]Xu J., Papanikolaou N., Shi C., et al. Synchronized moving aperture radiation therapy (SMART):superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions. Physics in Medicine and Biology.2009,54(16): 4993-5007
    [24]Zhang G., Jiang Z., Shepard D., et al. Direct aperture optimization of breast IMRT and dosimetric impact of respiration motion. Physics in Medicine and Biology. 2006,51(20):N357-N369
    [25]Vrancic C., Trofimov A., Chan T.C.Y., et al. Experimental evaluation of a robust optimization method for IMRT of moving targets. Physics in Medicine and Biology.2009,54(9):2901-2914
    [26]Lian J., and Xing L. Incorporating model parameter uncertainty into inverse treatment planning. Medical Physics.2004,31(9):2711-2720
    [27]Chu M., Zinchenko Y., Henderson S.G., et al. Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Physics in Medicine and Biology.2005,50(23):5463-5478
    [28]olafsson A., and Wright S.J. Efficient schemes for robust IMRT treatment planning. Physics in Medicine and Biology.2006,51(21):5621-5642
    [29]Chan T.C.Y., Bortfeld T., and Tsitsiklis J.N. A robust approach to IMRT optimization. Physics in Medicine and Biology.2006,51(10):2567-2584
    [30]McMahon R., Berbeco R., Nishioka S., et al. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view. Medical Physics.2008,35(9):3875-3888
    [31]金浩宇.三维适形放射治疗剂量计算模型研究.硕士学位论文.2004
    [32]Yeo I.J., Jung J.W., Chew M., et al. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image. Physics in Medicine and Biology.2009,54(17):5223-5236
    [33]Martin B.C., Bortfeld T.R., and Castanon D.A. Accelerating IMRT optimization by voxel sampling. Physics in Medicine and Biology.2007,52(24):7211-7228
    [34]Suss P., and Kufer K.H. Balancing control and simplicity: A variable aggregation method in intensity modulated radiation therapy planning. Linear Algebra and Its Applications.2008,428(5-6):1388-1405
    [35]Lu R., Radke R.J., Yang J., et al. Reduced-order constrained optimization in IMRT planning. Physics in Medicine and Biology.2008,53(23):6749-6766
    [36]Scherrer A., and Kufer K.H. Accelerated IMRT plan optimization using the adaptive clustering method. Linear Algebra and Its Applications.2008,428(5-6): 1250-1271
    [37]Chen G.P., Ahunbay E., Schultz C., et al. Development of an inverse optimization package to plan nonuniform dose distributions based on spatially inhomogeneous radiosensitivity extracted from biological images. Medical Physics.2007,34(4): 1198-1205
    [38]Semenenko V.A., Reitz B., Day E., et al. Evaluation of a commercial biologically based IMRT treatment planning system. Medical Physics.2008,35(12):5851-5860
    [39]Ferreira B.C., Mavroidis P., Adamus-Gorka M., et al. The impact of different dose-response parameters on biologically optimized IMRT in breast cancer. Physics in Medicine and Biology.2008,53(10):2733-2752
    [40]司嵘嵘.调强放疗的逆向计划研究.博士学位论文.2005
    [41]王文华.三维放射治疗计划系统的研究与实现.硕士学位论文.2005
    [42]Alber M., and Belka C. A normal tissue dose response model of dynamic repair processes. Physics in Medicine and Biology.2006,51(1):153-172
    [43]黄禹.适形调强放射治疗系统若干关键技术的研究.博士学位论文.2004
    [44]Yu C.X., Amies C.J., and Svatos M. Planning and delivery of intensity-modulated radiation therapy. Medical Physics.2008,35(12):5233-5241
    [45]Mattia M., Del Giudice P., and Caccia B. IMRT optimization:Variability of solutions and its radiobiological impact. Medical Physics.2004,31(5):1052-1060
    [46]Mellado X., Cruz S., Artacho J.M., et al. Reducing the number of segments in unidirectional MLC segmentations. Physics in Medicine and Biology.2010,55(3): N75-N85
    [47]Crooks S.M., McAven L.F., Robinson D.F., et al. Minimizing delivery time and monitor units in static IMRT by leaf-sequencing. Physics in Medicine and Biology. 2002,47(17):3105-3116
    [48]Ramos L.I., Monge R.M., Aristu J.J., et al. An independent algorithm to check the monitor units calculation in radiosurgery. Medical Physics.2008,35(1):48-51
    [49]Artacho J.M., Mellado X., Tobias G, et al. A novel unidirectional intensity map segmentation method for step-and-shoot IMRT delivery with segment shape control. Physics in Medicine and Biology.2009,54(3):569-589
    [50]Siochi R.A.C. Modifications to the IMFAST leaf sequencing optimization algorithm. Medical Physics.2004,31(12):3267-3278
    [51]Censor Y. Mathematical optimization for the inverse problem of intensity modulated radiation therapy. Intensity-Modulated Radiation Therapy:The State of The Art. American Association of Physicists in Medicine, Medical Physics Monograph, No.29.2003:25-49
    [52]Kufer K.H., Scherrer A., Monz M., et al. Intensity-modulated radiotherapy-A large scale multi-criteria programming problem. OR Spectrum.2003,25(2):223-249
    [53]Lim J., Ferris M.C., Wright S.J., et al. An optimization framework for conformal radiation treatment planning. INFORMS Journal on Computing.2007,19(3): 366-380
    [54]Wilkens J.J., Alaly J.R., Zakarian K., et al. IMRT treatment planning based on prioritizing prescription goals. Physics in Medicine and Biology.2007,52(6): 1675-1692
    [55]Xia P., and Verhey L.J. Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Medical Physics.1998,25(8): 1424-1434
    [56]Que W. Comparison of algorithms for multileaf collimator field segmentation. Medical Physics.1999,26(11):2390-2396
    [57]Langer M., and Papiez L. Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimators. Medical Physics.2001, 28(12):2450-2458
    [58]Bednarz G., Michalski D., Houser C., et al. The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Physics in Medicine and Biology.2002,47(13):2235-2245
    [59]Kamath S., Sahni S., Li J., et al. Leaf sequencing algorithms for segmented multileaf collimation. Physics in Medicine and Biology.2003,48(3):307-324
    [60]Chen Y., Hou Q., and Galvin J.M. A graph-searching method for MLC leaf sequencing under constraints. Medical Physics.2004,31(6):1504-1511
    [61]Baatar D., Hamacher H.W., Ehrgott M., et al. Decomposition of integer matrices and multileaf collimator sequencing. Discrete Applied Mathematics.2005, 152(1-3):6-34
    [62]Bedford J.L., and Webb S. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy. Physics in Medicine and Biology.2007,52(2):479-498
    [63]Shepard D.M., Earl M.A., Li X.A., et al. Direct aperture optimization:A turnkey solution for step-and-shoot IMRT. Medical Physics.2002,29(6):1007-1018
    [64]Meerleer* G.D., Vakaet* L., Gersem W.D., et al. Direct segment aperture and weight optimization for intensity-modulated radiotherapy of prostate cancer. Strahlentherapie und Onkologie.2004,180(3):136-143
    [65]Jiang Z., Earl M.A., Zhang G.W., et al. An examination of the number of required apertures for step-and-shoot IMRT. Physics in Medicine and Biology.2005,50(23): 5653-5663
    [66]Men C., Romeijn H.E., Caner Taskin Z., et al. An exact approach to direct aperture optimization in IMRT treatment planning. Physics in Medicine and Biology.2007, 52(24):7333-7352
    [67]Xiao Y, Michalski D., Galvin J.M., et al. The least-intensity feasible solution for aperture-based inverse planning in radiation therapy. Annals of Operations Research.2003,119(1):183-203
    [68]Preciado-Walters F., Rardin R., Langer M., et al. A coupled column generation, mixed integer approach to optimal planning of intensity modulated radiation therapy for cancer. Mathematical Programming.2004,101(2):319-338
    [69]Webb S. Direct aperture optimization for a variable aperture collimator for intensity-modulated radiation therapy. Physics in Medicine and Biology.2004, 49(5):N47-N55
    [70]Engel K., and Gauer T. A dose optimization method for electron radiotherapy using randomized aperture beams. Physics in Medicine and Biology.2009,54(17): 5253-5270
    [71]Yang Y, and Xing L. Clinical knowledge-based inverse treatment planning. Physics in Medicine and Biology.2004,49(22):5101-5117
    [72]van Luijk P., and Schippers J.M. We need to bridge the gap between current practice in mathematical modeling and new insights obtained from radiobiology: Comment on Zhou et al.[Med. Phys.34,2807-2815 (2007)]. Medical Physics. 2008,35(6):2558-2559
    [73]Mavroidis P., Komisopoulos G, Lind B.K., et al. Interpretation of the dosimetric results of three uniformity regularization methods in terms of expected treatment outcome. Medical Physics.2008,35(11):5009-5018
    [74]Mohan R., Mageras G.S., Baldwin B., et al. Clinically relevant optimization of 3-D conformal treatments. Medical Physics.1992,19(4):933-944
    [75]Kupchak C., Battista J., and Van Dyk J. Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Medical Physics.2008,35(1):333-343
    [76]鞠永健,张良安,戴光复等.肿瘤控制概率模型研究外照射分次剂量与治疗的关系.中华放射医学与防护杂志.2002,22(5):368-371
    [77]Gay H.A., and Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica.2007,23(3-4):115-125
    [78]Zhou S.M., Das S.K., Wang Z., et al. Self-consistent tumor control probability and normal tissue complication probability models based on generalized EUD. Medical Physics.2007,34(7):2807-2814
    [79]Qi X.S., Semenenko V.A., and Li X.A. Improved critical structure sparing with biologically based IMRT optimization. Medical Physics.2009,36(5):1790-1799
    [80]李兵,罗立民,於文雪等.放射治疗NTCP和TCP生物学模型进展.东南大学学报(医学版).2008,27(5):382-387
    [81]Jones L.C., and Hoban P.W. Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Physics in Medicine and Biology.2000, 45(1):159-170
    [82]Stavrev P., Hristov D., Warkentin B., et al. Inverse treatment planning by physically constrained minimization of a biological objective function. Medical Physics.2003,30(11):2948-2958
    [83]杨瑞杰,戴建荣,胡逸民.放疗的生物学评估和优化.中华放射肿瘤学杂志.2006,15(3):172-175
    [84]Jones L., and Hoban P. A comparison of physically and radiobiologically based optimization for IMRT. Medical Physics.2002,29(7):1447-1455
    [85]Thieke C., Bortfeld T., Niemierko A., et al. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Medical Physics.2003,30(9):2332-2339
    [86]Censor Y., Bortfeld T., Martin B., et al. A unified approach for inversion problems in intensity-modulated radiation therapy. Physics in Medicine and Biology.2006, 51(10):2353-2366
    [87]Hoffmann A.L., den Hertog D., Siem A.Y., et al. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects. Physics in Medicine and Biology. 2008,53(22):6345-6362
    [88]Zinchenko Y., Craig T., Keller H., et al. Controlling the dose distribution with gEUD-type constraints within the convex radiotherapy optimization framework. Physics in Medicine and Biology.2008,53(12):3231-3250
    [89]Kratt K., and Scherrer A. The integration of DVH-based planning aspects into a convex intensity modulated radiation therapy optimization framework. Physics in Medicine and Biology.2009,54(12):N239-N246
    [90]Lee E.K., Fox T., and Crocker I. Integer programming applied to intensity-modulated radiation therapy treatment planning. Annals of Operations Research.2003,119(1):165-181
    [91]Hoffmann A.L., Siem A.Y.D., Hertog D., et al. Derivative-free generation and interpolation of convex Pareto optimal IMRT plans. Physics in Medicine and Biology.2006,51(24):6349-6370
    [92]Breedveld S., Storchi P.R.M., Keijzer M., et al. A novel approach to multi-criteria inverse planning for IMRT. Physics in Medicine and Biology.2007,52(20): 6339-6353
    [93]Jee K., McShan D.L., and Fraass B.A. Lexicographic ordering:intuitive multicriteria optimization for IMRT. Physics in Medicine and Biology.2007,52(7): 1845
    [94]Serna J.I., Monz M., Kufer K.H., et al. Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning. Physics in Medicine and Biology. 2009,54(20):6299-6311
    [95]Spalke T., Craft D., and Bortfeld T. Analyzing the main trade-offs in multiobjective radiation therapy treatment planning databases. Physics in Medicine and Biology. 2009,54(12):3741-3754
    [96]Halabi T., Craft D., and Bortfeld T. Dose-volume objectives in multi-criteria optimization. Physics in Medicine and Biology.2006,51(15):3809-3818
    [97]Chow J.C.L., Markel D., and Jiang R. Technical note:dose-volume histogram analysis in radiotherapy using the Gaussian error function. Medical Physics.2008, 35(4):1398-1402
    [98]Wu Q., Djajaputra D., Liu H.H., et al. Dose sculpting with generalized equivalent uniform dose. Medical Physics.2005,32(5):1387-1396
    [99]Xia P., Yu N., Xing L., et al. Investigation of using a power function as a cost function in inverse planning optimization. Medical Physics.2005,32(4):920-927
    [100]Seco J., Evans P.M., and Webb S. An optimization algorithm that incorporates IMRT delivery constraints. Physics in Medicine and Biology.2002,47(6):899-915
    [101]李永杰.调强放射治疗中的优化技术研究.博士学位论文.2004
    [102]Gunawardena A.D.A., D'Souza W.D., Goadrich L.D., et al. A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery. Physics in Medicine and Biology.2006,51(10):2517-2536
    [103]Romeijn H.E., Ahuja R.K., Dempsey J.F., et al. A Column Generation Approach to Radiation Therapy Treatment Planning Using Aperture Modulation. SIAM Journal on Optimization.2005,15(3):838-862
    [104]Preciado-Walters F., Langer M.P., Rardin R.L., et al. Column generation for IMRT cancer therapy optimization with implementable segments. Annals of Operations Research.2006,148(1):65-79
    [105]唐木涛.遗传算法优化调强放射治疗计划射野参数研究.硕士学位论文.2006
    [106]Webb S. Optimisation of conformal radiotherapy dose distribution by simulated annealing. Physics in Medicine and Biology.1989,34(10):1349-1370
    [107]Hartmann M., and Bogner L. Investigation of intensity-modulated radiotherapy optimization with gEUD-based objectives by means of simulated annealing. Medical Physics.2008,35(5):2041-2049
    [108]Hamacher H.W., and Ehrgott M. Special section:Using discrete mathematics to model multileaf collimators in radiation therapy. Discrete Applied Mathematics. 2005,152(1-3):4-5
    [109]Bortfeld T. IMRT:a review and preview. Physics in Medicine and Biology.2006, 51(13):363-379
    [110]Ehrgott M., Hamacher H.W., and NuBbaum M. Decomposition of matrices and static multileaf collimators:a survey. Optimization in Medicine.2007:27-48
    [111]Gunawardena A., and Meyer R.R. Discrete approximations to real-valued leaf sequencing problems in radiation therapy. Discrete Applied Mathematics.2008, 156(17):3178-3186
    [112]Hissoiny S., Ozell B., and Despres P. Fast convolution-superposition dose calculation on graphics hardware. Medical Physics.2009,36(6):1998-2005
    [113]Gu X., Choi D., Men C., et al. GPU-based ultra-fast dose calculation using a finite size pencil beam model. Physics in Medicine and Biology.2009,54(20): 6287-6297
    [114]Ahnesj A., Saxner M., and Trepp A. A pencil beam model for photon dose calculation. Medical Physics.1992,19(2):263-273
    [115]Gordon J.J., and Siebers J.V. Evaluation of dosimetric margins in prostate IMRT treatment plans. Medical Physics.2008,35(2):569-575
    [116]Schreibmann E., Lahanas M., Xing L., et al. Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy. Physics in Medicine and Biology.2004, 49(5):747-770
    [117]Yang R., Dai J., Yang Y., et al. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming. Physics in Medicine and Biology.2006,51(15):3653-3666
    [118]王彬冰.放射治疗中角度最优化问题的研究.硕士学位论文.2006
    [119]Craft D. Local beam angle optimization with linear programming and gradient search. Physics in Medicine and Biology.2007,52(7):N127-N135
    [120]Ehrgott M., Holder A., and Reese J. Beam selection in radiotherapy design. Linear Algebra and Its Applications.2008,428(5-6):1272-1312
    [121]Potrebko P.S., McCurdy B.M.C., Butler J.B.,et al.Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm. Medical Physics.2008,35(5):2170-2179
    [122]Lei J., and Li Y. An approaching genetic algorithm for automatic beam angle selection in IMRT planning. Computer methods and programs in biomedicine. 2009,93(3):257-265
    [123]Anderson J.W., Symonds-Tayler R., and Webb S. Investigating the fundamentals of IMRT decomposition using ten simple collimator models. Physics in Medicine and Biology.2006,51(9):2225-2236
    [124]Cui W., and Dai J. Optimizing leaf widths for a multileaf collimator. Physics in Medicine and Biology.2009,54(10):3051-3062
    [125]Dai J.R., and Hu Y.M. Intensity-modulation radiotherapy using independent collimators:an algorithm study. Medical Physics.1999,26(12):2562-2570
    [126]Engel K. Optimal matrix-segmentation by rectangles. Discrete Applied Mathematics.2009,157(9):2015-2030
    [127]Kim Y, Verhey L.J., and Xia P. A feasibility study of using conventional jaws to deliver IMRT plans in the treatment of prostate cancer. Physics in Medicine and Biology.2007,52(8):2147-2156
    [128]Mu G., and Xia P. A feasibility study of using conventional jaws to deliver complex IMRT plans for head and neck cancer. Physics in Medicine and Biology.2009, 54(18):5613-5623
    [129]Zhang Y, Hu Y, Ma L., et al. Dynamic delivery of IMRT using an independent collimator:a model study. Physics in Medicine and Biology.2009,54(8): 2527-2539
    [130]Earl M.A., Afghan M.K.N., Yu C.X., et al. Jaws-only IMRT using direct aperture optimization. Medical Physics.2007,34(1):307-314
    [131]Ma L., Boyer A.L., Xing L., et al. An optimized leaf-setting algorithm for beam intensity modulation using dynamic multileaf collimators. Physics in Medicine and Biology.1998,43(6):1629-1643
    [132]Rangaraj D., Palaniswaamy G, and Papiez L. DMLC IMRT delivery to targets moving in 2D in beam's eye view. Medical Physics.2008,35(8):3765-3778
    [133]王卓宇.SCG算法优化调强放射治疗计划子野权重研究.硕士学位论文.2006
    [134]Shepard D.M., Olivera G.H., Reckwerdt P.J., et al. Iterative approaches to does optimization in tomotherapy. Physics in Medicine and Biology.2000,45(1):69-90
    [135]Herman G.T., and Chen W. A fast algorithm for solving a linear feasibility problem with application to intensity-modulated radiation therapy. Linear Algebra and Its Applications.2008,428(5-6):1207-1217
    [136]Zhang H.H., Meyer R.R., Wu J., et al. A two-stage sequential linear programming approach to IMRT dose optimization. Physics in Medicine and Biology.2010, 55(3):883-902
    [137]Censor Y, Ben-Israel A., Xiao Y., et al. On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra and Its Applications.2008,428(5-6):1406-1420
    [138]Holder A. Designing radiotherapy plans with elastic constraints and interior point methods. Health Care Management Science.2003,6(1):5-16
    [139]Romeijn H.E., Ahuja R.K., Dempsey J.F., et al. A novel linear programming approach to fluence map optimization for IMRT. Physics in Medicine and Biology. 2003,48(21):3521-3542
    [140]Romeijn H.E., Ahuja R.K., Dempsey J.F., et al. A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems. Operations Research.2006,54(2):201-216
    [141]Clark V.H., Chen Y, Wilkens J., et al. IMRT treatment planning for prostate cancer using prioritized prescription optimization and mean-tail-dose functions. Linear Algebra and Its Applications.2008,428(5-6):1345-1364
    [142]Wu Q., and Mohan R. Algorithms and functionality of an intensity modulated radiotherapy optimization system. Medical Physics.2000,27(4):701-711
    [143]Terrer J.M.A., Benede M.A.N., del Rio E.B., et al. A Feasible Application of Constrained Optimization in the IMRT System. IEEE Transactions on Biomedical Engineering.2007,54(3):370-379
    [144]Zhang Y, and Merritt M. Dose-volume-based IMRT fluence optimization:A fast least-squares approach with differentiability. Linear Algebra and Its Applications. 2008,428(5-6):1365-1387
    [145]Cho P.S., Lee S., Marks Ii R.J., et al. Optimization of intensity modulated beams with volume constraints using two methods:Cost function minimization and projections onto convex sets. Medical Physics.1998,25(4):435-443
    [146]Starkschall G, Pollack A., and Stevens C.W. Treatment planning using a dose-volume feasibility search algorithm. International Journal of Radiation Oncology* Biology* Physics.2001,49(5):1419-1427
    [147]Dai J., and Zhu Y. Conversion of dose-volume constraints to dose limits. Physics in Medicine and Biology.2003,48(23):3927-3941
    [148]Lu R., Radke R.J., Happersett L., et al. Reduced-order parameter optimization for simplifying prostate IMRT planning. Physics in Medicine and Biology.2007,52(3): 849-870
    [149]Krause M., Scherrer A., and Thieke C. On the role of modeling parameters in IMRT plan optimization. Physics in Medicine and Biology.2008,53(18): 4907-4926
    [150]Bednarz G, Michalski D., Anne P.R., et al. Inverse treatment planning with volume-based objective functions. Physics in Medicine and Biology.2004,49(12): 2503-2514
    [151]Craft D., and Bortfeld T. How many plans are needed in an IMRT multi-objective plan database? Physics in Medicine and Biology.2008,53(11):2785-2796
    [152]Lahanas M., Schreibmann E., and Baltas D. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Physics in Medicine and Biology.2003,48(17):2843-2871
    [153]朱琳,周凌宏,王卓宇.调强放疗优化中目标函数的研究进展.国际生物医学工程杂志.2007,30(4):227-230
    [154]Leung L.H.T., Kan M.W.K., Cheng A.C.K., et al. A new dose-volume-based Plan Quality Index for IMRT plan comparison. Radiotherapy and oncology.2007,85(3): 407-417
    [155]Nguyen T.B., Hoole A.C.F., Burnet N.G, et al. Dose-volume population histogram a new tool for evaluating plans whilst considering geometrical uncertainties. Physics in Medicine and Biology.2009,54(4):935-947
    [156]Wu C., Jeraj R., and Mackie T.R. The method of intercepts in parameter space for the analysis of local minima caused by dose-volume constraints. Physics in Medicine and Biology.2003,48(11):N149-N157
    [157]Deasy J.O. Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Medical Physics.1997,24(7):1157-1161
    [158]Wu Q., and Mohan R. Multiple local minima in IMRT optimization based on dose-volume criteria. Medical Physics.2002,29(7):1514-1527
    [159]Spirou S.V., and Chui C.S. A gradient inverse planning algorithm with dose-volume constraints. Medical Physics.1998,25(3):321-333
    [160]Morrill S.M., Lane R.G., Wong J.A., et al. Dose-volume considerations with linear programming optimization. Medical Physics.1991,18(6):1201-1210
    [161]Yang Y., and Xing L. Inverse treatment planning with adaptively evolving voxel-dependent penalty scheme. Medical Physics.2004,31(10):2839-2844
    [162]Cotrutz C., and Xing L. Using voxel-dependent importance factors for interactive DVH-based dose optimization. Physics in Medicine and Biology.2002,47(10): 1659-1669
    [163]Michalski D., Xiao Y., Censor Y., et al. The dose-volume constraint satisfaction problem for inverse treatment planning with field segments. Physics in Medicine and Biology.2004,49(4):601-616
    [164]Niemierko A. Reporting and analyzing dose distributions:a concept of equivalent uniform dose. Medical Physics.1997,24(1):103-110
    [165]Zhou S.M., Das S., Wang Z., et al. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model. Medical Physics.2004,31(9):2606-2609
    [166]李夏东,狄小云,王诚等.等效均匀剂量的数理基础及在调强放疗应用价值的研究.中华放射肿瘤学杂志.2007,16(5):390-394
    [167]Choi B., and Deasy J.O. The generalized equivalent dose function as a basis for intensity-modulated treatment planning. Physics in Medicine and Biology.2002, 47(20):3579-3589
    [168]Djajaputra D., and Wu Q. On relating the generalized equivalent uniform dose formalism to the linear-quadratic model. Medical Physics.2006,33(12): 4481-4489
    [169]朱琳,周凌宏,王卓宇.基于等效均匀剂量的目标函数在调强放疗计划优化中的应用.中华放射肿瘤学杂志.2007,16(5):386-389
    [170]Wu Q., Mohan R., Niemierko A., et al. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology* Biology* Physics.2002,52(1):224
    [171]Wu Q., Djajaputra D., Wu Y., et al. Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives. Physics in Medicine and Biology. 2003,48(3):279-291
    [172]Warkentin B.J., Stavrev P., Stavreva N., et al. A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. Journal of Applied Clinical Medical Physics.2004,5(1):50-63
    [173]Schinkel C., Stavrev P., Stavreva N., et al. A theoretical approach to the problem of dose-volume constraint estimation and their impact on the dose-volume histogram selection. Medical Physics.2006,33(9):3444-3459
    [174]Thieke C., Bortfeld T., and Kufer K.H. Characterization of dose distributions through the max and mean dose concept. Acta Oncologica.2002,41(2):158-161
    [175]Deasy J.O., Blanco A.I., and Clark V.H. CERR:A computational environment for radiotherapy research. Medical Physics.2003,30(5):979-985
    [176]Kalinowski T., Lim G.J., and Lee E.K. Multileaf collimator shape matrix decomposition. Optimization in Medicine and Biology, Auerbach Publications, Taylor & Francis Group, New York.2008:249-282
    [177]Coselmon M.M., Moran J.M., Radawski J.D., et al. Improving IMRT delivery efficiency using intensity limits during inverse planning. Medical Physics.2005, 32(5):1234-1245
    [178]Mohan R., Arnfield M., Tong S., et al. The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy. Medical Physics.2000,27(6):1226-1237
    [179]Breedveld S., Storchi P.R.M., Keijzer M., et al. Fast, multiple optimizations of quadratic dose objective functions in IMRT. Physics in Medicine and Biology. 2006,51(14):3569-3579
    [180]Carlsson F., and Forsgren A. Iterative regularization in intensity-modulated radiation therapy optimization. Medical Physics.2006,33(1):225-234
    [181]Suss P., Kufer K.H., and Thieke C. Improved stratification algorithms for step-and-shoot MLC delivery in intensity-modulated radiation therapy. Physics in Medicine and Biology.2007,52(19):6039-6052
    [182]Spirou S.V., Fournier-Bidoz N., Yang J., et al. Smoothing intensity-modulated beam profiles to improve the efficiency of delivery. Medical Physics.2001,28(10): 2105-2112
    [183]Matuszak M.M., Larsen E.W., Jee K.W., et al. Adaptive diffusion smoothing:A diffusion-based method to reduce IMRT field complexity. Medical Physics.2008, 35(4):1532-1546
    [184]Alber M. Intensity modulated photon beams subject to a minimal surface smoothing constraint. Physics in Medicine and Biology.2000,45(5):N49-N52
    [185]Matuszak M.M., Larsen E.W., and Fraass B.A. Reduction of IMRT beam complexity through the use of beam modulation penalties in the objective function. Medical Physics.2007,34(2):507-520
    [186]Zhu L., Lee L., Ma Y., et al. Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments. Physics in Medicine and Biology.2008,53(23):6653-6672
    [187]Zhu L., and Xing L. Search for IMRT inverse plans with piecewise constant fluence maps using compressed sensing techniques. Medical Physics.2009,36(5): 1895-1905
    [188]Chvetsov A.V. L-curve analysis of radiotherapy optimization problems. Medical Physics.2005,32(8):2598
    [189]Chvetsov A.V., Dempsey J.F., and Palta J.R. Optimization of equivalent uniform dose using the L-curve criterion. Physics in Medicine and Biology.2007,52(19): 5973-5984
    [190]Jin R., Min Z., Song E., et al. A novel fluence map optimization model incorporating leaf sequencing constraints. Physics in Medicine and Biology.2010, 55(4):1243-1264
    [191]Ma L. Smoothing intensity-modulated treatment delivery under hardware constraints. Medical Physics.2002,29(12):2937-2945
    [192]Webb S., Bortfeld T., Stein J., et al. The effect of stair-step leaf transmission on the 'tongue-and-groove problem' in dynamic radiotherapy with a multileaf collimator. Physics in Medicine and Biology.1997,42(3):595-602
    [193]Van Santvoort J.P.C., and Heijmen B.J.M. Dynamic multileaf collimation withouttongue-and-groove underdosage effects. Physics in Medicine and Biology. 1996,41:2091-2106
    [194]Rangaraj D., and Papiez L. Synchronized delivery of DMLC intensity modulated radiation therapy for stationary and moving targets. Medical Physics.2005,32(6): 1802-1817
    [195]Bortfeld T.R., Kahler D.L., Waldron T.J., et al. X-ray Field Compensation with Multileaf Collimators. International Journal of Radiation Oncology* Biology* Physics.1994,28(3):723-730
    [196]Siochi R.A.C. Optimized removal of the tongue-and-groove underdose via constrained partial synchronization and variable depth recursion. Physics in Medicine and Biology.2009,54(5):1369-1381
    [197]Siebers J.V., Lauterbach M., Keall P.J., et al. Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization. Medical Physics.2002,29(6): 952-959
    [198]Sun X., and Xia P. A new smoothing procedure to reduce delivery segments for static MLC-based IMRT planning. Medical Physics.2004,31(5):1158-1165
    [199]Bedford J.L., and Webb S. Constrained segment shapes in direct-aperture optimization for step-and-shoot IMRT. Medical Physics.2006,33(4):944-958
    [200]van Asselen B., Schwarz M., van Vliet-Vroegindeweij C., et al. Intensity-modulated radiotherapy of breast cancer using direct aperture optimization. Radiotherapy and oncology.2006,79(2):162-169
    [201]Ludlum E., and Xia P. Comparison of IMRT planning with two-step and one-step optimization: a way to simplify IMRT. Physics in Medicine and Biology.2008, 53(3):807-821
    [202]Engel K. A new algorithm for optimal multileaf collimator field segmentation. Discrete Applied Mathematics.2005,152(1-3):35-51
    [203]Kalinowski T. Realization of intensity modulated radiation fields using multileaf collimators. Electronic Notes in Discrete Mathematics.2006,21:319-320
    [204]Kalinowski T. The complexity of minimizing the number of shape matrices subject to minimal beam-on time in multileaf collimator field decomposition with bounded fluence. Discrete Applied Mathematics.2009,157(9):2089-2104
    [205]闵志方,宋恩民,金人超等.一种用于逆向计划设计的整合优化方法.华中科技大学学报(自然科学版).2010,38(1):5-8
    [206]Kalinowski T. A duality based algorithm for multileaf collimator field segmentation with interleaf collision constraint. Discrete Applied Mathematics. 2005,152(1-3):52-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700