基于货车大型化的驼峰设计与作业控制理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入新世纪以来,随着我国市场经济的蓬勃发展,货物运输需求呈现出多元化。受其影响,我国铁路货物运输逐渐向重载化、直达化、集中化等方向发展,与之相适应,铁路货车也向大型化、专门化方向发展,通用货车轴重由原来18t为主发展到21t为主,并逐渐向23t和25t轴重过渡,未来还有进一步增大的趋势。
     在铁路货物运输组织变化与货车轴重提高的背景下,我国铁路编组站驼峰逐渐表现出不适应性。由于峰高偏高,不得不降低推峰速度,导致作业效率降低、作业安全性差及能耗高等问题;驼峰调速控制不能够适应23t轴重货车应用条件下的溜放需求,造成轻载货车在不利溜放条件下溜放不到位,以及重载货车超速连挂问题。
     为此,本文在总结国内外相关研究成果的基础上,对目前23t轴重货车与既有货车混合应用条件下的驼峰调速控制以及基于货车大型化的我国铁路编组站节能型驼峰设计等问题进行了系统研究:
     (1)论文在论述我国铁路货物运输、货车技术发展趋势的基础上,分析了我国编组站驼峰的发展现状,目前存在的问题,以及未来的发展趋势。
     (2)论文对驼峰设计的复杂约束条件下的静态优化和动态适应特点,以及驼峰作业控制问题的复杂、动态、模糊控制的特点进行了深入阐述,系统地分析了驼峰设计与作业控制中的设计理念、车辆、车组、作业控制系统、平纵断面、气候条件及误差等影响因素,全面研究了这些因素的相互关系。
     (3)论文在深入分析既有驼峰出口速度控制模型的基础上,研究了既有驼峰高度下,驼峰车组溜放的调速控制问题。分别建立了既有驼峰高度下,基于货车大型化的间隔制动出口动态速度控制模型和基于模糊神经网络的目的制动出口速度控制模型。解决了目前我国铁路编组站存在轻载货车在不利溜放条件下溜放不到位及重载23t轴重货车车场超速连挂的实际问题。
     (4)论文在提出驼峰节能化设计理念的基础上,研究了驼峰设计中的“三难条件”(“难行线”、“难行气候”、“难行车”),分析了“三难条件”中各因素对驼峰设计的影响,指出既有驼峰设计规范中“难行车”选取标准的不合理性,研究了“基于三难条件出现概率”的“难行车”质量确定方法,并对驼峰设计中“难行车”质量提出了推荐值。
     (5)论文将计算机仿真理论应用到驼峰设计与作业模拟中,建立了驼峰作业仿真模型,并研制了计算机仿真系统软件。
     论文以某36条调车线驼峰为案例,进行了节能型驼峰峰高及纵断面改造设计,分析了驼峰作业过程各个环节的能量转换关系,建立了推峰能耗计算模型、制动能耗计算模型及改造经济效益计算模型,论述了节能型驼峰的节能效果及经济效益,以及驼峰改造的必要性、改造时机和改造技术路线等问题,通过仿真验证了本文的研究结论。
With the vigorous development of China's market economy in the new century, the demand of freight transportation shows a characteristic of diversity. Affected by them, our country's railway freight transportation is developing in directions to heavy haul, direct, centralized, freight and passenger transportation separated. Corresponding to this, the freight car is developed to larger size and specialized. The axle load of common freight car increased from 18t based to 21t based, and is transiting to 23t and 25t gradually. There is still a further development in the future.
     Under the background of railway freight transportation changing and freight car axle load increasing, the marshalling at the hump yard in our country shows some problems of adaptability. As the hump is high, the humping speed has to be reduced, which causes problems of lower operational efficiency, poor safety and high energy consumption, hump speed control cannot adapt to the humping demand under the application conditions of 23t axle load cars which causes problems like light load cars can't run in place under adverse conditions and heavy 23t axle load cars are over speed coupled in yard.
     In view of this, based on relevant research results, the paper systematically studies on the humping speed control in the mixed application conditions of present 23t axle load cars and conventional cars, and the design of larger size freight car based energy-saving hump of marshalling station in our country:
     (1) Based on discussing the trend of China's freight transportation and freight car technology, the paper analyzes the current developments of hump of marshalling station, problems and trend in the future.
     (2) The paper describes the characteristics of static optimization and dynamic adaptation for the hump design under complex constraints, and the complexity, dynamic and fuzzy control of hump operating control problem in-depth, the hump design and design idea in operational control, and factors of cars, car unit, operating control system, plane vertical section, climatic conditions and error are analyzed systematically in the paper, and their interrelation is studied comprehensively.
     (3) Based on a deep analysis of model for speed determination of existing hump exit, the paper studies the humping speed control problem under the existing hump height. A dynamic interval speed-control model for dynamic speed determination and a target speed-control model based on fuzzy neural networks are established respectively under the existing hump height. The problems of that light load cars is not in place under adverse conditions and heavy 23t axle load cars are over speed coupled in yard in China's current marshalling station are solved.
     (4) Based on the design idea of energy-saving hump, the paper studies "three difficult conditions" ("difficult lines", "difficult climate" and "hard rolling cars") in the design of hump, the influence of factors in "three difficult conditions" on design of hump is analyzed, and the irrationality of the choice of "hard rolling cars" in the existing design criterion of hump is pointed out. A quality determination method of "hard rolling cars" based on "probability of three difficult conditions" is proposed, and a quality value of "hard rolling cars" in hump design is recommended.
     (5) The computer simulation theory is applied to simulation of hump operating, a simulation model of hump operating is established, and computer simulation software is developed in the paper.
     The paper takes a hump with 36 shunting lines as an example to design the height of energy-saving hump and longitudinal reconstruction, the energy conversion during the process of hump operating is analyzed, a humping energy consumption calculation model, a braking energy consumption calculation model and a transformation fees consumption calculation model are established, and the energy saving effect and cost-effectiveness of energy-saving hump, also the necessity, time and technical route for hump reconstruction are discussed, the conclusions of this paper are tested by simulation.
引文
[1]Edwin Mansfield, Harold Wein. A Model for the Location of a Rail road Classification Yard. Managemen Sci.1958, (4).292-313.
    [2]Assad A. Models for Rail Transportation.Trans.Res.1980, (14A).205-220.
    [3]Qian Lixin. The Great Development of Chinese Railways in 21st Century. Proceedings of 7th International Heavy Haul Conference. Brisbane, Australia:IHHA,2001,21-23.
    [4]Feindrich, Lothar. UIC/ERRI experience in measuring and assessing track fatigue as a consequence of increasing axle loads, papers on HAL workshop,1990.
    [5]Elias Dahlhausa, Peter Horakb, Mirka Miller, Joseph F. Ryan. The train marshalling problem, Discrete Applied Mathematics.103 (1-3).41-54
    [6]Zemp, S., et al. Classifying railway stations for strategic transport and land use planning: Context matters!. Transp. Geogr. (2010), doi:10.1016/j.jtrangeo.2010.08.008
    [7]IHHA. Proceeding of 9th International Heavy Haul Conference. Shanghai:IHHA,2009
    [8]H. Kong.Control Algorithms for Rail retarders and Closing-up Devices in Marshalling Yard. Monthly bulletin of the International Railway Congress Association.1969.12
    [9]Tolga Bektas, Teodor Gabriel Crainic, Vincent Morency, Improving the performance of rail yards through dynamic reassignments of empty cars. Transportation Research Part C 2009. 17.259-273
    [10]Jeremiah R. Improving Railroad Classification Yard Performance Through Bottleneck Management Methods. Proceedings of the AREMA 2006 Annual Conference.2006. Louisville. KY
    [11]Synopsis, Simulation of Hump Performance in Railroad Classification Yard. Memoirs of the Faculty of Engineering. Okayama University.1993.27(2).59-71
    [12]J. Campos, Lessons from railway reforms in Brazil and Mexico, Transport Policy 2001.8.85-95
    [13]Wong, P J, Sakasita, M, Stock, W A, Elliott, C V, Hackworth, M A. Railroad Classification Yard Technology Manual. Volume I. Yard Design Methods. NTIS, SPRINGFIELD, VA,1981.272 pp
    [14]James A. W. Innovation in Classification Yard Technology:Proceedings of the Third Railroad Classification Yard Workshop. Transportation Research Board.1983. D.20418
    [15]Nahid Mohajeri a, Gholam R. Amin, Railway station site selection using analytical hierarchy process and data envelopment analysis, Computers & Industrial Engineering 2010.59.107-114
    [16]Xavier Delorme a, Xavier Gandibleux, Joaquin Rodriguez, Stability evaluation of a railway timetable at station level, European Journal of Operational Research.2009.195.780-790
    [17]David R. Martinelli and Hualiang Teng. Optimization of railway operations using neural networks. Transport.1996.4(1).33-49.
    [18]Niu huiming, Hu anzhou. Comprehensive Optimization for Operation Division of Labor of Yards at Two-way Marshaling Station. Proceedings of the Conference on Traffic and Transportation Studies, ICTTS.1998, (7).721-730.
    [19]Francois Leclerc and Jean-Yves Potvin. Genetic Algorithms for Vehicle Dispatching. Int. Trans. Opl Res,1997,4.391-400
    [20]Ding Y, Zhou F M, Bai Y, et al. A Correction Model of Loaded Train's Grade Resistance Calculation. In:Proceedings of the Fifth Advanced Forum on Transportation of China,2009. 267-271.
    [21]Ho T K, Mao B H, Yuan Z Z, etal. Computer simulation and modeling in railway application. Computer Physics communications,2002,143.1-10
    [22]Ho T K, Norton J P, Goodman C J. An event-based traffic flow model for traffic flow model for traffic control at railway junctions. ASPECT95. London, UK,1995.
    [23]L.M. Jia, and X. D. Zhang, On Fuzzy Multiobjective Optimal Control. Engng. Appli. Artif. Intell.1993,6(2).153-164
    [24]J.Wang, Research on Dynamic Fuzzy Control with Application to Train Traveling Process Control. PhD. Dissertation, Central South Univ. of Tech.1997
    [25]Wang Jing. Direct Fuzzy Neural Control with Application to Automatic Train Operation. Control Theory and Applications.1998,15(3).391-398
    [26]Zadeh LA. Fuzzy algorithm. Information and Control.1968.12.99-102.
    [27]Zadeh LA. Fuzzy sets. Information and Control,1965.8.338-353.
    [28]Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans, on Systems, Man, and Cybern.1973.3(1).28-44.
    [29]Fay A. A fuzzy knowledge-based system for railway traffic control. Engineering Applications of Artificial Intelligence.2000.13.719-729.
    [30]Xingsheng Deng, XinzhouWang, Incremental learning of dynamic fuzzy neural networks for accurate system modeling. Fuzzy SetsandSystems,2009.160.972-987
    [31]C. Quek, R.W. Zhou, Structure and learning algorithms of a nonsingleton input fuzzy neural network based on the approximate analogical reasoning schema, Fuzzy Sets and Systems 2006. 157.1814-1831
    [32]Zoran Z. Avramovic. Method for Evaluating the Strength of Retarding Steps on a Marshalling Yard Hump. European Journal Operational Research.1995.85.504-514
    [33]Bernstein, G., Petermann, R. New investigations into resistance in controlled marshalling yards of the German Federal Railway. Railway International.1983
    [34]Hans-Jrgen Meyer. The concept of marshalling technology for the automation of the Nuremberg gravity marshalling yard. Railway Technical Review. No.25,1986
    [35]Arjang A. A. Models for Rail Transportation. Trans. Res.1980.14(3).205-220
    [36]Armacost A. Modeling railroad terminal operations supporting real-time network planning and control [Dissertation]. Cambridge. Massachusetts Institute of Technology.1995
    [37]Bodin L D, Golden B L, Schuster A D. A model for the blocking of trains.Transportation Research.1980.14.115-121
    [38]Crainic T G, Ferland J A, Rausseau J M. A tactical planning model for rail freight transportation. Transportation Science.1984.18.165-184
    [39]W. Feller. introduction to probability theory and its applications. Vol.2. New York. John Wiley&Sons Inc.1971
    [40]钱立新.国际铁路重载运输发展概况.铁道运输与经济.2002.24(12).55-56
    [41]李萍,宋传云.我国铁路通用货车载重与轴重的发展.铁道车辆.2006.38(6).28-30
    [42]徐世锋,邢书明.浅议中国铁路快速货物运输的发展趋势.铁道车辆.2008.46(4).27-36
    [43]I.Korpanec等(法),梁洁翻译.欧洲增加轴重的现状及展望.国外铁道车辆.2007.44(6).1-6
    [44]耿志修.大秦铁路重载运输技术.北京.中国铁道出版社.2009
    [45]高春明,冀彬等.大秦线重载组合列车的LOCOTROL技术应用研究.电力机车与城轨车辆.2006.29(6).5-41
    [46]钱立新.世界重载铁路运输技术的最新进展.机车电传动.2010.(1).3-7
    [47]陈建德.关于货车转向架的发展探讨.铁道机车车辆.2004.24(3).7-9
    [48]郭建良.铁路货车缓冲器的发展趋势探讨.铁道车辆.2010.48(2).33-37
    [49]刘振明.25吨轴重径向转向架的动力学性能研究[学位论文].大连交通大学.2007
    [50]熊琴.装车地直达列车编组计划近似优化研究[学位论文].北京交通大学.2006
    [51]范文议.远程货物直达列车运输组织研究[学位论文].西南交通大学.2007
    [52]铁道运输与经济记者.铁路货物直达列车驶入快速发展轨道——访铁道部总调度长常国治[J].铁道运输与经济.2004.26(3).8-9
    [53]陈大为.兰州铁路局战略装车点布局规划研究[学位论文].北京交通大学.2006
    [54]江波,谢海红等.铁路战略装车点发展策略.综合运输.2010.(6).36-38
    [55]冯芬玲,李夏苗.进一步推进货运集中化是我国铁路运输企业发展的必然选择.技术经济.(6).6-7
    [56]刘志军.在全路运输工作会议上的讲话.铁道运输与经济.2006.28(4).1-3
    [57]王兆成.中长期铁路网规划研究.北京.中国铁道出版社.2004
    f58]中华人民共和国铁道部.中长期铁路网调整规划.2008
    [59]张红亮,杨浩等.我国铁路编组站发展趋势探讨.铁道运输与经济.2010.32(9).33-43
    [60]包振峰,成永龙.驼峰自动化调速系统适应新型重载车辆的若干问题.铁道通信信号.2008.44(10).1-4
    [61]Frank Richter. Heavy Haul Railroading in the USA, Circa 2001 (Proceedings of 7th International Heavy Haul Conference) [Z]. Brisbane, Australia:IHHA,2001,85-92.
    [62]钱立新.国际重载机车车辆的最新进展.机车电传动.2002.(1).1-17
    [63]张进德.我国铁路货车技术发展趋势.铁道车辆.2003.41(4).1-16
    [64]中华人民共和国国家统计局.中国统计年鉴2008.北京.中国统计出版社.2009
    [65]崔炳谋,张朴等.编组站综合自动化系统总体框架的研究.铁道运输与经济.2007.29(5).4246
    [66]耿颖,丁昆.我国铁路编组站综合集成自动化的发展.中国铁路.2008.(9).18-23
    [67]刘国夫.建国四十年铁路编组站的建设与展望.减速顶与调速技术.1990.(12).1-9
    [68]编组站自动化论文集编委会.编组站自动化论文集.北京.中国铁道出版社.1993
    [69]张开冶.我国铁路编组站技术装备发展战略初探.铁路通信信号工程技术.2007.4(4).11-14
    [70]汤百华.我国驼峰调车技术发展的历程和建议.铁道运输与经济.1999.(8).12-13
    [71]张宁.基于CIM思想的编组站综合自动化系统——编组站作业自动化CIMS的研究[学位论文].北方交通大学.2000
    [72]俞平.成都北编组站CIPS的功能与运用.中国铁路.2008.(5).31-37
    [73]吴长厚,陶德高.铁路编组站自动化概述.铁道运输与经济.2006.28(2).6-8
    [74]朱广劼.编组站综合自动化系统研究.减速顶与调速技术.2007.(2).11-14
    [75]赵连祥.铁路重载运输的发展及其对编组.站作业的影响.减速顶与调速技术.2008.(2).1-3
    [76]张超,宫振冲.23t轴重新型货车对驼峰运营及设计的影响分析.减速顶与调速技术.2007.(4).12-14
    [77]宫振冲.23t轴重新型货车与既有驼峰的适应性研究[学位论文].北京交通大学.2007
    [78]包振峰,成永龙.驼峰自动化调速系统适应新型重载车辆的若干问题.铁道通信信号.2008.44(10).1-4
    [79]孙一丁.新型轴重23吨车驼峰溜放对减速顶制动能力要求的分析.减速顶与调速技术.2006.(、6).1-6
    [80]胡伟.自动化驼峰调速系统对新型货车溜放速度控制的测试分析.铁道运输与经济.2006.28(11).87-88
    [81]中国铁道科学研究院运输及经济研究所.23t轴重新型货车对驼峰运营及设计影响试验报告.2005
    [82]孟凡峰.徐州北站驼峰解决撞车问题的对策.铁道运输与经济.2006.28(9).80-82
    [83]刘文涛,张红亮.大轴重货车驼峰溜放超速原因与对策.铁道运输与经济.2010.32(3).88-90
    [84]吴家豪.国外铁路编组站.北京.中国铁道出版社.1982
    [85]殷勇.铁路编组站布局规划方法及调整对策研究[学位论文].西南交通大学.2007
    [86]黄鑫.适应社会多层次运输需求打造铁路货运系列产品.铁道运输与经济.2004.(4).17-19
    [87]范振平.德铁经验对我国直达货运物流的启示.物流技术.2006.(7).238-240
    [88]赵连祥.铁路重载运输的发展及其对编组站作业的影响.减速顶与调速技术.2008.(2).1-3
    [89]巩亮.铁路运输生产力布局调整后评价研究[学位论文].北京交通大学.2007
    [90]哈尔滨铁路局减速顶调速系统研究中心,铁道部科学研究院运输及经济研究所.滚动轴承车辆溜放阻力的测试及研究.2002
    [91]杜旭升.滚动轴承车辆溜放阻力的测试及研究(1).减速顶与调速技术.2003.(2).11-29
    [92]杜旭升,高树允.滚动轴承车辆溜放阻力的测试及研究(2).减速顶与调速技术.2003.(3).1-26
    [93]杜旭升,高树允.滚动轴承车辆溜放阻力的测试及研究(3).减速顶与调速技术.2003.(4).1-9
    [94]吴芳美.编组站调车自动控制.北京.中国铁道出版社.1995
    [95]杨峥,高立中等.驼峰重载车辆减速器的研制.中国铁道科学.2007.28(5).139-144
    [96]王娜.编组站驼峰车辆溜放速度控制模型的研究[学位论文].燕山大学.2002
    [97]刘彬,王娜等.基于模糊神经网络间隔调速模型的研究.铁道学报.2003.25(2).49-51
    [98]刘彬,王娜等.基于模糊神经网络驼峰溜放速度的控制.控制工程.2003.10(2).156-158
    [99]宫振冲.23t轴重新型货车与既有驼峰的适应性研究[学位论文].北京交通大学.2007
    [100]姚精明.驼峰间隔调速智能控制研究[学位论文].铁道部科学研究院.2001
    [101]姚精明,栗学仁等.基于神经网络的间隔调速模型研究.中国铁道科学.2001.22(2).117-121
    [102]张红亮,杨浩等.驼峰车组溜放的动态出口定速模型研究.交通运输系统工程与信息.2010.10(4).161-165
    [103]中华人民共和国铁道部.TB10062-99.1999.铁路驼峰及调车场设计规范.北京.中国铁道出版社.1999
    [104]李海鹰,刘彦邦.点连式驼峰各制动位合理能高的确定.北方交通大学学报.1995.(A01,).63-66
    [105]李岱峰,郭祥熹等T·JK T·JY系列车辆减速器.北京.中国铁道出版社.2002
    [106]胡均安,王东等.模糊控制理论与工程应用曾光奇.武汉.华中科技大学出版社.2006
    [107]汤兵勇,路林吉等.模糊控制理论与应用技术.北京.清华大学出版社.2002
    [108]刘其斌,马桂贞.铁路车站及枢纽.北京.中国铁道出版社.1999
    [109]刘彦邦,曹宏宁等.现代化驼峰设计.北京.中国铁道出版社.1995
    [110]刘彦邦.铁路调车驼峰设计.北京.北方交通大学运输系.1989
    [111]吴家豪.铁路编组站系统设计优化.北京.中国铁道出版社.1994
    [112]崔庆生,刘守忠等.GB 50091-2006.2006.铁路车站及枢纽设计规范.北京.2006
    [113]黄孝章.编组站计算机辅助设计理论研究及系统实现[学位论文].北方交通大学.1998
    [114]周建喜.运用车辆负溜放动态模拟方法确定驼峰峰高.减速顶与调速技术.1997.(4).16-18
    [115]祝庆增,向劲松.点连式驼峰优化设计.铁道学报.1990.12(3).16-27
    [116]贺振欢.铁路编组站驼峰技术作业过程模拟实验系统的研究.北方交通大学学报.1998.(3).68-72
    [117]周望梅,宾海丰.驼峰作业过程智能模拟仿真系统的研究.中国铁路.2004.(3).33-34
    [118]徐维民,周述琼等.驼峰溜放自动化系统仿真的研究.铁道学报.1983.5(1).32-43
    [119]于勇,杨肇夏.驼峰溜放模拟的动力学分析.北方交通大学学报.199822(6).48-51
    [120]刘志军.在全路运输工作会议上的讲话.中国铁路.2008.(2).1-5
    [121]黄问盈,杨宁清等.列车基本阻力的思考.中国铁道科学.2000.21(3).44-57
    [122]包振峰.自动化驼峰控制系统.北京.中国铁道出版社.2008
    [123]张兵兵,吕佰铨.发挥减速顶调速技术的优势解决对重载车辆制动能力不足的问题.减速顶与调速技术.2008
    [124]茅金官.减速顶调速系统在重载条件下的应用.减速顶与调速技术.2008.(2).4-21
    [125]陈文芳.编组站驼峰解体作业撞车原因分析及对策.铁道运输与经济.2006.29(3).31-32
    [126]杨海波,张继生等.浅析重载车辆对铁路编组站作业的影响.减速顶与调速技术.2008.(2).20-21
    [127]茅金官.重载运输条件下濂速顶调速系统的应用研究.上海铁道科技.2008.(3).5-6
    [128]包振峰.编组站自动化系统适应重载列车的若干问题及对策.减速顶与调速技术.2008.(3).17-21
    [129]石辛民等.模糊控制及其MATLAB仿真.北京.北京交通大学出版社.2008
    [130]李雪.基于粗糙集模糊神经网络的微孔钻削在线监测研究[学位论文].吉林大学.2008
    [131]Goodman C J, Siu L K, Ho T K. A review of simulation models for railway system. ASPECT95. London, UK.1995.
    [132]Marin Marinov, Jose Viegas, A simulation modelling methodology for evaluating flat-shunted yard operations Simulation Modelling Practice and Theory 2009.17.1106-1129
    [133]Antonio Hernandoa, Eugenio Roanes-Lozano, Alberto Garcia-Alvarez, An accelerated-time microscopic simulation of a dedicated freight double-track railway line Mathematical and Computer Modelling 2010.51.1160-1169
    [134]Shiwei He, Rui Song, Sohail S. Chaudhry. An integrated dispatching model for rail yards operations, Computers & Operations Research 2003.30.939-966
    [135]王士同.神经模糊系统及其应用.北京.北京航空航天大学出版社.1998
    [136]李国勇.神经模糊控制理论及应用.北京.电子工业出版社.2009
    [137]王能豪,刘彦邦等.峰高计算中难行车计算重量的确定.铁道运输与经济.992.(3).33-34
    [138]铁道科学研究院运输及经济研究所.现代化驼峰线路图册.1993
    [139]铁道第四勘察设计院.站场及枢纽.北京.中国铁道出版社.2004
    [140]姬成录,赵红新.燃料油与燃煤综合应用效益对比分析.油气储运.2007.27(8).39-61
    [141]李得伟.城市轨道交通枢纽乘客集散模型及微观仿真理论[学位论文].北京交通大 学.2007
    [142]肖田元,范文慧.系统仿真导论(第二版).北京.清华大学出版社.2010
    [143]吴旭光,杨惠珍等.计算机仿真技术.北京.化学工业出版社.2008
    [144]赫培峰,崔建江等.计算机仿真技术.北京.机械工业出版社.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700