聚类与曲线进化方法及在农产品图像分割中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农产品的无损检测是农业现代化的一个重要组成部分,随着计算机视觉技术的发展,许多新的无损检测技术应运而生,并取得了一些初步成果。在基于机器视觉的农产品无损检测技术中,首要任务是精准地获取仅含有农产品对象本身的数字图像,即从原始图像中分离出感兴趣目标区域的图像分割,其处理性能将直接影响到机器视觉模型的训练效果和最终的定量分析结果。然而图像分割是计算机视觉处理的基础难题之一,尤其对于一般的自然图像,目前还面临着许多困难,需要继续深入研究。本课题中,以农产品图像为重点研究对象,对图像分割问题进行了深入探讨,其中主要采用了两类具有代表性的农产品图像:水蜜桃阴影图像和自然环境下的水果图像。
     聚类和曲线进化(水平集)方法是目前图像分割中使用较多的两类处理工具,本文中首先在第二与第三章中重点讨论了基于聚类的图像分割方法,并在现有研究基础上提出了一种新的分裂式层次聚类算法(SHPDHC)和一种增强的可能性聚类算法(EPCM),两者均以本文提出的软边界球分策略为基础。上述策略的引入一方面提高了聚类算法的鲁棒性,另一方面增加了算法标识例外点的能力,这两个优势使得新算法在水蜜桃阴影图像分割上取得了较现有聚类方法更好的效果,对于大部分此类图像均能精准地提取出感兴趣的目标区域。比较上述两种新聚类方法,前者的优势在于能自适应地确定分割区域数目,后者则在聚类数目已知时具有更好的强壮性。
     第四章中,为克服聚类方法在图像分割处理上的固有缺陷,在前面研究模糊聚类的基础上,结合考虑了水平集图像分割模型,提出了融合模糊C均值的Mumford-Shah图像分割模型FCMMS(本质上也是一种水平集图像分割方法);进一步地第五章中,提出了一种融合高斯混合模型的水平集图像分割模型(GMMLS)。前者通过扩展原有一类水平集图像分割模型的目标泛函至模糊形式而得到;后者中,其模型表达及求解过程在假设图像特征数据分布可由高斯混合模型逼近的前提下,以贝叶斯原理和水平集技术为工具推导求得。上述两种新水平集图像分割模型是对现有相关模型的有力补充,就处理性能而言,它们等价于同时继承了聚类与水平集方法的长处,而弥补了各自方法原有的不足。由于秉承了上述优点,两种新水平集图像分割模型不仅在水蜜桃阴影图像上取得了很好的效果,对于一般的自然水果图像(甚至一般自然图像)同样也取得了较令人满意的效果。就这两种新方法本身而言,GMMLS的最大特点是数学理论基础较为完备,在假设成立,且逼近原型数设定合理时,所得结果在理论上有较好的保障,因而在许多情况下,GMMLS获得的分割结果要优于FCMMS。然而后者具有另一个优势,文中理论分析已指出,FCMMS的模型框架同样适用于其它一些模糊聚类方法,又由文献资料可知,许多学者已就图像分割问题提出了大量具有针对性的模糊聚类算法,通过把这些算法融入到水平集图像分割模型中,可方便地提出相应的变形方法,显然,这些图像分割方法可以在实际应用中发挥更大的作用。
     第六章中,作为第四与第五章的补充研究,定性地讨论了两类新水平集方法的一些扩展技术,这些扩展技术在许多实际应用中同样起着重要的作用。
Nondestructive detection of agricultural product is a basic technique for quality assurance, so it is an important component of agricultural modernization. Along with the development of computer vision techniques, now many corresponding nondestructive detection methods are introduced and some good effect are obtained. In these methods, a primary task is to gain the exact object images, i.e., image segmentation, with which the quantitative analyses on product quality might be done. However, image segmentation is one of the difficult problems in computer vision; to improve the power of corresponding nondestructive detection, the image segmentation problems on agricultural products deserve to further exploration. In this paper, two types of agricultural products are mainly examined including peach shade images and natural fruit images.
     Clustering and curve evolution (level set) techniques are two prominent image segmentation tools, which are also used to image segmentations of agricultural products in this paper. In chapter 2 and chapter 3, we focus on clustering based image segmentation methods, where two new clustering algorithms are presented including: a new divisive hierarchical clustering algorithm SHPDHC and an enhanced possibilistic clustering algorithm (EPCM). These two new image segmentation methods are all based on the soft hyperspheric partition strategies proposed in the chapter 2 of this paper. Compared with several popular clustering algorithms, SHPDHC and EPCM have the better (or equal) clustering robustness and the ability to label the outliers of the dataset. The peach shade images are mainly examined in these two chapters, and the experimental results demonstrate that the better segmentation results can be obtained by above two new algorithms than several classical clustering based image segmentation methods for the most of such type of images. However, for the complex natural fruit images, the satisfied results can not be obtained by above two algorithms. These cases are further researched in the next two chapters.
     In chapter 4, a new image segmentation model integrating the fuzzy c-means clustering into Mumford-Shah model (FCMMS) is presented. Next, a coupled level set method integrating with Gaussian mixture model (GMMLS) for image segmentation is proposed in chapter 5. Above two new models can be viewed as a combination of clustering and level set image segmentation methods from the viewpoint of model object functional. They can effectively inherit the merits of two original methods, while the respective shortcomings are weakened. The application performance of these two new methods on peach shade images and natural fruit images are very satisfied with our expectations. Furthermore, in many cases, GMMLS can get the better segmentation performance than FCMMS due to its theoretical maturity. Nevertheless, according to the same framework of FCMMS, many extended versions integrating with current fuzzy clustering algorithms for image segmentation might be put forward, which will improve its practical application worthiness.
     In chapter 6, some advanced techniques of two new image segmentation methods are discussed. In many cases, these advanced techniques might pay the crucial roles and improve the segmentation performance in great part.
引文
1. Cheng HD, Jiang XH, Sun Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition, 2001. 34(12): 2259-2281.
    2. Leemans V, Magein H, Destain MF. Defect segmentation on 'Jonagold' apples using colour vision and a Bayesian classification method [J]. Computers and Electronics in Agriculture, 1999. 23(1): 43-53.
    3.应义斌,饶秀勤,黄永林.群体水果动态图像的获取方法研究[J].浙江大学学报(农业与生命科学版) 2004. 30(2): 147-152.
    4. Du CJ, Sun DW. Recent developments in the applications of image processing techniques for food quality evaluation [J]. Trends Food Sci Technol, 2004. 15(5): 230-49.
    5. Leemans V, Magein H, Destain MF. AE--Automation and Emerging Technologies :On-line fruit grading according to their external quality using machine vision [J]. Biosysterms Engineering, 2002. 83(4): 397-404.
    6. Sun DW, Du CJ. Segmentation of complex food images by stick growing and merging algorithm [J]. Journal of Food Engineering, 2004. 61(1): 17-26.
    7.张铁中,林宝龙,高锐.水果采摘机器人视觉系统的目标提取[J].中国农业大学学报, 2004. 9(2): 68-72.
    8. Mery D, Pedreschi F. Segmentation of colour food images using a robust algorithm [J]. Journal of Food Engineering, 2005. 66(3): 353-360.
    9. Gui J, Ying Y, Rao X, Fruit edge detection-based gradient vector flow [C], in Proceedings of SPIE, 2006.
    10. Gui J, Rao X, Ying Y. Fruit shape detection by level set [J]. Journal of Zhejiang University-Science A, 2007. 8(8): 1232-1236.
    11. Tobias OJ, Seara R. Image segmentation by histogram thresholding using fuzzy sets [J]. Image Processing, IEEE Transactions on, 2002. 11(12): 1457-1465.
    12. Kurugollu F, Sankur B, Harmanci AE. Color image segmentation using histogram multithresholding and fusion [J]. Image and Vision Computing, 2001. 19(13): 915-928.
    13. Wang Shitong, Chung Fu-lai, Xiong Fusong. A novel image thresholding method based on Parzen window estimate [J]. Pattern Recognition, 2008. 41(1): 117-129.
    14. Cheng HD, Jiang XH, Wang J. Color image segmentation based on homogram thresholding and region merging [J]. Pattern Recognition, 2002. 35(2): 373-393.
    15. Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007.40(3): 825-838.
    16. Ma L, Staunton RC. A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns [J]. Pattern Recognition, 2007. 40(11): 3005-3011.
    17. Xia Y, Wang T, Zhao R, et al. Image segmentation by clustering of spatial patterns [J]. Pattern Recognition Letters, 2007. 28(12): 1548-1555.
    18. Nikou C, Galatsanos NP, Likas AC. A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation [J]. Image Processing, IEEE Transactions on, 2007. 16(4): 1121-1130.
    19. Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 2004. 34(4): 1907-1916.
    20. Tolias YA, Panas SM. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions [J]. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 1998. 28( 3): 359-369.
    21. Zhu SC, Yuille A. Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996. 18(9): 884-900.
    22. Moghaddamzadeh A, Bourbakis N. A fuzzy region growing approach for segmentation of color images [J]. Pattern Recognition, 1997. 30(6): 867-881.
    23. BLASCO J, ALEIXOS N, MoltóE. Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm [J]. Journal of Food Engineering, 2007. 81(3): 535-543.
    24. Adams R, Bischof L. Seeded region growing [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1994. 16(6): 641-647.
    25. Hojjatoleslami SA, Kittler J. Region growing: a new approach [J]. Image Processing, IEEE Transactions on, 1998. 7(7): 1079-1084.
    26. Ekblad U, Kinser JM, Atmer J, et al. The intersecting cortical model in image processing [J]. Nuclear Inst. and Methods in Physics Research, A, 2004. 525(1-2): 392-396.
    27. Guo Dong, Xie Ming Color clustering and learning for image segmentation based on neural networks [J]. Neural Networks, IEEE Transactions on, 2005. 16(4): 925-936.
    28. Ong SH, Yeo NC, Lee KH, et al. Segmentation of color images using a two-stage self-organizing network [J]. Image and Vision Computing, 2002. 20(4): 279-289.
    29. Ekblad U, Kinser JM. Theoretical foundation of the intersecting cortical model andits use for change detection of aircraft, cars, and nuclear explosion tests [J]. Signal Processing, 2004. 84(7): 1131-1146.
    30. Johnson JL, Padgett ML, MICOM US, et al. PCNN models and applications [J]. Neural Networks, IEEE Transactions on, 1999. 10(3): 480-498.
    31. Wang Shitong, Wang Min. A New Detection Algorithm (NDA) Based on Fuzzy Cellular Neural Networks for White Blood Cell Detection [J]. Information Technology in Biomedicine, IEEE Transactions on, 2006. 10(1): 5-10.
    32. Wang Shitong, Chung KFL, Fu Duan. Applying the improved fuzzy cellular neural network IFCNN to white blood cell detection [J]. Neurocomputing, 2007. 70(7-9): 1348-1359.
    33. Stewart RD, Fermin I, Opper M. Region growing with pulse-coupled neural networks: an alternative to seeded region growing [J]. Neural Networks, IEEE Transactions on, 2002. 13(6): 1557-1562.
    34. Kim J, Fisher II JW, Yezzi A, et al. A nonparametric statistical method for image segmentation using information theory and curve evolution [J]. Image Processing, IEEE Transactions on, 2005. 14(10): 1486-1502.
    35. Tsai A, Yezzi Jr A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional forimage segmentation, denoising, interpolation, and magnification [J]. Image Processing, IEEE Transactions on, 2001. 10(8): 1169-1186.
    36. Sekkati H. Optical Flow 3D Segmentation and Interpretation: A Variational Method with Active Curve Evolution and Level Sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006. 28(11): 1818-1829.
    37. Cremers D, Nonlinear Dynamical Shape Priors for Level Set Segmentation [C], in Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007, p. 1-7.
    38. Cremers D, Rousson M, Deriche R. A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape [J]. International Journal of Computer Vision, 2007. 72(2): 195-215.
    39. Ben Ayed I, Mitiche A, Belhadj Z. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets [J]. IEEE Trans Pattern Anal Mach Intell, 2006. 28(9): 1493-500.
    40. Malcolm J, Rathi Y, Tannenbaum A, A Graph Cut Approach to Image Segmentation in Tensor Space [C], in Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007, p. 1-8.
    41. Sumengen B, Manjunath BS. Graph Partitioning Active Contours (GPAC) for Image Segmentation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006. 28(4): 509-521.
    42. Kolmogorov V, Rother C. Minimizing Nonsubmodular Functions with Graph Cuts-A Review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007. 29(7): 1274-1279.
    43. Shi J, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. 22(8): 888-905.
    44. Li Y, Sun J, Shum HY, Video object cut and paste [C], in Proceedings of ACM SIGGRAPH 2005, 2005, p. 595-600.
    45. Komodakis N. Approximate Labeling via Graph Cuts Based on Linear Programming [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007. 29(8): 1436-1453.
    46. Boykov Y, Funka-Lea G. Graph Cuts and Efficient NDImage Segmentation [J]. International Journal of Computer Vision, 2006. 70(2): 109-131.
    47. Pal NR, Pal SK. A review on image segmentation techniques [J]. Pattern Recognition, 1993. 26(9): 1277-1294.
    48. Wu KL, Yang MS. Mean shift-based clustering [J]. Pattern Recognition, 2007. 40(11): 3035-3052.
    49. Ahmed MN, Yamany SM, Mohamed N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [J]. Medical Imaging, IEEE Transactions on, 2002. 21(3): 193-199.
    50. Liew AWC, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J]. Medical Imaging, IEEE Transactions on, 2003. 22(9): 1063-1075.
    51. Chan TF, Vese LA. Image segmentation using level sets and the piecewise constant Mumford-Shah model, in CAM Report 00-14, UCLA. 2000.
    52. Vese LA, Chan TF. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model [J]. International Journal of Computer Vision, 2002. 50(3): 271-293.
    53. View TOC. A topology preserving level set method for geometric deformable models [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003. 25(6): 755-768.
    54. Tsai A, Yezzi Jr A, Wells W, et al. A shape-based approach to the segmentation of medical imagery using level sets [J]. Medical Imaging, IEEE Transactions on, 2003. 22(2): 137-154.
    55. Brox T, Weickert J. Level set based image segmentation with multiple regions [J]. Lecture notes in computer science, 2004: 415-423.
    56. Martin P, Refregier P, Goudail F, et al. Influence of the noise model on level set active contour segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 26(6): 799-803.
    57. Li Chungming, Gui C, Fox M. D, Level Set Evolution without Re-Initialization: A New Variational Formulation [C], in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, p. 430-436.
    58. Gibou F, Fedkiw R, A fast hybrid k-means level set algorithm for segmentation [C], in 4th Annual Hawaii International Conference on Statistics and Mathematics, 2005, p. 281–291.
    59. Enright D, Losasso F, Fedkiw R. A fast and accurate semi-Lagrangian particle level set method [J]. Computers and Structures, 2005. 83(6-7): 479-490.
    60. Ayed IB, Mitiche A, Belhadj Z. Multiregion Level-Set Partitioning of Synthetic Aperture Radar Images [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005. 27(5): 793-800.
    61. Lie Johan , Marius Lysaker , Tai Xue-Cheng. A binary level set model and some applications to Mumford-Shah image segmentation [J]. Image Processing, IEEE Transactions on, 2006. 15(5): 1171-1181.
    62. Vazquez C, Mitiche A, Laganiere R. Joint multiregion segmentation and parametric estimation of image motion by basis function representation and level set evolution [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006. 28(5): 782-793.
    63. Lee SH, Seo JK. Level set-based bimodal segmentation with stationary global minimum [J]. Image Processing, IEEE Transactions on, 2006. 15(9): 2843-2852.
    64. Chang JY, Lee KM, Lee SU, Multiview normal field integration using level set methods [C], in Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, 2007, p. 1-8.
    65. Ray N, Acton ST, Image segmentation by curve evolution with clustering [C], in Signals, Systems and Computers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference on, Pacific Grove, CA, USA, 2000, p. 495-498.
    66. Chan TF, Vese LA. Active contours without edges [J]. Image Processing, IEEE Transactions on, 2001. 10(2): 266-277.
    67. Zimmer C, Olivo-Marin JC. Coupled Parametric Active Contours [J]. Pattern Analysisand Machine Intelligence, IEEE Transactions on, 2005. 27(11): 1838-1842.
    68. Foulonneau A, Charbonnier P, Heitz F. Affine-Invariant Geometric Shape Priors for Region-Based Active Contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006. 28(8): 1352-1357.
    69. Jehan-Besson S, Barlaud M, Aubert G. DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation [J]. International Journal of Computer Vision, 2003. 53(1): 45-70.
    70. Kass M., Witkin A., Terzopoulos D., Snakes: Active contour models [C], in First International Conference on Computer Vision, London, 1987, p. 259-268.
    71. Cheng J, Foo SW. Dynamic directional gradient vector flow for snakes [J]. Image Processing, IEEE Transactions on, 2006. 15(6): 1563-1571.
    72. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models [J]. International Journal of Computer Vision, 1988. 1(4): 321-331.
    73. Brox T, Weickert J. Level set segmentation with multiple regions [J]. IEEE Transactions on Image Processing, 2006. 15(10): 3213-3218.
    74. Rousson M. Cues integrations and front evolutions in image segmentation [D]:[PhD thesis]. Universite de Nice-Sophia Antipolis. 2004.
    75. Mumford D, Shah J, Boundary detection by minimizing functionals [C], in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1985, p. 22-26.
    76. Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems [J]. Comm. Pure Appl. Math, 1989. 42(5): 577-685.
    77. Shen Jianhong. A stochastic-variational model for soft Mumford-Shah segmentation [J]. International Journal of Biomedical Imaging, 2006. 2006: 1-14.
    78. Guha S, Rastogi R, Shim K, CURE: an efficient clustering algorithm for large databases [C], in Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 1998, p. 73-84.
    79. Redner RA, Walker HF. Mixture Densities, Maximum Likelihood and the Em Algorithm [J]. SIAM Review, 1984. 26(2): 195-239.
    80. Bilmes JA. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models [J]. International Computer Science Institute, 1998. 4: 1-13.
    81. Jenssen Robert, Erdogmus Deniz, Hild Ii Kenneth E., et al. Information cut for clustering using a gradient descent approach [J]. Pattern Recognition, 2007. 40(3): 796-806.
    82. Kwak N, Choi CH. Input feature selection by mutual information based on Parzen window [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002. 24(12): 1667-1671.
    83. Parzen E. On Estimation of a Probability Density Function and Mode [J]. The Annals of Mathematical Statistics, 1962. 33(3): 1065-1076.
    84. Yang C, Duraiswami R, Gumerov NA, et al., Improved fast gauss transform and efficient kernel density estimation [C], in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, 2003, p. 664-671.
    85. Dambreville S, Rathi Y, Tannenbaum A, Nonlinear shape prior from Kernel space for geometric active contours [C], in Proceedings of SPIE, 2006, p. 404-412.
    86. Xu R, Wunsch D. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005. 16(3): 645-678.
    87. Zhang T, Ramakrishnan R, Livny M, BIRCH: an efficient data clustering method for very large databases [C], in Proceedings of the 1996 ACM SIGMOD international conference on Management of data, 1996, p. 103-114.
    88. Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for categorical attributes [J]. Information Systems, 2000. 25(5): 345-366.
    89. Karypis G, Han EH, Kumar V. Chameleon: hierarchical clustering using dynamic modeling [J]. Computer, 1999. 32(8): 68-75.
    90. Frigui H, Krishnapuram R. Clustering by competitive agglomeration [J]. Pattern Recognition, 1997. 30(7): 1109-1119.
    91. Yang MS, Wu KL. A similarity-based robust clustering method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. 26(4): 434-448.
    92. Clausi DA. K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation [J]. Pattern Recognition, 2002. 35(9): 1959-1972.
    93. Dave RN, Krishnapuram R. Robust clustering methods: a unified view [J]. Fuzzy Systems, IEEE Transactions on, 1997. 5(2): 270-293.
    94. Krishnapuram R, Keller J. M. A possibilistic approach to clustering [J]. Fuzzy Systems, IEEE Transactions on, 1993. 1(2): 98-110.
    95. Zhang JS, Leung YW. Improved possibilistic C-means clustering algorithms [J]. Fuzzy Systems, IEEE Transactions on, 2004. 12(2): 209-217.
    96. Yang Miin Shen, Wu KL. Unsupervised possibilistic clustering [J]. Pattern Recognition, 2006. 39(1): 5-21.
    97. Pal N. R, Pal K, Keller JM, et al. A Possibilistic Fuzzy c-Means Clustering Algorithm[J]. Fuzzy Systems, IEEE Transactions on, 2005. 13(4): 517-530.
    98. Zhang DQ, Chen SC, Kernel-based fuzzy and possibilistic c-means clustering [C], in Proc of the International Conference on Artificial Neural Networks. Istanbul, Turkey, 2003, p. 122-125.
    99. Zhang YJ, Liu ZQ. Self-splitting competitive learning: a new on-line clusteringparadigm [J]. Neural Networks, IEEE Transactions on, 2002. 13(2): 369-380.
    100. Wu S, Liew AWC, Yan H, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J]. Information Technology in Biomedicine, IEEE Transactions on, 2004. 8(1): 5-15.
    101. Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model [J]. Fuzzy Systems, IEEE Transactions on, 1995. 3(3): 370-379.
    102. Bezdek JC, Pal NR. Some new indexes of cluster validity [J]. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 1998. 28(3): 301-315.
    103. Zahid N, Limouri M, Essaid A. New cluster-validity for fuzzy clustering [J]. Pattern Recognition, 1999. 32(7): 1089-1097.
    104. Wu KL, Yang MS. A cluster validity index for fuzzy clustering [J]. Pattern Recognition Letters, 2005. 26(9): 1275-1291.
    105. Gustafson DE, Kessel WC, Fuzzy clustering with a fuzzy covariance matrix [C], in Decision and Control including the 17th Symposium on Adaptive Processes, IEEE Conference on, San Diego, CA,, 1979, p. 761-766.
    106. Krishnapuram R, Kim J. A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms [J]. Fuzzy Systems, IEEE Transactions on, 1999. 7(4): 453-461.
    107. Babuka R, van der Veen PJ, Kaymak U, Improved covariance estimation for Gustafson-Kessel clustering [C], in Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on, 2002, p. 1080-1085.
    108. Yu Jian. General C-means clustering model [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2005. 27(8): 1197-1211.
    109. Dave RN, Sen S. Robust fuzzy clustering of relational data [J]. Fuzzy Systems, IEEE Transactions on, 2002. 10(6): 713-727.
    110. Deng ZH, Wang ST. Robust fuzzy clustering neural networks [J]. Ruan Jian Xue Bao(J. Softw.), 2005. 16(8): 1415-1422.
    111. Wang Shitong, Chung K. FL, Deng Zhao Hong, et al. Robust maximum entropy clustering algorithm with its labeling for outliers [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2006. 10(7): 555-563.
    112. Krishnapuram R, Keller JM. The possibilistic C-means algorithm: insights and recommendations [J]. Fuzzy Systems, IEEE Transactions on, 1996. 4(3): 385-393.
    113. Barni M, Cappellini V, Mecocci A. Comments on“A possibilistic approach to clustering”[J]. Fuzzy Systems, IEEE Transactions on, 1996. 4(3): 393-396.
    114. Chung FL, Wang ST, Deng ZH, et al. Clustering Analysis of Gene Expression Data based on Semi-supervised Visual Clustering Algorithm [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2006. 10(11): 981-993.
    115. Sagiv C, Sochen NA, Zeevi YY. Integrated active contours for texture segmentation [J]. Image Processing, IEEE Transactions on, 2006. 15(6): 1633-1646.
    116. Precioso F, Barlaud M, Blu T, et al. Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm [J]. Image Processing, IEEE Transactions on, 2005. 14(7): 910-924.
    117. Cremers D. Dynamical statistical shape priors for level set-based tracking [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006. 28(8): 1262-1273.
    118. Zhang Q, Souvenir R, Pless R, On Manifold Structure of Cardiac MRI Data: Application to Segmentation [C], in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Volume 1, 2006, p. 1092-1098.
    119. Tal Dmcfd, Malik J, A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics [C], in Proc. Eighth Int'l Conf. Computer Vision, 2001, p. 416-423.
    120. Zhu S. C., Yuille A. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996. 18(9): 884-900.
    121. Zoller T, Buhmann JM. Robust Image Segmentation Using Resampling and Shape Constraints [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007. 29(7): 1147-1164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700