脓毒症患者血小板蛋白质组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     脓毒症的早期诊断有助于采取更为恰当的治疗措施以改善脓毒症患者的预后,但目前仍缺乏有效的预测手段。本研究应用双向电泳和生物质谱鉴定的差异蛋白质组学方法寻找脓毒症患者血小板中差异表达蛋白,并对这些差异表达蛋白分子进行进一步的研究和筛选,以期寻找到脓毒症相关的血小板特异性蛋白标志物,同时进一步明确脓毒症血小板蛋白质组病理生理变化的分子机制,以便早期采取积极措施以改善脓毒症预后。
     【方法】
     新鲜血液采集自十日内未用过任何药物的正常健康受试者以及脓毒症确诊24 h的脓毒症患者,每份血样都单独处理,加入体积比10%的枸橼酸钠抗凝在室温下200g离心20 min获得富血小板血浆(PRP)。取PRP的上三分之一入新试管加入最终浓度为2.5mM的前列环素,1000g离心10min。去除血浆后,用Tyrodes-HEPES液洗涤吹悬血小板至浓度2×108/ml,室温下孵育30min,15000g离心裂解血小板后加入20 l蛋白酶抑制剂,-80°C冻存。利用固相pH梯度及SDS-PAGE二维凝胶电泳分离PLT总蛋白,考马斯亮蓝染色、Imagescanner扫描、PDQuest软件图像分析找出差异表达蛋白质点,应用基质辅助激光解吸电离飞行时间质谱分析(MALDI-TOF-TOF)及Mascot查询软件、SwissPort数据库鉴定差异表达蛋白。
     【结果】
     1.优化获得了重复性和分辨率较好的正常健康受试者及脓毒症患者血小板蛋白质组双向凝胶电泳(2-DE)图谱。
     2.建立了正常健康受试者与脓毒症患者血小板2-DE差异表达图谱。
     3.采用质谱法鉴定了2-DE图谱上的差异蛋白质点,通过MALDI-TOF-MS检测和蛋白质数据库搜寻,成功鉴定了6个蛋白质点,分别为来自细胞骨架蛋白家族的Actin, cytoplasmic 1;信号转导通路蛋白家族的IL-1β、EF-hand calcium-bindingdomain-containing protein 7;膜受体蛋白家族的GPⅨ、GPⅡb/Ⅲa和翻译后加工蛋白Protein disulfide-isomerase A3。
     【结论】
     脓毒症后血小板蛋白质组与正常受试者相比差异显著。应用基于2-DE和质谱分析的蛋白质组学方法可全面了解血小板蛋白质组变化规律,采用差异蛋白质组学成功鉴定了脓毒症血小板蛋白质组中6个差异表达蛋白,这些蛋白包括细胞骨架蛋白家族、信号转导通路蛋白家族、膜受体蛋白家族、翻译后加工蛋白。提示联合应用2-DE和MS技术的蛋白质组学在在筛查脓毒症临床诊断标志物方面是一个强有力的工具,有望用于临床。
Objective
     Early diagnostic of sepsis is an attractive strategy to decrease the mortality of septic patients, but presently there are no satisfactory approaches. This study employed the technology of 2-DE and MS to look for the differential proteins of platelets between the normal healthy volunteers and septic patients and then to explore some potential biomarkers related with sepsis.
     Methods
     Fresh blood was collected from normal healthy volunteers who were not on medication for the previous ten days and septic patients. Each blood sample was processed individually and was mixed with a sodium citrate stock solution to final concentration of 10% v/v of the anticoagulant. the blood was centrifuged for 20 min at 200 g at room temperature to obtain platelet rich plasma (PRP). The upper third of the PRP was recentrifuged in a fresh tube removing any contaminating leukocytes. Addition of prostacyclin (final concentration 2.5 mM) allowed pelleting of platelets at 1000g with minimal activation. Following removal of plasma, the platelets were washed in Tyrodes-HEPES. The platelet pellet was then resuspended in Tyrodes-HEPES, to a concentration of 2×108/mL or 1×109 /mL, and incubated at room temperature for 30 min. Platelets were spun down at 15000g in the absence of prostacyclin and, following addition of 20 l of a protease inhibitor cocktail, immediately frozen in liquid nitrogen prior to storage at–80℃for 2-DE, image analysis and MALDI-TOF-MS.
     Results
     1. Platelet 2-DE profiles of normal healthy volunteers and septic patients with high resolution and reproducibility were obtained.
     2. Differrential platelet 2-DE profiles between normal healthy volunteers and septic patients were established.
     3. Differential protein spots between normal healthy volunteers and septic patients platelet 2-DE profiles were identified by MALDI-TOF-MS and protein datebase from internet. There are 6 differential protein spots were identified. They are belong to membrane receptors, signalling molecules, cytoskeletal and protein processing respectively.
     Conclusions
     After sepsis, the proteome of septic patinets’platelet changes markedly. The technology of proteomics based on 2-DE and MS offers a huge potential for the provision of comprehensive protein expression date for basal and activated plateltes. Employed this proteomic approach, we successfully identified 6 proteins in septic patients’platelet protome. They are GPⅨ, GPⅡb/Ⅲa belong to membrane receptors family, IL-1β, EF-hand calcium-binding domain-containing protein 7 belong to signalling molecules family, Actin, cytoplasmic 1 belong to cytoskeletal family and protein disulfide-isomerase A3 belong to protein processing family respectively. The proposed approach combined use of 2-DE and MS provides an effective and high-throughput aproach for screening clinical diagnostic makers of septic patients.
引文
1 Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001, 29: 1303–10.
    2 Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med, 2004, 10(11): 1216–21.
    3 Fisher CJ, Agosti J M, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med, 1996, 334: 1697–1702.
    4 Abraham E. Cytokine modifiers: pipe dream or reality? Chest, 1998, 113: 224S– 227S.
    5刘晓蓉,任新生.脓毒症凝血机制及组织因子通路抑制剂治疗的研究现状及治疗进展.中国急救医学, 2005, ll(11): 833—835.
    6潘景业,王晓东,张艳杰,等.炎症与血栓形成.中国预防医学杂志, 2005, 6(3): 277-280.
    7 Ruggeri ZM. The platelet glycoprotein Ib/IX complex. Prog Hemost Thromb 1991;10:35-68.
    8 Ruggeri ZM. Role of von Willebrand factor in platelet thrombus formation. Ann Med 2000;32:2-9.
    9 Clemetson KJ. Platelet GPIb/V/IX complex. Thromb Haemost 1997;78:266-270.
    10 Muller BT, Modlich O, Prisack HB,et al.Gene expression profiles in the acutely dissected human aorta.Eur J Vasc Endovasc Surg. 2002,24(4):356-64..
    11 Walley KR, Russell JA. Protein C-1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med, 2007, 35(1): 12-7.
    12 Arditi M, Manoque KR, Caplan M, et al. Cerebrospinal fluid cachectin/tumour necrosis factor alpha and platelet-activating factor concentrations and severity of bacterial meningitis in children. J Infect Dis 1990, 160:139-47.
    13 Mokart D, Merlin M, Sannini A, et al. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth, 2005, 94: 767–773.
    14 Hamano K, Gohra H, Noda H, et al. Increased serum interleukin-8: correlation with poor prognosis in patients with postoperative multiple organ failure. World J Surg, 1998, 22: 1077-1081.
    15 Ashare A, Powers LS, Butler NS, et al. Anti-inflammatory response is associated with mortality and severity of infection in sepsis. Am J Physiol Lung Cell Mol Physiol, 2005, 288(4): L633-640.
    16 McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001, 86: 746-756.
    17 Gawaz M, Dickfeld T, Bogner C, et al. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 1997, 4: 379-385.
    18 Gawaz M. Platelet membrane glycoproteins. In: Gawaz M. Blood platelets. Thieme Verlag, Stuttgsrt, 2001, pp. 30-39.
    19 George JN. Platelets. Lancet 2000, 355:1531-1539.
    20 Andrews RK, Shen Y, Gardiner EE, et al. Platelet adhesion receptors and (patho) phy siological thrombus formation. Histol Histopathol 2001, 16: 969-980.
    21 Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 2003, 20: 203-208.
    22 Liddington RC, Ginsberg MH. Integrin activation takes shape. J Cell Biol 2002; 158: 833-839.
    23 Du X, Ginsberg MH. Integrin alpha IIb beta 3 and platelet function. Thromb Haemost 1997; 78: 96-100.
    24 Balc IC, Sungurtekin H, Gurses E, et al. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Crit Care, 2003, 7: 85–90.
    25 Preul MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med, 1996, 2(3): 323–5.
    26 Beckonert O, Monnerjahn J, Bonk U, et al. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed, 2003, 16(1): 1–11.
    27 M?kinen VP, Soininen P, Forsblom C, et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. MAGMA, 2006, 19(6): 281–96.
    28吴焱秋,柴家科,黎君友,等.脓毒症大鼠血浆游离氨基酸浓度的变化.中华外科杂志, 2001, 39: 638-42.
    29 Brown, A. S., Erusalimsky, et al. Platelets and their Factors, Springer-Verlag, Berlin Germany 1997, pp. 3-19.
    30 Blackstock, W. P., Weir M. P., Trends Biotechnol. 1999, 17, 121-127.
    31 Muller BT, Modlich O, Prisack HB,et al. Gene expression profiles in the acutely dissected human aorta. Eur J Vasc Endovasc Surg. 2002,24(4):356-64.
    32 Corbett JM, Dunn MJ, Posch A, et a1. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electropHoresis using immobilized pH gradient isoelecttic focusing in the first dimension:an interlaboratory comparison. ElectropHoresis. 1994, 15(8-9): 1205-11.
    33 Wilkins M, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13: 19-50.
    34 O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007-4021..
    35 Marcus K, Moebius J, Meyer HE. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem 2003; 376: 973-993.
    36 Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med, 2001, 29: 1303–10.
    37 Martin G, Mannino D, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med, 2003, 348(16): 1546–54.
    38 Adrie C, Alberti C, Chaix-Couturier C, et al. Epidemiology and economic evaluation of severe sepsis in France: Age, severity, infection site, and place of acquisition (community, hospital, or intensive care unit) as determinants of workload and cost. J Crit Care, 2005, 20(1): 46–58.
    39 Moerer O, Schmid A, Hofmann M, et al. Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med, 2002, 28(10): 1440–6.
    40 Warren H. Strategies for the treatment of sepsis. N Engl J Med, 1997, 336(13): 952–3.
    41 Parrillo JE, Parker MM, Natanson C, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med, 1990, 113(3): 227–42.
    42 Pittet D, Rangel-Frausto S, Li N, T et al. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med, 1995, 21(4): 302–9.
    43 Kollef M, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999, 115(2): 462–74.
    44 Kim YJ, Chung HY. Antioxidative and anti-inflammatory actions of docosahexaenoic acid and eicosapentaenoic acid in renal epithelial cells and macrophages. J Med Food, 2007, 10(2): 225–31.
    45 Venturini CM, Kaplan JE. Thrombin induces platelet adhesion to endothelial cells. Semin Thromb Hemost 1992; 18:275-283.
    46 Kaplan JE, Moon DG, Weston LK, et al. Platelets vadhere to thrombin-treated endothelial cells in vitro. Am J Physiol 1989; 257:423-433.
    47 Etingin OR, Silverstein RL, Hajjar DP. von Willebrand factor mediates platelet adhesion to virally infected endothelial cells. Proc Natl Acad Sci USA 1993; 90: 5153-5156.
    48 Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Biol 2003; 12:2131-2137.
    49 Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 2002; 22:913-922.
    50 Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 1997; 4:379-385.
    51 Gawaz M, Fateh-Moghadam S, Pilz G, et al. Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation. Infection 1995; 1: 16-23.
    52 Ott I, Neumann FJ, Gawaz M, et al. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation 1996; 94:1239-1246.
    53 Li Z, Kim ES, Bearer EL. The Arp2/3 complex is required for actin polymerization during platelet shape change. Blood 2002; 99: 4466-4474.
    54 Fox JE. The platelet cytoskeleton. Thromb Haemost 1993; 70: 884-893.
    55 Hartwig JH, Bokoch GM, et al. Platelet morphology. In Schafer JL, ed. Thrombosis and hemorrhage, 2nd ed. Williams & Wilkins, Baltimore, 1999, pp.207-208.
    56 Ruggeri ZM. The platelet glycoprotein Ib/IX complex. Prog Hemost Thromb 1991; 10:35-68.
    57 Ruggeri ZM. Role of von Willebrand factor in platelet thrombus formation. AnnMed 2000; 32:2-9.
    58 Clemetson KJ. Platelet GPIb/V/IX complex. Thromb Haemost 1997; 78:266-270.
    59 Simon DI, Chen Z, Xu H, et al. Platelet glycoprotein Ibalpha is a counterreceptor for the leukocyte integrin Mac-1(CD11b/CD18). J Exp Med 2000; 192:193-20.
    60 Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib/IX/V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999; 190:803-814.
    61 Joynt GM, Lipman J, Gomersall CD, et al. Gastric intramucosal pH and blood lactate in severe sepsis. Anaesthesia, 1997, 52: 726–32.
    62 Du X, Ginsberg MH. Integrin alpha IIb beta 3 and p latelet function. Thromb Haemost 1997; 78:96-100.
    63 Kirschenbaum LA, Astiz ME, Rackow EC. Interpretation of blood lactate concentrations in patients with sepsis. Lancet 1998, 352: 921–2
    64 Brealey D, Karyampudi S, Jacques TS, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol, 2004, 286: R491-7.
    65 Hawrylowicz CM, Howells GL, Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 1991; 174:785-790.
    66 Kaplanski G, Porat R, Aiura K, Erban JK, Gelfand JA, Dinarello CA. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood 1993; 81:24692-2495.
    67 Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 2000; 148:75-85.
    68 Martinez A, Chiolero R, Bollman M, et al. Assessment of adipose tissue metabolism by means of subcutaneous microdialysis in patients with sepsis or circulatory failure. Clin Physiol Funct Imaging, 2003, 23(5):286–92.
    69 Lu B, Rutledge BJ, Gu L, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998; 187:601-608.
    70 Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis.Atherosclerosis 2000; 148:75-85.
    71 Lu B, Rutledge BJ, Gu L, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998; 187:601-608.
    72 Shure D, Senior RM, Griffin GL, et al. PDGF AA homodimers are potent chemoattractants for fibroblasts and neutrophils, and for monocytes activated by lymphocytes or cytokines. Biochem Biophys Res Commun 19921; 86:1510-1514.
    73 Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 1998; 98:1164-1171.
    74 Dickfeld T, Lengyel E, May AE, et al. Transient interaction of activated platelets with endothelial cells induces expression of monocyte-chemoattractant protein-1 via a p38 mitogen-activated protein kinase mediated athway. mplications for atherogenesis. Cardiovasc Res 2001;41:189-199.
    75 Wang MC, Guo JB, Liu MH, Fang WG, Li Y. Expressionof protein disulfide isomerase in gastric mucosa infected with Helicobacter pylori. Shijie Huaren Xiaohua Zazhi 2006;14(29):2880-2882.
    [1]Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 11: 1227-1234.
    [2]Nieswandt B, Watson SP. Platelet collagen interaction: is GPVI the central recepotor? Blood 2003; 102: 449-461.
    [3]Ruggeri ZM. The platelet glycoprotein Ib/IX complex. Prog Hemost Thromb 1991; 10:35-68.
    [4]Ruggeri ZM. Role of von Willebrand factor in platelet thrombus formation. Ann Med 2000; 32: 2-9.
    [5]Clemetson KJ. Platelet GPIb/V/IX complex. Thromb Haemost 1997; 78:266-270.
    [6]Gawaz M. Platelet membrane glycoproteins. In: Gawaz M. Blood platelets. Thieme Verlag, Stuttgart, 2001; pp.30-39.
    [7]Shattil SJ, Ginsberg MH. Perspectives series: cell adhesion in vascular biology. Integrin signaling in vascular biology. J Clin Invest 1997; 100:1-5.
    [8]Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Biol 2003; 12:2131-2137.
    [9]Poubelle PE, Borgeat P. Platelet interactions with other cells related to inflammatory diseases. Platelets in thrombotic and non-thrombotic disorders. Cambridge University Press, Cambridge,2002, pp.869-884.
    [10]Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 2002; 22:913-922.
    [11]Gawaz M, Dickfeld T, Bogner C, et al. Platelet function in septic multople organ dysfunction syndrome. Intensive Care Med 1997; 4:379-385.
    [12]Gawaz M, Fateh-Moghadam S, Pilz G, et al. Severity of multiple organ failure (MOF) but not of sepsis correlates with irreversible platelet degranulation. Infection 1995; 1:16-23.
    [13]Rinder CS, Bonan JL, Rinder HM, et al. Cardiopulmonary bypass induces leukocyteplatelet adhesion.Blood 1992;79:1201-1205.
    [14]Ott I, Neumann FJ, Gawaz M, et al. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation 1996;94:1239-1246.
    [15]Gawaz M, Neumann FJ, Ott I, et al. Platelet function in acure myocardial infarction treated with direct angioplasty. Circulation 1996;93:229-237.
    [16]Gawaz M, Neumann FJ, Dickfeld T, et al. Vitronectin receptor[alpha(v)beta3] mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. Circulation 1997;96:1809-1818.
    [17]Massberg S, Brand K, Gruner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002;196:887-896.
    [18]Huo Y, Schober A, Forlow SB, et al. Circulating activated platelet exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003;1:61-67.
    [19]Neumann FJ, Ott I, Gawaz M, et al. Neutrophil and platelet activation at balloom-injured coronary artery plaque in patients undergoing angioplasty. J Am Coll Cardiol 1996;27:819-824.
    [20]McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001;86:746-756.
    [21]Williams MJ, Du X, Loftus JC, et al. Platelet adhesion receptors. Semin Cell Biol 1995;6:305-314.
    [22]Gawaz M. Platelet membrane glycoproteins. In: Gawaz M. Blood platelets. Thieme Verlag, Stuttgsrt, 2001, pp. 30-39.
    [23]George JN. Platelets. Lancet 2000;355:1531-1539.
    [24]Andrews RK, Shen Y, Gardiner EE,Berndt MC. Platelet adhesion receptors and (patho) phy siological thrombus formation. Histol Histopathol 2001;16:969-980.
    [25]Felding-Habermann B.Integrin adhesion receptors in tumor metastasis.Clin Exp Metastasis 2003:20:203-208.
    [26]Liddington RC, Ginsberg MH. Integrin activation takes shape. J Cell Biol 2002;158:833-839.
    [27]Du X, Ginsberg MH. Integrin alpha IIb beta 3 and platelet function. Thromb Haemost 1997;78;96-100.
    [28]Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91-100.
    [29]Simon DI, Chen Z, Xu H, et al. Platelet glycoprotein Ibalpha is a counterreceptorfor the leukocyte integrin Mac-1(CD11b/CD18). J Exp Med 2000;192:193-204.
    [30]Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib/IX/V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999;190:803-814.
    [31]McEver RP, Role of selectins in leukocyte adhesion to platelets and endothelium Ann NY Acad Sci 1994;714:185-189.
    [32]Furie B, Furie BC. Leukocyte crosstalk at the vascular wall.Thromb Haemost 1997;78:306-309.
    [33]McEver RP, Cummings RD. Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 1997;100:485-491.
    [34]McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001;86:746-756.
    [35]Diacovo TG, deFougerolles AR, Bainton DF, et al. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest 1994;94:1243-1251.
    [36]Chavakis T, Preissner KT, Santoso S. Leukocytetrans-endothelial migration: JAMs add new pieces to the puzzle. Thromb Haemost 2003;89:13-17.
    [37]Gupta SK, Pillarisetti K, Ohlstein EH. Platelet agonist F11 receptor is a member of the immunoglobulin superfamily and identcal with junctional adhesion molecule(JAM): regulation of expression in human endothelial cells and macrophages. Life 2000;50:51-56.
    [38]Santoso S, Sachs UJ, Kroll H, et al. The junctional adhesion molecule 3(JAM-3)on human platelets is a counterrecepror for the leukocyte integrin Mac-1. J Exp Med 2002;196679-691.
    [39]Babinska A, Kedees MH, Athar H, et al. F11-receptor(F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflammatory thrombosis. Thromb Haemost 2002;88:843-850.
    [40]Gear AR, CameriniD. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003;10:335-350.
    [41]Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents,secretion and functions. Platelets 2001;12:261-273.
    [42]Harrison P, Cranmer EM. Platelet alpha-granules.Blood Rev 1993;7:52-62.
    [43]Weyrich AS, Elstad MR, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 1996;97:1525-1534.
    [44]Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets, Circulation 1997;95:2387-2394.
    [45]Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 1998;98:1164-1167.
    [46]Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591-594.
    [47]Boogaerts MA, Yamada O, Jacob HS, et al. Enhancement of graulocyte-endothelial cell adherence and granulocyte-induced cytotoxicity platelet release products. Proc Natl Acad Sci USA 1982;79:7019-7023.
    [48]Laberge S, Cruikshank WW, Beer DJ, et al. Secretion of IL-16(lymphocyte chemoattractant factor) from serotonin-stimulated CD8+ T cells in vitro. J Immunol 1996;156:310-315.
    [49]Sandler J A, Gallin JI, Vaughan M. Effects of serotonin, carbamy lcholine, and ascorbic acid on leukocyte cyclic GMP and chemotaxis. J Cell Biol 1975;67:480-484.
    [50]Momi S, Gresele P. Platelets and chemotaxis. In: Gresele P, Page C, Fuster V, Vermylen J, eds. Platelets in thrombotic and non-thrombotic disorders. Cambridge University Press, Cambridge, 2002, pp.393-411.
    [51]Brandt E, Petersen F, Ludwig A, et al. The beta-thrombogloglobulins and platelet factor 4:blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 2000;67;471-478.
    [52]Power CA, Clemetson JM, Clemetson KJ, et al. Chemokine and chemokine receptor mRNA expression in human platelets, Cytokine 1995;7:479-482.
    [53]Kronemann N, Boloumi A, Baussus S, et al. Aggregating human plateletsstimulate expression of vascular endothelial growth factor in cultured vascular smooth muscle cells through a synerdistic effect of transforming growth factor-beta(1) and platelet-derived growth factor(AB). Circulation 1999;100:855-856.
    [54]Dell'Angelica EC, Mullins C, Caplan S, et al. Lysosome-related organelles. FASEB J 2000;14:1265-1278.
    [55]Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1 beta synthesis. J Cell Biol 2001;154:485-490.
    [56]Hermann A, Rauch BH, Braun M, et al. Platelet CD40 ligand (CD40L)-subcellular localization, regulation of expression, and inhibition by clopidogrel. Patelets 2001;12:74-78.
    [57]Hawrylowicz CM, Howells GL, Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 1991;174:785-790.
    [58]Kaplanski G, Porat R, Aiura K, et al. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event. Blood 1993;81:24692-2495.
    [59]Andre P, Prasad KS, Denis CV, et al. CD40L stabilizes arterial by a beta3 integrin-dependent mechanism. Nat Med 2002;8:247-252.
    [60]Siess W. Athero-and thrombogenic actinons of lysophosphatidic acid and sphin-gosine-1-phosphate. Biochim Biophys Acta 2002;1582:204-215.
    [61]Denizot Y. Platelet-activating factor. In: Bruchhausen FV, Authi KS, Walter U, eds. Platelets and their factors. Springer Verlag, Heidelberg, 1997, pp. 483-496.
    [62]Halushka PV, Pawate S, Martin ML. Thromboxane A2 and other eicosanoids. In: Bruchhausen FV, Authi KS, Walter U, eds. Platelets and their factors. Springer Verlag, Heidelberg, 1997.
    [63]Barry OP, FitzGerald GA. Mechanisms of cellular activation by platelet micro-particles. Thromb Haemost 1999;82:794-800.
    [64]Palmetshofer A, Robson SC, Nehls V. Lysophosphatidic acid activates nuclearfactor kappa B and induces proinflammatory gene expression in endothelial cells. Thromb Haemost 1999;82:1532-1537.
    [65]Springer TA. Treffic signals for lymphocyte recirculation and leukocyte emigration: the multidtep paradigm. Cell 1994;76:301-314.
    [66]Sporn LA, Huber P. Endothelial cell biology. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and thrombosis. Basic principles and clinical practice, 4th ed. Lippincott Williams & Wilkins, Philadelphia, 2001,pp. 615-623.
    [67]Venturini CM, Kaplan JE. Thrombin induces platelet adhesion to endothelial cells. Semin Thromb Hemost 1992;18:275-283.
    [68]Kaplan JE, Moon DG, Weston LK, et al. Platelets vadhere to thrombin-treated endothelial cells in vitro. Am J Physiol 1989;257:423-433.
    [69]Etingin OR, Silverstein RL, Hajjar DP. von Willebrand factor mediates platelet adhesion to virally infected endothelial cells. Proc Natl Acad Sci USA 1993;90:5153-5156.
    [70]Itoh Y, Tomita M, Tanahashi N, et al. Platelet adhesion to aortic endothelial cells in vitro after thrombin treatment: observation with video-enhanced contrast microscopy. Thromb Res 1998;91:15-22.
    [71]Reininger AJ, Korndorfer MA, Wurzinger LJ. Adhesion of ADP-activated platelets to intact endothelium under stagnation point fiow in vitro is mediated by the integrin alpha II beta3. Thromb Haemost 1998;79:998-1003.
    [72]Li JM, Podolsky RS, Rohrer MJ, et al. Adhesion of activated pleatlets to venous endothelial cells is mediated via GP IIb/IIIa. J Surg Res 1996;61:543-548.
    [73]Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIb/IIIadependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998;187:329-333.
    [74]Kakutani M, Masaki T, Sawamura T. A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA 2000;97:360-364.
    [75]Bombeli T, Schwartz BR, Harlan JM. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 1999;93:3831-3838.
    [76]Frenette PS, Johnson RC, Hynes RO, et al. Platelets roll on stimulated endothelium in vivo: an nteraction mediated by endothelial P-selectin. Proc Natl Acad USA 1995;92:7450-7454.
    [77]Johnson RC, Mayadas TN, Frenette PS, et al. Blood cell dynamics in P-selectin-deficient mice. Blood 1995;86:1106-1114.
    [78]Subramaniam M, Frenette PS, Saffaripour S, et al. Defects in hemostasis in P-se-lectin-deficient mice. Blood 1996;87:1238-1242.
    [79]Frenete PS, Moyna C, Hartwell DW, et al. Platelet-endothelial interactions in inflamed mesenteric venules. Blood 1998;91:1318-1324.
    [80]Frenette PS, Subbarao S, Mazo IB, et al. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci USA 1998;95:14423-1448.
    [81]Massberg S, Enders G, Leiderer R, et al. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 1998;92:507-515.
    [82]Laszik Z, Jansen PJ, Cummings RD,et al, P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 1996;88:3010-3012.
    [83]Frenette PS, Denis CV, Weiss L, et al. P-Selectin glycoprotein ligand 1(PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 2000;191:1413-1422.
    [84]Gawaz MP, Loftus JC, Bajt ML, Frojmovic MM, Plow EF, Ginsberg MH. Ligand bridging mediates integrin alphaIIb beta 3 (platelet GPIIb/IIIA) dependent homo-typic and heterotypic cell-cell interactions. J Clin Invest 1991;88:1128-1134.
    [85]Massberg S, Enders G, Matos FC, et al. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 1999;94:3829-3838.
    [86]Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through aninterleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 2000;148:75-85.
    [87]Languino LR, Duperray A, Joganic KJ, et al. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 1995;92:1505-1509.
    [88]Altieri DC, Duperray A, Plescia J, et al. Structural recognition of a novel fibriogen gammachain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyte-endothelium interaction. J Biol Chem 1995;270:696-699.
    [89]Sriramarao P, Languino LR, Altieri DC, et al. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. Blood 1996; 88:3416-3423.
    [90]Massberg S, Vogt F, Dickfeld T, Brand K, Page S, Gawaz M. Activated platelets trigger an inflammatory response and enhance migration of aortic smooth muscle cells. Thromb Res 2003;110:187-194.
    [91]Lu B, Rutledge BJ, Gu L, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998;187:601-608.
    [92]Gawaz M, Page S, Massberg S, et al. Transient platelet interaction induces MCP-1 production by endothelial cells via I kappa B kinase complex activation. Thromb Haemost 2002;88:307-314.
    [93]Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 1998;98:1164-1171.
    [94]Dickfeld T, Lengyel E, May AE, et al. Transient interaction of activated platelets with endothelial cells induces expression of monocyte-chemoattractant protein-1 via a p38 mitogen-activated protein kinase mediated athway. mplications for atherogenesis. Cardiovasc Res 2001;41:189-199.
    [95]von Hundelshausen P, Webet KS, Huo Y, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation2001;103:1772-1777.
    [96]Schober A, Manka D, von Hundelshausen P, et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002;106:1523-1529.
    [97]Slupsky JR, Kalbas M, Willuweit A, Henn V, Kroczek RA, Muller-Berghaus G. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 1998;80:1008-1014.
    [98]Fernandez-Patron C, Martinez-Cuesta MA, Salas E, et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and-2. Thromb Haemost 1999;82:1730-1735.
    [99]May AE, Kalsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa(alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002;106:2111-2117.
    [100]Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation 2003;107:1123-1128.
    [101]Bazzoni G, Dejana E, Del Maschio A. Platelet-neutrophil interactions. Possible relevance in the pathogenesis of thrombosis and inflammation. Haematologica 1991;76:491-499.
    [102]Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Activated and unactivated platelet adhesion to monocytes and neutrophils. Blood 1991;78:1760-1769.
    [103]Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Dynamics of leukocyte-platelet adhesion in whole blood. Blood 1991;78:1730-1737.
    [104]Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to and stimulated by platelet-activating factor. J Clin Invest 1997;100:2085-2093.
    [105]Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrindeposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992;359:848-851.
    [106]Larsen E, Palabrica T, Sajer S, et al. PADGEM-dependent adhesion of platelets to monocytes and neuteophils is mediated by a lineage-specific carbohydrate, LNF III(CD15). Cell 1990;63:467-474.
    [107]Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 1990;75:550-554.
    [108]Konstantopoulos K, Neelamegham S, Burns AR, et al. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin. Circulation 1998;98:873-882.
    [109]SilversteinRL, Asch AS, Nachman RL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest 1989;84:546-552.
    [110]Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993;178:669-674.
    [111]Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003;92:1041-1048.
    [112]Blanks JE, Moll T, Eytner R, Veatweber D. Stimulation of P-selectin glycoprotein ligand-1 on mouse neutrophils activates beta 2-integrin mediated cell attachment to ICAM-1. Eur J Immunol 1998;28:433-443.
    [113]Nagata K, Tsuji T, Todoroki N, et al. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol 1993;151:3267-3273.
    [114]Osterud B. The role of platelets in decrypting monocyte tissue factor. Dis Mon 2003;49:7-13.
    [115]Evangelista V, Manarini S, Sideri R, et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein- tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as asignalling molecule. Blood1999;93:876-885.
    [116]Celi A, Pellegrini G, Lorenzet R, et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 1994;91:8767-8771.
    [117]Osterud B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis 1995;6(suppl):S20-S25.
    [118]Ruf A, Patscheke H. Platelet-induced neutrophil activation: platelet-expressed fibrinogen induces the oxidative burst in neutrophils by an interaction with CD11C/CD18. Br J Haematol 1995;90:791-796.
    [119]Werr J, Eriksson EE, Hedqvist P, Lindbom L. Engagement of beta2 integrins induces surface expression of betal integrin receptors in human neutrophils. J Leuk Biol 2000;68:553-560.
    [120]Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leuk Biol 2000;67:471-478.
    [121]Petersen F, Bock L, Flad HD, Brandt E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 1999;94:4020-4028.
    [122]Leonard EJ, Yoshimura T, Rot A, et al. Chemotactic activity and receptor binding of neutrophil attractant/activation protein-1 (NAP-1) and structurally related host defense cytokines: interaction of NAP-1 receptor. J Leuk Biol 1991;49:258-265.
    [123]Walz A, Dewald B, von Tscharner V, Baggiolini M. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J Exp Med 1989;170:1745-1750.
    [124]Walz A, Meloni F, Clark-Lewis I, von Tscharner V, Baggiolini M. [Ca+]i changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J Leuk Biol 1991;50:279-286.
    [125]Harter L, Petersen F, Flad HD, Brandt E. Connective tissue-activating peptide III desensitizes chemokine receptors on neutrophils. Requirement for proteolytic formation of the neutrophil-activating peptide 2. J Immunol 1994;153:5698-5708.
    [126]Shure D, Senior RM, Griffin GL, Deuel TF. PDGF AA homodimers are potent chemoattractants for fibroblasts and neutrophils, and for moni\ocytes activated by lymphocytes or cytokines. Biochem Biophys Res Commun 1992;186:1510-1514.
    [127]Tzeng DY, Deuel TF, Huang JS, Baehner RL. Platelet-derived growth factor promotes human peripheral monocyte activation. Blood 1985;66:179-183.
    [128]Ernofsson M, Siegbahn A. Platelet-derived growth factor-BB and monocyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. ThrombRes 1996;83:307-320.
    [129]Ruf A, Schlenk RF, Maras A, Morgenstern E, Patscheke H. Contact-induced neutrophil activation by platelets in human cell suspensions and whole blood. Blood 1992;80:1238-1246.
    [130]Freyer DR, Boxer LA, Axtell RA, Todd RF. Stimulation of human neutrophil adhesive properties by adenine nucleotides. J Immunol 1988;141:580-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700