与急性ST段抬高心肌梗死预后相关的临床特征、免疫炎症反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性ST段抬高心肌梗死是心内科常见的急重症,其住院期间死亡及心源性休克等严重并发症的发生率较高,一直以来人们都在竭力阐明预后不良的相关危险因素以及内在的炎症反应机制,以便早期确定高危患者、给予及时有效的救治并探索新的治疗方法。本文阐述了冠脉多支血管病变、慢性完全闭塞病变对急性心肌梗死患者住院期间预后影响,以及树突状细胞在急性心肌梗死发病、预后中的意义,通过对预后相关的临床特征及免疫炎症反应的研究为高危患者的治疗提供新的临床依据。
     第一部分急性ST段抬高心肌梗死患者住院期间预后分析:
     冠状动脉多支血管病变、慢性完全闭塞病变的意义
     目的:在当前急诊支架置入及GPⅡb/Ⅲa受体拮抗剂类抗血小板药物应用的治疗策略下,冠状动脉多支血管病变、慢性完全闭塞病变(CTO)对急性ST段抬高心肌梗死(STEMI)患者急诊介入治疗结果及住院期间预后的影响。
     方法:回顾性分析2005年9月至2007年12月期间连续入院接受急诊介入治疗的STEMI患者资料。分析合并冠脉多支血管病变、CTO病变的STEMI患者临床特征、急诊介入手术结果及住院期间预后。经单因素及多因素分析确定发生住院期间主要心脏不良事件(MACE)的危险因素。
     结果:345例STEMI患者中共计有185例(53.6%)患者存在冠状动脉多支血管,病变,5.8%(20/345)的患者存在非梗死相关血管CTO病变。合并冠脉多支血管病变或CTO病变的患者均存在预后不良的临床或介入相关因素,多支血管病变患者年龄较大,既往高血压病的比例较高,发生心源性休克显著增多。存在CTO病变的患者其左室收缩功能显著受损,发生心力衰竭的比例增高,急诊介入手术的成功率较低,术后梗死相关血管恢复TIMI血流3级的比例显著减低。住院期间总体患者MACE的发生率为10.4%(36/345),合并冠脉多支血管病变患者的住院期间预后与单支血管病变患者比较无显著差异,而合并CTO病变患者住院期间预后较差,MACE的发生率显著升高(9.2%比30.0%,P=0.011)。多因素分析显示合并CTO病变不是STEMI患者发生住院期间MACE的独立危险因素。
     结论:在急诊药物洗脱支架置入及GPⅡb/Ⅲa受体拮抗剂应用的治疗策略下,冠脉多支血管病变对STEMI患者介入手术成功率及住院期间预后无显著影响,而合并CTO病变是确定高危STEMI患者的一个有力标志,针对这类患者急诊介入治疗手术成功率低、短期预后差的特点需要改进目前的药物或手术治疗方案以改善疗效。
     第二部分树突状细胞在急性ST段抬高心肌梗死发病、预后中的意义
     目的:急性心肌缺血坏死伴随着急性的免疫炎症反应。动物实验研究发现缺血病灶早期即有树突状细胞(DC)的浸润聚集。尽管是抗原特异性免疫中功能最强的抗原递呈细胞,DC同样具有调节非特异性免疫的功能。组织坏死时虽无抗原合成但可释放损伤信号分子:高迁移率族蛋白B1(HMGB1),DC表面表达HMGB1受体,与受体结合后HMGB1可趋化、激活DC促进非特异性免疫炎症反应。本研究探讨了急性ST段抬高心肌梗死(STEMI)时外周血DC亚型与预后的相关性,其在病程中的动态变化以及心肌坏死对DC变化的调节作用、DC对全身性免疫炎症反应的影响。
     方法:41名STEMI患者根据是否发生住院期间心脏不良事件(心源性休克、心力衰竭)分为两组:①发生心脏不良事件组(complicated MI即comMI,n=15);②未发生心脏不良事件组(uncomplicated MI即uncomMI,n=26)。健康人群做为对照(n=24)。收集临床资料。流式细胞技术三色分析法检测髓样DC(MDC)及浆细胞样DC(PDC)的数量。MI患者在急诊经皮冠脉介入手术前即刻(day 1)及术后两天(day 3)检测血常规、外周血髓样DC(MDC)及浆细胞样DC(PDC)、炎症指标(HMGB1,hsCRP,IL-6)。非参数统计方法分析DC亚型、炎症指标的动态变化、组间差异以及变量之间的相关性。
     结果:comMI组患者血脂水平升高,急诊介入术后梗死相关血管恢复TIMI血流3级的比例减少。实验室研究结果显示MI患者发病早期外周血MDC及PDC计数明显降低。day1测定的uncomMI组MDC计数(百分比0.03%,0-0.16%,P<0.001;绝对数2750/mL,0-17360/mL,P<0.001)以及comMI组MDC计数(百分比0.015%,0-0.11%,P<0.001;绝对数2105/mL,0-15840/mL,P<0.001)均较对照组(百分比0.15%,0.06-0.37%;绝对数8045/mL,3300-29280/mL)显著减少,PDC的变化与MDC相似,day 1测定的外周血DC亚型计数在uncomMI组与comMI组之间无显著性差异。day 3随访研究发现uncomMI组外周血MDC及PDC计数回升,达到对照组水平;而comMI组外周血MDC及PDC计数恢复较差,与对照组比较仍有显著差异,与uncomMI组比较也明显减少。血清测定的结果显示day 1时MI患者HMGBl水平明显升高,day 3随访时降至对照组水平,uncomMI组与comMI组的血清HMGB1浓度在两个不同检测时刻均无统计学差异。与血清HMGB1变化趋势不同,MI患者hsCRP及IL-6水平持续上升,在day 3时更为突出且在uncomMI组与comMI组之间存在差异,comMI组升高更为明显。相关性分析显示MI患者day1时测定的外周血DC亚型计数与心肌损伤坏死的指标具有相关性:MDC计数(百分比r=-0.420,P=0.008;绝对数r=-0.383,P=0.016)、PDC计数(百分比r=-0.348,P=0.03;绝对数r=-0.299,P=0.064)与CK-MB峰值呈负相关;心肌坏死时向外周血释放的HMGB1与同一时刻MI患者外周血DC亚型计数亦呈负相关。MI患者day 3时测定的外周血DC亚型计数与hsCRP、LVEF具有相关性。MDC计数(百分比r=-0.368,P=0.021;绝对数r=-0.405,P=0.01)、PDC计数(百分比r=-0.344,P=0.032)与hsCRP呈负相关,外周血DC计数越低的hsCRP水平越高,MDC(百分比r=0.348,P=0.043;绝对数r=0.346,P=0.045)与LVEF呈正相关。
     结论:本研究结果显示外周血DC的持续减少与MI患者发生心脏不良事件相关。MI发病后早期外周血DC计数显著降低,同时伴有心肌坏死释放的HMGB1、CK-MB水平显著升高且与DC计数呈负相关,提示其在早期即参与了缺血引起的免疫炎症反应,它向心肌的迁移浸润受到损伤信号分子及心肌坏死程度的调节;MI恢复期的随访研究显示外周血DC计数较发病早期回升,但发生心脏不良事件的MI患者DC计数恢复不良且伴有hsCRP、IL-6水平显著升高,因此外周血DC向缺血心肌的持续迁移聚集可导致严重而持续的炎症反应,加重缺血损伤,与临床预后不良有关。通过感知组织损伤信号、调节非特异性免疫,DC成为连接初始的心肌损伤与炎症反应的桥梁,这一损伤信号-感知-调节作用轴揭示了缺血损伤的非特异性免疫反应实质。
     第三部分冠脉多支血管病变、慢性完全闭塞病变对急性心肌梗死时免疫炎症反应的影响
     目的:明确合并冠脉多支血管病变、慢性完全闭塞病变(CTO)对急性心肌梗死(MI)时伴发的免疫炎症反应的影响,阐述其与预后相关的免疫炎症机制。方法:研究对象同论文第二部分,根据是否合并冠脉多支血管病变分组:①冠脉单支血管病变组(Single,n=19);②冠脉多支血管病变组(Multivessel,n=22)。根据是否合并非梗死相关血管CTO病变分组:①不合并CTO病变(non-CTO,n=36);②合并CTO病变(CTO,n=5)。非参数统计方法分析DC亚型、hsCRP的动态变化、组间差异。
     结果:Multivessel组MI患者与Single组比较其年龄大,糖尿病、高血压病及吸烟等冠心病危险因素的比例高,冠脉前降支发生急性闭塞的比例少;CTO组MI患者与non-CTO组比较各项临床特征均无显著差异。各组外周血DC计数变化的基本规律与论文第二部结果相似,day 1时外周血MDC及PDC计数均显著下降,day 3呈回升趋势,但Multivessel组、CTO组DC亚型计数部分未恢复至对照组水平。day 3测定的外周血DC亚型计数显示Single组及Multivessel组的组间比较无明显差异,non-CTO组及CTO组的组间比较有显著差异,后者MDC(百分比0.05%,0.04-0.08%比0.11%,0.02-0.40%,P=0.027)及PDC计数(百分比0.01%,0-0.04%比0.04%,0.01-0.20%,P=0.016;绝对数1330/mL,0-3600/mL比3655/mL,600-20000/mL,P=0.042)恢复水平较差。各组血清hsCRP变化规律与论文第二部结果相似,均呈逐渐升高趋势,Single组及Multivessel组、non-CTO组及CTO组的组间比较无显著差异。Multivessel组MI患者发生住院期间心脏不良事件较Single组的危险度无增加,而非梗死相关血管合并CTO病变与发生心脏不良事件显著相关(P=0.004)。
     结论:在本研究中我们发现合并冠脉多支血管病变的MI患者其外周血DC亚型计数变化与冠脉单支血管病变患者相似,其发生住院期间心脏不良事件的危险度无增加;合并非梗死相关血管CTO病变的MI患者其外周血DC亚型计数恢复较不合并CTO病变的患者为差,发生住院期间心脏不良事件的危险增加。通过对外周血DC变化的研究进一步揭示了CTO病变影响急性心肌梗死预后的免疫炎症机制。
Acute myocardial infarction(AMI) is a medical emergency with high morbidity and mortality.The benefit of primary percutaneous coronary intervention over thrombolytic therapy for ST-elevation myocardial infarction has been well established. As the early strategy of percutaneous transluminal coronary angioplasty was associated with higher risk of restenosis and acute reocclusion,the combined use of stents and platelet glycoproteinⅡb/Ⅲa inhibiotor has been introduced and validated. Along with the improvement in treatment and outcome,clinical investigation has constantly focused on the risk factors related to adverse events.Multivessel disease has been reported to be present in 40-50%patients with AMI.In prior studies the result of whether multivessel coronary artery disease exerts an adverse impact directly or indirectly upon the in-hospital prognosis of patients with AMI did not reach a consensus.It is also noted that a certain proportion of these patients were identified with a chronic total occlusion in the non-infarct related artery.Whether the contemporary reperfusion modalities,including stents and glycoproteinⅡb/Ⅲa inhibitor,are able to mitigate the adverse prognostic implications of multivessel disease is unknown.Furthermore,the prognostic impact of chronic total occlusion in the non-infarct related artery in patients with AMI remains to be elucidated.
     Besides the clinical factors also immunoinflammatory process likely influences ischemic injury and clinical outcome in patients with AMI.The inflammatory cascade in AMI,that is neutrophil infiltration,elevated production of proinflammatory cytokines(TNF-alpha,IL-6) and chemokines(MCP-1,MIP-1),has demonstrated to potentially influence myocardial damage and clinical outcome.In exploration of the key link between initial ischemic insult and the resultant inflammatory response,a growing body of evidence suggests an early innate immune response in priming the cascade of immunoinflammation in ischemic injury.Dendritic cells(DC),the most potent antigen-presenting cells with a unique ability to initiate a primary immune response by activation of naive T cells,are detected to accumulate into the ischemic lesion of the heart,brain,liver and kidney in animal experiments..In the antigen-free condition of ischemic injury,they recognize the endogenous damage/danger-associated molecular pattern(DAMP) signals released from ischemic cells or disrupted tissue and produce a key series of proinlammatory cytokines and chemokines in vivo and vitro.Extracellular high mobility group box-1(HMGB1) is the most characterized DAMP,exerting a dual chemotactic and activating effect on DC.Recent researches have represented feasibility to modulate ischemic injury by depletion of DC or blockage of HMGB1.In spite of the relevant advances in clarifying the mechanism of ischemic injury induced immune reaction,direct clinical evidence of DC implication in patients of MI is limited.This study is carried out to specify the dynamic change of circulating DC subset in MI and its relationship to myocardial injury and prognosis.
     PartⅠClinical characteristics related to in-hospital outcome of patients with myocardial infarction:the prognostic implication of multivessel disease and chronic total occlusion
     Objective:We sought to investigate whether the contemporary reperfusion modalities, including stents and glycoproteinⅡb/Ⅲa inhibitor,are able to mitigate the adverse prognostic implications of multivessel disease.Furthermore,the prognostic impact of chronic total occlusion(CTO) in the non-infarct related artery in patients with ST-elevation myocardial infarction(STEMI) remains to be elucidated.
     Methods:We retrospectively analyzed patients of STEMI underwent primary stenting in our hospital from September,2005 to December,2007.Clinical and angiographic characteristics were compared among patients with single and multivessel disease as well as patients with and without CTO in the non-infarct related artery.The multivariate analysis was applied to identify independent risk factors of adverse in-hospital outcome.
     Results:A total of 345 patients were included.180(53.6%) were identified with multivessel disease and 20(5.8%) with CTO in the non-infarct related artery.They had a high risk clinical and angiographic profile.Patients of multivessel disease were older and had a higher incidence of hypertension and cardiogenic shock,while those with CTO in the non-infarct related artery had impaired left ventricular systolic function and higher incidence of heart failure and lower procedure success.The overall incidence rate of in-hospital major adverse cardiac events(MACE) is 10.4%(36/345).Patients of multivessel disease did not discriminate from those with single-vessel disease in clinical outcome.In contrast,patients with CTO in the non-infarct related artery had significant higher rates of in-hospital MACE.By multivariate analysis,the presence of CTO in the non-infarct related artery was not an independent predictor of in-hospital MACE.
     Conclusion:Patients with or without multivessel disease had similar post procedural TIMI flow and in-hospital outcome after the combined use of primary stenting and glycoproteinⅡb/Ⅲa inhibitor.But patients with CTO in the non-infarct related artery had reduced reperfusion success and poorer in-hospital prognosis.Further studies regarding the optimal treatment of these high-risk patients are warranted.
     PartⅡDendritic cells in the pathogenesis and prognosis of ST-elevation myocardial infarction
     Objective:This study is carried out to specify the dynamic change of circulating DC subset in ST-elevation myocardial infarction(STEMI) and its relationship to myocardial injury and prognosis.
     Methods:41 STEMI patients who underwent primary percutaneous coronary intervention(PCI) were included and grouped according to the presence(complicated MI,abbreviated as comMI,n=15) or absence(uncomplicated MI,abbreviated as uncomMI,n=26) of adverse cardiac events:combined incidence of cardiogenic shock and heart failure.The control group consisted of 24 healthy subjects.Venous blood samples were obtained just before PCI for analysis of blood routine,circulating DC and plasma inflammatory markers(HMGB1,hsCRP,IL-6)(day 1) in MI patients.The same analyses were repeated about 2 days after the procedure(day 3).
     Results:TC and LDL-ch were elevated while restoration of postprocedual TIMI 3 flow was reduced in comMI.An early and substantial depletion of circulating MDC and PDC was detected in MI groups on day 1.The relative and absolute numbers of MDC was significantly reduced in both uncomMI group(percentages:0.03%,0 to 0.16%,P<0.001;counts:2750/ml,0 to 17360/ml,P<0.001) and comMI group(percentages:0.015%,0 to 0.11%,P<0.001;counts:2105/ml,0 to 15840/ml,P<0.001) compared with the controls(percentages:0.15%,0.06 to 0.37%;counts: 8045/ml,3300 to 29280/ml).It is the similar pattern of PDC in uncomMI group and comMI group.DC subsets did not differ significantly between MI groups on day 1.A follow up analysis on day 3 revealed reconstitution of both DC subsets in the uncomMI patients,with comparable percentages and counts of DC to the level of controls.In contrast,comMI patients with adverse clinical outcome manifested defective DC restoration at the follow up.HMGB1 concentration was elevated in uncomMI and comMI groups on day 1 compared with the controls.Concentration of both groups declined to the control level on day 3.In contrast,both CRP and IL-6 concentration were constantly elevated throughout the observation period in MI groups.The comMI discriminated from the uncomMI of IL-6 concentration on day 1 and day 3,CRP on day 3,but not HMGB1.Circulating DC subsets on day 1 significantly correlated with marker of myocardial necrosis and DAMP in serum. Both MDC(r=-0.420,p=0.008 and r=-0.383,p=0.016 for relative and absolute numbers of MDC respectively) and PDC(r=-0.348,p=0.03 and r=-0.299,p=0.064 for relative and absolute numbers of PDC respectively) inversely correlated to peak CK-MB concentration.A comparable association between DC subsets and HMGB1 on day 1 was observed.Interestingly,there was a strong correlation between HMGB1 in serum on day 1 and peak concentrations of the marker of myocardial necrosis CK-MB.In comparison,DC counts on day 3 were in association with the inflammatory marker CRP and LVEF.Both MDC(r=-0.368,p=0.021 and r=-0.405, p=0.01 for relative and absolute numbers of MDC respectively) and PDC counts(r=-0.344,p=0.032 for relative numbers of PDC) inversely correlated with CRP measured at the same time point.We also detected a marginally positive correlation between MDC counts and LVEF.Of note,LVEF correlated negatively with peak CK-MB concentration and CRP on day 3.In addition,a significant correlation was also demonstrated between peak CK-MB concentration and CRP.The interplay among LVEF,CK-MB and CRP confirmed the relationship between myocardial damage and systemic inflammation.
     Conclusion:The present study provides further insights into the nature of immunoinflammatory response in MI.We detected deep reduction of circulating DC early after MI onset,which is correlated to CK-MB and HMGB1.Our observation would suggest that DC is involved in the pathogenesis of MI and its recruitment to ischemic myocardium is regulated by myocardial necrosis.A follow up study indicate that impaired DC restoration on day 3 is related to cardiogenic shock,heart failure or in-hospital cardiogenic death,in association with increased serum IL-6 and CRP level. This result suggests that the prolonged DC depletion is predictive of poor clinical outcomes through an excessive inflammatory response.Acting as both sensor and effector in innate immune response,DC may potentially link myocardial injury and the consequent inflammation.
     PartⅢInfluence of coronary multivessel disease and chronic total occlusion on myocardial infarction-associated immunoinflammation
     Objective:We sought to investigate the influence of coronary multivessel disease and chronic total occlusion on ST-elevation myocardial infarction(STEMI)-associated immunoinflammation.
     Methods:The participants were enrolled in partⅡ.They were divided by the presence or absence of coronary multivessel disease(Single,n=19;Multivessel,n=22) and chronic total occlusion in the non-infarct related artery(non-CTO,n=36;CTO, n=5).Circulating DC and hsCRP levels were compared between MI groups and with controls.
     Results:Patients in Multivessel group were older,had higher incidence of diabetes, hypertension and smoking,lower rate of acute occlusion in LAD compared with those in Single groups;non-CTO and CTO groups had comparable clinical characteristics. The circulating DC subsets in MI groups changed in a similar pattern of that in partⅡ.Multivessel and CTO groups showed partly impaired restoration of DC subsets compared with control levels.Results on day 3 identified no significant difference of circulating DC between Single and Multivessel groups;circulating MDC(percentages: 0.05%,0.04-0.08%vs 0.11%,0.02-0.40%,P=0.027) and PDC(percentages:0.01%, 0-0.04%vs 0.04%,0.01-0.20%,P=0.016;counts:1330/mL,0-3600/mL vs 3655/mL, 600-20000/mL,P=0.042) were significantly lower in CTO group on day 3 than in non-CTO group,hsCRP was elevated in MI groups but did not differ among the groups.Single and Multivessel groups had comparable risk of developing in-hospital adverse cardiac events,but patients of CTO group had significantly higher risk than those in non-CTO group.
     Conclusion:STEMI Patients with or without multivessel disease had comparable circulating DC numbers on day 3 as well as comparable risk of developing in-hospital adverse cardiac events.STEMI Patients with chronic total occlusion in the non-infarct related artery showed further depletion of circulating DC subsets compared with those without CTO,which suggests an enhanced myocardial infarction-associated immunoinflammation and may potentially lead to development of adverse cardiac events.
引文
1. http://www.who.int/en/.
    
    2. Maier B, Thimme W, Schoeller R, et al. Improved therapy and outcome for patients with acute myocardial infarction - Data of the Berlin Myocardial Infarction Registry from 1999 to 2004. International Journal of Cardiology 2008;130:211-219.
    
    3. Kuch B, Heier M, Von Scheldt W, et al. 20-year trends in clinical characteristics, therapy and short-term prognosis in acute myocardial infarction according to presenting electrocardiogram: The MONICA/KORA AMI Registry (1985-2004). Journal of Internal Medicine 2008;264:254-264.
    
    4. Kitchin AH, Pocock SJ. Prognosis of patients with acute myocardial infarction admitted to a coronary care unit. I: Survival in hospital. British Heart Journal 1977;39:1163-6.
    
    5. Kelly MJ, Thompson PL, Quinlan MR Prognostic significance of left ventricular ejection fraction after acute myocardial infarction. A bedside radionuclide study. British Heart Journal 1985;53:16-24.
    
    6. Grassman ED, Johnson SA, Krone RJ. Predictors of success and major complications for primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. An analysis of the 1990 to 1994 Society for Cardiac Angiography and Interventions registries. Journal of the American College of Cardiology 1997;30:201-8.
    
    7. Sakai K, Nakagawa Y, Soga Y, et al. Comparison of 30-day outcomes in patients <75 years of age versus >or=75 years of age with acute myocardial infarction treated by primary coronary angioplasty. American Journal of Cardiology 2006;98:1018-21.
    
    8. Jaski BE, Cohen JD, Trausch J, et al. Outcome of urgent percutaneous transluminal coronary angioplasty in acute myocardial infarction: comparison of single-vessel versus multivessel coronary artery disease. American Heart Journal 1992;124:1427-33.
    
    9. Bedotto JB, Kahn JK, Rutherford BD, et al. Failed direct coronary angioplasty for acute myocardial infarction: in-hospital outcome and predictors of death.Journal of the American College of Cardiology 1993;22:690-4.
    
    10. Shihara M, Tsutsui H, Tsuchihashi M, et al. In-hospital and one-year outcomes for patients undergoing percutaneous coronary intervention for acute myocardial infarction. American Journal of Cardiology 2002;90:932-6.
    
    11. Parodi G, Memisha G, Valenti R, et al. Five year outcome after primary coronary intervention for acute ST elevation myocardial infarction: results from a single centre experience. Heart 2005;91:1541-4.
    
    12. Moreno R, Conde C, Perez-Vizcayno M-J, et al. Prognostic impact of a chronic occlusion in a noninfarct vessel in patients with acute myocardial infarction and multivessel disease undergoing primary percutaneous coronary intervention. Journal of Invasive Cardiology 2006;18:16-9.
    
    13. Romson JL, Hook BG, Kunkel SL, et al. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983;67:1016-23.
    
    14. Parissis JT, Adamopoulos S, Venetsanou KF, e al. Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. Journal of Interferon & Cytokine Research 2002;22:223-9.
    
    15. Sun M, Dawood F, Wen W-H, et al. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 2004;110:3221-8.
    
    16. Dewald O, Zymek P, Winkelmann K, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 2005;96:881-9.
    
    17. Bonvini RF, Hendiri T, Camenzind E. Inflammatory response post-myocardial infarction and reperfusion: A new therapeutic target? European Heart Journal Supplements 2005;7:I27-I36.
    
    18. Zhang J, Yu ZX, Fujita S, et al. Interstitial dendritic cells of the rat heart.Quantitative and ultrastructural changes in experimental myocardial infarction.Circulation 1993;87:909-20.
    
    19. Kostulas N, Li H-L, Xiao B-G, et al. Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 2002;33:1129-34.
    
    20. Kim BS, Lim SW, Li C, et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 2005;79:1370-7.
    
    21. Loi P, Paulart F, Pajak B, et al. The fate of dendritic cells in a mouse model of liver ischemia/reperfusion injury. Transplantation Proceedings 2004;36:1275-9.
    
    22. Dong X, Swaminathan S, Bachman LA, et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.Kidney International 2007;71:619-28.
    
    23. Bosco MC, Puppo M, Blengio F, et al. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.Immunobiology 2008;213:733-49.
    
    24. Ketloy C, Engering A, Srichairatanakul U, et al. Expression and function of Toll-like receptors on dendritic cells and other antigen presenting cells from non-human primates. Veterinary Immunology & Immunopathology 2008;125:18-30.
    
    25. Messmer D, Yang H, Telusma G, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Thl polarization. Journal of Immunology 2004;173:307-13.
    
    26. Yang D, Cheng Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin.Journal of Leukocyte Biology 2007;81:59-66.
    
    27. Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. Journal of Immunology 2005;175:7661-8.
    
    28. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008;117:3216-26.
    
    29. Muhammad S, Barakat W, Stoyanov S, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. Journal of Neuroscience 2008;28:12023-31.
    1. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 2004;110:e82-292.
    
    2. Muller DW, Topol EJ, Ellis SG, et al. Multivessel coronary artery disease: a key predictor of short-term prognosis after reperfusion therapy for acute myocardial infarction. Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. American Heart Journal 1991;121:1042-9.
    
    3. Jaski BE, Cohen JD, Trausch J, et al. Outcome of urgent percutaneous transluminal coronary angioplasty in acute myocardial infarction: comparison of single-vessel versus multivessel coronary artery disease. American Heart Journal 1992;124:1427-33.
    
    4. Shihara M, Tsutsui H, Tsuchihashi M, et al. In-hospital and one-year outcomes for patients undergoing percutaneous coronary intervention for acute myocardial infarction. American Journal of Cardiology 2002;90:932-6.
    
    5. Moreno R, Conde C, Perez-Vizcayno M-J, et al. Prognostic impact of a chronic occlusion in a noninfarct vessel in patients with acute myocardial infarction and multivessel disease undergoing primary percutaneous coronary intervention. Journal of Invasive Cardiology 2006;18:16-9.
    
    6. Kahn JK, Rutherford BD, McConahay DR, et al. Results of primary angioplasty for acute myocardial infarction in patients with multivessel coronary artery disease. Journal of the American College of Cardiology 1990;16:1089-96.
    
    7. van der Schaaf RJ, Vis MM, Sjauw KD, et al. Impact of multivessel coronary disease on long-term mortality in patients with ST-elevation myocardial infarction is due to the presence of a chronic total occlusion. American Journal of Cardiology 2006;98:1165-9.
    
    8. Parodi G, Memisha G, Valenti R, et al. Five year outcome after primary coronary intervention for acute ST elevation myocardial infarction: results from a single centre experience. Heart 2005;91:1541-4.
    
    9. Sorajja P, Gersh BJ, Cox DA, et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. European Heart Journal 2007;28:1709-16.
    
    10. Cochet A, Zeller M, Lalande A, et al. Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-segment elevation myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2008;10:2.
    
    11. Costantini CO, Stone GW, Mehran R, et al. Frequency, correlates, and clinical implications of myocardial perfusion after primary angioplasty and stenting,with and without glycoprotein IIb/IIIa inhibition, in acute myocardial infarction. Journal of the American College of Cardiology 2004;44:305-12.
    
    12. Kandzari DE. The challenges of chronic total coronary occlusions: an old problem in a new perspective. Journal of Interventional Cardiology 2004;17:259-67.
    
    13. Lee CW, Park SW, Cho GY, et al. Pressure-derived fractional collateral blood flow: a primary determinant of left ventricular recovery after reperfused acute myocardial infarction. Journal of the American College of Cardiology 2000;35:949-55.
    
    14. Antoniucci D, Valenti R, Moschi G, et al. Relation between preintervention angiographic evidence of coronary collateral circulation and clinical and angiographic outcomes after primary angioplasty or stenting for acute myocardial infarction. American Journal of Cardiology 2002;89:121-5.
    
    15. Heer T, Zeymer U, Juenger C, et al. Beneficial effects of abciximab in patients with primary percutaneous intervention for acute ST segment elevation myocardial infarction in clinical practice. Heart 2006;92:1484-9.
    
    16. Abbott JD, Ahmed HN, Vlachos HA, et al. Comparison of outcome in patients with ST-elevation versus non-ST-elevation acute myocardial infarction treated with percutaneous coronary intervention (from the National Heart, Lung, and Blood Institute Dynamic Registry). American Journal of Cardiology 2007;100:190-5.
    
    17. Antoniucci D, Rodriguez A, Hempel A, et al. A randomized trial comparing primary infarct artery stenting with or without abciximab in acute myocardial infarction. Journal of the American College of Cardiology 2003;42:1879-85.
    
    18. Montalescot G, Barragan P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction.New England Journal of Medicine 2001;344:1895-903.
    19.Kjaergard H,Nielsen PH,Andreasen JJ,et al.Coronary artery bypass grafting within 30 days after treatment of acute myocardial infarctions with angioplasty or fibrinolysis-a surgical substudy of DANAMI-2.Scandinavian Cardiovascular Journal 2004;38:143-6.
    20.Thielmann M,Neuhauser M,Marr A,et al.Predictors and outcomes of coronary artery bypass grafting in ST elevation myocardial infarction.Annals of Thoracic Surgery 2007;84:17-24.
    1. Bjorkholm M, De Faire U, Golm G. Immunologic evaluation of patients with ischemic heart disease. Genetic determination and relation to disease.Atherosclerosis 1980;36:195-200.
    
    2. Yamashita H, Shimada K, Seki E, Mokuno H, Daida H. Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. American Journal of Cardiology 2003;91:133-6.
    
    3. Shi H, Ge J, Fang W, et al. Peripheral-Blood Dendritic Cells in Men With Coronary Heart Disease. American Journal of Cardiology 2007;100:593-597.
    
    4. Soilleux EJ, Morris LS, Trowsdale J, et al. Human atherosclerotic plaques express DC-SIGN, a novel protein found on dendritic cells and macrophages.Journal of Pathology 2002;198:511-516.
    
    5. Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004;176:101-110.
    
    6. Niessner A, Sato K, Chaikof EL, et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-a. Circulation 2006;114:2482-2489.
    
    7. Romson JL, Hook BG, Kunkel SL, et al. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983;67:1016-23.
    
    8. Parissis JT, Adamopoulos S, Venetsanou KF, et al. Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. Journal of Interferon & Cytokine Research 2002;22:223-9.
    
    9. Sun M, Dawood F, Wen W-H, et al. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 2004;110:3221-8.
    
    10. Dewald O, Zymek P, Winkelmann K, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 2005;96:881-9.
    
    11. Zhang J, Yu ZX, Fujita S, et al. Interstitial dendritic cells of the rat heart.Quantitative and ultrastructural changes in experimental myocardial infarction.Circulation 1993;87:909-20.
    12.Kostulas N,Li H-L,Xiao B-G,et al.Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat.Stroke 2002;33:1129-34.
    13.Kim BS,Lim SW,Li C,et al.Ischemia-reperfusion injury activates innate immunity in rat kidneys.Transplantation 2005;79:1370-7.
    14.Loi P,Paulart F,Pajak B,et al.The fate of dendritic cells in a mouse model of liver ischemia/reperfusion injury.Transplantation Proceedings 2004;36:1275-9.
    15.Dong X,Swaminathan S,Bachman LA,et al.Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.Kidney International 2007;71:619-28.
    16.Xin L,Li Y,Soong L.Role of interleukin-1 beta in activating the CD11c(high)CD45RB-dendritic cell subset and priming Leishmania amazonensis-specific CD4+T cells in vitro and in vivo.Infection & Immunity 2007;75:5018-26.
    17.Bosco MC,Puppo M,Blengio F,et al.Monocytes and dendritic cells in a hypoxic environment:Spotlights on chemotaxis and migration.Immunobiology 2008;213:733-49.
    18.Ketloy C,Engering A,Srichairatanakul U,et al.Expression and function of Toll-like receptors on dendritic cells and other antigen presenting cells from non-human primates.Veterinary Immunology & Immunopathology 2008;125:18-30.
    19.Andrassy M,Volz HC,Igwe JC,et al.High-mobility group box-1 in ischemia-reperfusion injury of the heart.Circulation 2008;117:3216-26.
    20.Yilmaz A,Weber J,Cicha I,et al.Decrease in Circulating Myeloid Dendritic Cell Precursors in Coronary Artery Disease.Journal of the American College of Cardiology 2006;48:70-80.
    21.Banchereau J,Briere F,Caux C,et al.Immunobiology of dendritic cells.Annual Review of Immunology 2000;18:767-811.
    22.Ardavin C.Origin,precursors and differentiation of mouse dendritic cells.Nature Reviews Immunology 2003;3:582-90.
    23.Dzionek A,Fuchs A,Schmidt P,et al.BDCA-2,BDCA-3,and BDCA-4:three markers for distinct subsets of dendritic cells in human peripheral blood.Journal of Immunology 2000;165:6037-46.
    24.Jomantaite I,Dikopoulos N,Kroger A,et al.Hepatic dendritic cell subsets in the mouse. European Journal of Immunology 2004;34:355-65.
    
    25. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183-6.
    
    26. Stockwin LH, McGonagle D, Martin IG, et al. Dendritic cells: immunological sentinels with a central role in health and disease. Immunology & Cell Biology 2000;78:91-102.
    
    27. Erbel C, Sato K, Meyer FB, et al. Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Research in Cardiology 2007;102:123-132.
    
    28. Seya T, Funami K, Taniguchi M, Matsumoto M. Antibodies against human Toll-like receptors (TLRs): TLR distribution and localization in human dendritic cells. Journal of Endotoxin Research 2005;11:369-74.
    
    29. Tian J, Avalos AM, Mao SY, et al. ToII-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE, see comment erratum appears in Nat Immunol. 2007 Jul;8(7):780. Nature Immunology 2007;8:487-96.
    
    30. Dumitriu IE, Baruah P, Bianchi ME, et al. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. European Journal of Immunology 2005;35:2184-90.
    
    31. Zitvogel L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. Journal of Experimental Medicine 2002;195:F9-14.
    
    32. Proietto AI, O'Keeffe M, Gartlan K, et al. Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology 2004;209:163-72.
    
    33. Medzhitov R, Janeway CA, Jr. Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology 1997;9:4-9.
    
    34. Kabelitz D, Medzhitov R. Innate immunity—cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Current Opinion in Immunology 2007;19:1-3.
    
    35. Kono H, Rock KL. How dying cells alert the immune system to danger.Nature Reviews. Immunology 2008;8:279-289.
    
    36. Oppenheim JJ, Yang D. Alarmins: Chemotactic activators of immune responses. Current Opinion in Immunology 2005;17:359-365.
    
    37. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. Review 58 refs. Journal of Leukocyte Biology 2007;81:1-5.
    
    38. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity.Immunological Reviews 2007;220:60-81.
    
    39. Messmer D, Yang H, Telusma G, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. Journal of Immunology 2004;173:307-13.
    
    40. Yang D, Chen Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin.Journal of Leukocyte Biology 2007;81:59-66.
    
    41. Dumitriu IE, Bianchi ME, Bacci M, et al. The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology 2007;81:84-91.
    
    42. Kohno T, Anzai T, Naito K, et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling.Cardiovascular Research 2009;81:565-73.
    
    43. Oyama J-i, Blais C, Jr., Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 2004;109:784-9.
    
    44. Pradhan AD, Manson JE, Rossouw JE, et al. Inflammatory biomarkers,hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women's Health Initiative observational study. JAMA 2002;288:980-7.
    
    45. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 2003;107:1486-91.
    
    46. Biasucci LM, Cdc, Aha. CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice:clinical use of inflammatory markers in patients with cardiovascular diseases:a background paper. Circulation 2004;110:e560-7.
    
    47. Suleiman M, Khatib R, Agmon Y, et al. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. Journal of the American College of Cardiology 2006;47:962-8.
    
    48. Theroux P, Armstrong PW, Mahaffey KW, et al. Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: A substudy of the COMMA trial. European Heart Journal 2005;26:1964-1970.
    
    49. Kosmala W, Przewlocka-Kosmala M, Mazurek W. Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction.International Journal of Cardiology 2005;101:449-456.
    
    50. Ohlmann P, Jaquemin L, Morel O, et al. Prognostic value of C-reactive protein and cardiac troponin I in primary percutaneous interventions for ST-elevation myocardial infarction. American Heart Journal 2006;152:1161-7.
    
    51. Debrunner M, Schuiki E, Minder E, et al. Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clinical Research in Cardiology 2008;97:298-305.
    1. Soilleux EJ, Morris LS, Trowsdale J, et al. Human atherosclerotic plaques express DC-SIGN, a novel protein found on dendritic cells and macrophages.Journal of Pathology 2002;198:511-516.
    
    2. Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004;176:101-110.
    
    3. Niessner A, Sato K, Chaikof EL, et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-a. Circulation 2006;114:2482-2489.
    
    4. Bjorkholm M, De Faire U, Golm G Immunologic evaluation of patients with ischemic heart disease. Genetic determination and relation to disease.Atherosclerosis 1980;36:195-200.
    
    5. Yamashita H, Shimada K, Seki E, et al. Concentrations of interleukins,interferon, and C-reactive protein in stable and unstable angina pectoris.[see comment]. American Journal of Cardiology 2003;91:133-6.
    
    6. Zebrack JS, Muhlestein JB, Home BD, Anderson JL, Intermountain Heart Collaboration Study G C-reactive protein and angiographic coronary artery disease: independent and additive predictors of risk in subjects with angina.Journal of the American College of Cardiology 2002;39:632-7.
    
    7. Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, et al. Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes. Heart 2004;90:847-52.
    
    8. Cavusoglu E, Chopra V, Gupta A, et al. Usefulness of the white blood cell count as a predictor of angiographic findings in an unselected population referred for coronary angiography. American Journal of Cardiology 2006;98:1189-93.
    
    9. Kahn JK, Rutherford BD, McConahay DR, et al. Results of primary angioplasty for acute myocardial infarction in patients with multivessel coronary artery disease. Journal of the American College of Cardiology 1990;16:1089-96.
    
    10. Jaski BE, Cohen JD, Trausch J, et al. Outcome of urgent percutaneous transluminal coronary angioplasty in acute myocardial infarction: comparison of single-vessel versus multivessel coronary artery disease. American Heart Journal 1992;124:1427-33.
    
    11. Shihara M, Tsutsui H, Tsuchihashi M, et al. In-hospital and one-year outcomes for patients undergoing percutaneous coronary intervention for acute myocardial infarction. American Journal of Cardiology 2002;90:932-6.
    
    12. Yilmaz A, Weber J, Cicha I, et al. Decrease in Circulating Myeloid Dendritic Cell Precursors in Coronary Artery Disease. Journal of the American College of Cardiology 2006;48:70-80.
    
    13. Van Vre EA, Hoymans VY, Bult H, et al. Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease. Coronary Artery Disease 2006;17:243-8.
    
    14. Erbel C, Sato K, Meyer FB, et al. Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Research in Cardiology 2007;102:123-132.
    
    15. Yilmaz A, Schaller T, Cicha I, et al. Predictive value of the decrease in circulating dendritic cell precursors in stable coronary artery disease. Clinical Science 2009;116:353-63.
    
    16. Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial.American Journal of Cardiology 2005;96:61F-68F.
    
    17. Hong M-K, Lee CW, Kim Y-H, et al. Usefulness of follow-up low-density lipoprotein cholesterol level as an independent predictor of changes of coronary atherosclerotic plaque size as determined by intravascular ultrasound analysis after statin (atorvastatin or simvastatin) therapy. American Journal of Cardiology 2006;98:866-70.
    
    18. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial.[see comment]. JAMA 2006;295:1556-65.
    
    19. Rodriguez-Granillo GA, Vos J, Braining N, et al. Long-term effect of perindopril on coronary atherosclerosis progression (from the perindopril's prospective effect on coronary atherosclerosis by angiography and intravascular ultrasound evaluation [PERSPECTIVE] study). American Journal of Cardiology 2007;100:159-63.
    20. Tardif J-C, Gregoire J, L'Allier PL, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007;297:1675-82.
    
    21. Kandzari DE. The challenges of chronic total coronary occlusions: an old problem in a new perspective. Journal of Interventional Cardiology 2004;17:259-67.
    
    22. Lee CW, Park SW, Cho GY, et al. Pressure-derived fractional collateral blood flow: a primary determinant of left ventricular recovery after reperfused acute myocardial infarction. Journal of the American College of Cardiology 2000;35:949-55.
    
    23. Pohl T, Seiler C, Billinger M, et al. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. Journal of the American College of Cardiology 2001;38:1872-8.
    
    24. Hatada K, Sugiura T, Kamihata H, et al. Clinical significance of coronary flow to the infarct zone before successful primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. Chest 2001; 120:1959-63.
    
    25. Kurotobi T, Sato H, Kinjo K, et al. Reduced collateral circulation to the infarct-related artery in elderly patients with acute myocardial infarction. [see comment]. Journal of the American College of Cardiology 2004;44:28-34.
    
    26. Sorajja P, Gersh BJ, Cox DA, et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. European Heart Journal 2007;28:1709-16.
    
    27. Cochet A, Zeller M, Lalande A, et al. Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-segment elevation myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2008;10:2.
    1. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovascular Research 2002;53:31-47.
    
    2. Cheng X, Liao Y-H, Ge H, et al. TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. Journal of Clinical Immunology 2005;25:246-53.
    
    3. Zhang J, Yu ZX, Fujita S, et al. Interstitial dendritic cells of the rat heart.Quantitative and ultrastructural changes in experimental myocardial infarction.Circulation 1993;87:909-20.
    
    4. Manfredi AA, Sabbadini MG, Rovere-Querini P. Dendritic cells and the shadow line between autoimmunity and disease. Arthritis & Rheumatism 2005;52:11-15.
    
    5. Moll H. Dendritic cells and host resistance to infection. Cellular Microbiology 2003;5:493-500.
    
    6. Erbel C, Sato K, Meyer FB, et al. Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Research in Cardiology 2007;102:123-132.
    
    7. Van Vre EA, Hoymans VY, Bult H, et al. Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease. Coronary Artery Disease 2006;17:243-8.
    
    8. Yilmaz A, Weber J, Cichal I, et al. Decrease in Circulating Myeloid Dendritic Cell Precursors in Coronary Artery Disease. Journal of the American College of Cardiology 2006;48:70-80.
    
    9. Weis M, Schlichting CL, Engleman EG, et al. Endothelial determinants of dendritic cell adhesion and migration: new implications for vascular diseases. Arteriosclerosis, Thrombosis & Vascular Biology 2002;22:1817-23.
    
    10. Frangogiannis NG, Entman ML. Chemokines in myocardial ischemia. Trends in Cardiovascular Medicine 2005;15:163-9.
    
    11. Parissis JT, Adamopoulos S, Venetsanou KF, et al. Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. Journal of Interferon & Cytokine Research 2002;22:223-9.
    
    12. Kostulas N, Li H-L, Xiao B-G, et al. Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 2002;33:1129-34.
    
    13. Zhou T, Sun G-Z, Zhang M-J, et al. Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody.World Journal of Gastroenterology 2005; 11:1005-10.
    
    14. Dong X, Swaminathan S, Bachman LA, et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.Kidney International 2007;71:619-28.
    
    15. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. Journal of Experimental Medicine 2005;201:1135-1143.
    
    16. Kim BS, Lim SW, Li C, et al. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 2005;79:1370-7.
    
    17. Dybdahl B, Slordahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 2005;91:299-304.
    
    18. Tang D, Shi Y, Kang R, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. Journal of Leukocyte Biology 2007;81:741-747.
    19. Semino C, Angelini G, Poggi A, et al. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 2005;106:609-616.
    
    20. Dumitriu IE, Baruah P, Valentinis B, et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. Journal of Immunology 2005;174:7506-15.
    
    21. Mantell LL, Parrish WR, Ulloal L. Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Review 67 refs. Shock 2006;25:4-11.
    
    22. Fink MP, Fink MP. Bench-to-bedside review: High-mobility group box 1 and critical illness. Critical Care (London, England) 2007;11:229.
    
    23. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999;285:248-51.
    
    24. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008;117:3216-26.
    
    25. Liu K, Mori S, Takahashi HK, et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB Journal 2007;21:3904-16.
    
    26. Goldstein RS, Gallowitsch-Puerta M, Yang L, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 2006;25:571-4.
    
    27. Messmer D, Yang H, Telusma G, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Thl polarization. Journal of Immunology 2004;173:307-13.
    
    28. Yang D, Chen Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin.Journal of Leukocyte Biology 2007;81:59-66.
    
    29. Dumitriu IE, Bianchi ME, Bacchi M, et al. The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology 2007;81:84-91.
    1.Lauffenburger DA,Horwitz AF,Lauffenburger DA,et al.Cell migration:a physically integrated molecular process.Cell 1996;84:359-69.
    2.Friedl P.Prespecification and plasticity:shifting mechanisms of cell migration..Current Opinion in Cell Biology 2004;16:14-23.
    3.Swetman Andersen CA,Handley M,Pollara G;et al.betal-Integrins determine the dendritic morphology which enhances DC-SIGN-mediated particle capture by dendritic cells.International Immunology 2006;18:1295-303.
    4.Xu LL,Warren MK,Rose WL,et al.Human recombinant monocyte chemotactic protein and other c-c chemokines bind and induce directional migration of dendritic Cells in vitro.Journal of Leukocyte Biology 1996;60:365-371.
    5.Lin CL,Sufi RM,Rahdon RA,et al.Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation.European Journal of Immunology 1998;28:4114-4122.
    6. Sallusto F, Schaerli P, Loetscher P, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology 1998;28:2760-2769.
    
    7. Iijima N, Yanagawa Y, Clingan JM, et al. CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells.International Immunology 2005;17:1201-1212.
    
    8. Jung ID, Lee JS, Kim YJ, et al. Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase. Immunology 2007;121:533-544.
    
    9. Yang D, Chen Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin.Journal of Leukocyte Biology 2007;81:59-66.
    
    10. Dumitriu IE, Bianchi ME, Bacci M, et al. The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology 2007;81:84-91.
    
    11. Manfredi AA, Capobianco A, Esposito A, et al. Maturing Dendritic Cells Depend on RAGE for In Vivo Homing to Lymph Nodes. Journal of Immunology 2008;180:2270-5.
    
    12. Robert C, Fuhlbrigge RC, Kieffer JD, et al. Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance.[see comment].Journal of Experimental Medicine 1999;189:627-36.
    
    13. D'Amico G, Bianchi G, Bernasconi S, et al. Adhesion, transendothelialmigration, and reverse transmigration of in vitro cultured dendritic cells.Blood 1998;92:207-214.
    
    14. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nature Immunology 2000;1:353-7.
    
    15. Liang TW, Chiu HH, Gurney A, et al. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. Journal of Immunology 2002;168:1618-26.
    
    16. Weber C, Weber C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. Journal of Molecular Medicine 2003;81:4-19.
    17. Weis M, Schlichting CL, Engleman EG, et al. Endothelial determinants of dendritic cell adhesion and migration: new implications for vascular diseases. Arteriosclerosis, Thrombosis & Vascular Biology 2002;22:1817-23.
    
    18. Ichiyasu H, McCormack JM, McCarthy KM, et al. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions. American Journal of Respiratory Cell &Molecular Biology 2004;30:761-70.
    
    19. Hollender P, Ittelett D, Villard F, et al. Active matrix metalloprotease-9 in and migration pattern of dendritic cells matured in clinical grade culture conditions.Immunobiology 2002;206:441-58.
    
    20. Chabot V, Reverdiau P, Iochmann S, et al. CCL5-enhanced human immature dendritic cell migration through the basement membrane in vitro depends on matrix metalloproteinase-9. Journal of Leukocyte Biology 2006;79:767-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700