跨膜型TNF-α反向信号通路及其保护肿瘤抵抗凋亡的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨膜型TNF-α(transmembrane TNF-α, tmTNF-α)不但可作为配体与靶细胞TNFR结合,向靶细胞传递正向信号,对靶细胞发挥效应;也可作为受体与可溶性或膜TNFR结合,向效应细胞本身传递反向信号,介导效应细胞的生物学效应。tmTNF-α反向信号可上调活化T细胞分泌IFN-γ,下调IL-4的产生;可抑制LPS诱导的单核细胞分泌致凋亡因子和促炎细胞因子TNF-α、IL-1、IL-6等,但却上调IL-12的产生。此外,tmTNF-α反向信号还可诱导HTLV感染的T细胞系或PHA活化的CD4+T细胞表达E-selectin。本室前期工作证实肿瘤细胞高表达tmTNF-α可通过其反向信号保护肿瘤细胞抵抗分泌性TNF-α(secretory TNF-α, sTNF-α)诱导的凋亡。但是对其反向信号通路却知之甚少。
     本实验室前期用自己制备的特异性针对tmTNF-α抗体进行免疫共沉淀,沉淀到与tmTNF-α胞内段发生作用的IKKa、TRAF1和NF-κBp52。本研究主要探讨tmTNF-α反向信号复合物成员之间的相互作用,该复合物与线粒体之间的联系,以及tmTNF-α与肿瘤耐药的关系并深入探索其分子机制,为临床干预肿瘤耐药提供新的分子靶点和理论依据。
     主要实验结果如下:
     一、TNF-LS、IKKα和TRAF1原核表达、真核表达和荧光融合表达载体的构建和鉴定
     1. TNF-LS、IKKα和TRAF1原核表达、真核表达和荧光融合表达载体的构建和鉴定:用PCR和分子克隆技术成功构建pTriEx-4C-TNF-LS、pTriEx-4C-TRAF1、pTrieX-4C-IKKα、pET28a-his-TRAF1和pET28α-his-IKKα原核表达重组体;pEGFPN1-TNF-LS、pDsRedN1-TNF-LS、pCFPN1-TNF-LS和pEGFPC1-IKKα等荧光融合表达载体;pTriEx-4C-TNF-LS、pTriEx-4C-TRAF1、pTriEx-4C-IKKα、pcDNA3.1-IKKα等真核表达载体。
     2. TNF-LS缺失突变体的构建和鉴定:用重组PCR定位突变技术成功构建了△-75~-69-TNFLS和△-68~-62-TNFLS突变体,并分别连接至pcDNA3.1和pEGFPN1载体上。
     二、tmTNF-α反向信号复合物主要成员TNF-LS、TRAF1与IKKα的细胞亚定位和相互关系的确定
     1. tmTNF-α与IKK-α, TRAF-1和NF-κBp52发生共沉淀:采用仅识别tmTNF-α的单克隆抗体进行IP-Wetern,结果可共沉淀TRAF1、IKKα和NF-κBp52,但不能与TNFR1/2、TRAF2/3、NIK、SODD、FADD和NF-κBp65等分子共沉淀。反之,分别用TRAF1、IKKα和NF-κBp52抗体可与tmTNF-α共沉淀。提示TRAF-1、IKKα和NF-κBp52可能与tmTNF-α胞浆段形成信号复合物参与NF-κB的活化。
     2. TNF-LS与TRAF1直接相互作用:用体外Pull down证实了TRAF1和TNF-LS可直接相互作用;共转染TRAF1和tmTNF-α或TNF-LS可共沉淀到大量TRAF1,当TRAF1与缺失胞浆段的tmTNF-α共转,则不能募集TRAF1;此外,共转TRAF1和TNF-LS可使在原本胞膜周围弥散性分布的TNF-LS改变为与TRAF1共定位,且呈局限性聚集。
     3. TNF-LS N端的-75~-69位氨基酸决定了TRAF1和TNF-LS的相互作用:共转△-75~-69-TNF-LS和TRAF1,并不能导致共沉淀的TRAF1增加,提示该位点可能为募集TRAF1所必需。
     4. TRAF1与IKKα直接相互作用:用体外Pull down证实TRAF1可与IKKα直接相互作用。共转TRAF1和IKKα使共沉淀的IKKα量明显高于单转TRAF1或者IKKα,并使胞浆内弥散性分布的IKKα向TRAF1分布的地方聚集。
     5. TNF-LS不能与IKKα直接相互作用:用体外Pull down实验证实TNF-LS和IKKα之间无直接相互作用。
     6.抑制CKI对tmTNF-α胞内段磷酸化导致反向信号复合物募集,NF-κB活化,并减低对ADM和sTNF-α杀伤的敏感性:用CKI抑制剂D4476抑制CKI对tmTNF-α-75~-69位点的磷酸化,促进tmTNF-α与TRAF1、IKKα和NF-κBp52形成复合物增多,NF-κB进一步活化,并保护肿瘤细胞抵抗sTNF-α和阿霉素诱导的凋亡。
     三、tmTNF-α反向信号复合物与线粒体的关系
     1. TRAF1诱导线粒体聚集,并和线粒体共定位:293T细胞线粒体呈点网状分布,转染TRAF1后,线粒体呈局限性点状分布,且和TRAF1共定位。
     2. tmTNF-α反向信号复合物存在于线粒体:提取线粒体蛋白,用Western blot证实在线粒体中可检测到tmTNF-α及其反向信号复合物成员TRAF1、IKKα和NF-κBp52;共转293T细胞TNF-LS和TRAF1可导致线粒体聚集,且聚集的线粒体与TNF-LS和TRAF1发生共定位;用IP证实tmTNF-α和NF-KBp52可在线粒体中发生免疫共沉淀,提示tmTNF-α反向信号复合物可能存在于线粒体中。
     3. tmTNF-α及其反向信号复合物成员可在胞核中检出:提取核蛋白,用Western blot在核蛋白中检出完整的tmTNF-α分子及其反向信号复合物成员TRAF1、IKKα和NF-κBp52,但是,它们与tmTNF-α之间的关系尚待研究。
     四、高表达TNF-LS诱导MCF-7细胞抵抗sTNF-α的胞毒作用
     1.高表达tmTNF-α保护乳腺癌细胞抵抗sTNF-α的胞毒效应:高表达tmTNF-α的MDA-MB-231乳腺癌细胞NF-κB持续性活化,对sTNF-α导致的胞毒效应发生抵抗;而低表达tmTNF-α的MCF-7乳腺癌细胞NF-κB无激活,且对sTNF-α胞毒效应敏感。
     2.下调tmTNF-α可逆转MDA-MB-231细胞对sTNF-α的敏感性:用siRNA下调MDA-MB-231细胞tmTNF-α的基因表达,可抑制NF-κB活化,逆转其对sTNF-α杀伤的敏感性。
     3.稳转TNF-LS使MCF-7细胞由sTNF-α敏感株变为耐受株:稳转TNF-LS的MCF-7细胞高表达TNF-LS,且TNF-LS主要分布在胞膜上;稳转TNF-LS使MCF-7细胞NF-κB持续性活化,并由sTNF-α敏感细胞株转变为耐受株。用PDTC抑制NF-κB活化,可抑制抗凋亡分子cIAP1的基因表达,并逆转稳转TNF-LS的MCF-7细胞对sTNF-α的敏感性。
     4. TNF-LS介导tmTNF-α的反向信号:瞬转TNF-LS和wt-tmTNF-α均可导致NF-κB活化,对sTNF-α胞毒效应耐受;而瞬转缺失胞浆段的△cs-tmTNF-α则几乎不引起NF-κB活化,并保留亲本细胞对sTNF-α的敏感性。提示TNF-LS介导tmTNF-α的反向信号。
     5.抑制TNF-LS内吞促进MCF-7细胞对sTNF-α的耐受:用MDC抑制内吞可增加细胞表面TNF-LS的表达,导致NF-κB活性进一步增加,使MCF-7细胞对sTNF-α的耐受增强。提示tmTNF-α的反向信号不需要该分子内化。
     6.抑制TNF-LS胞浆段剪切促进MCF-7细胞对sTNF-α的耐受:用ZLL抑制信号肽肽酶对TNF-LS胞浆段的剪切,也可进一步增加TNF-LS在细胞表面的表达,进而促进NF-κB活化,增强MCF-7细胞对sTNF-α的耐受。提示tmTNF-α的反向信号依赖其跨膜性。
     五、tmTNF-α反向信号诱导乳腺癌细胞抵抗化疗及其分子机制
     1.高表达tmTNF-α导致乳腺癌细胞卡铂耐药:用胞毒实验证实高表达tmTNF-α乳腺癌细胞系MDA-MB-435抵抗卡铂杀伤效应,其NF-κB组成性活化;而低表达tmTNF-α乳腺癌细胞系T47D的NF-κB无活化,对卡铂杀伤则敏感。瞬转tmTNF-α可明显抑制T47D细胞对卡铂的敏感性,用PDTC抑制NF-κB活性则能在一定程度上逆转该转染细胞对卡铂的敏感性。
     2. tmTNF-α反向信号与乳腺癌细胞耐药相关:比较3株稳转缺失胞外段的TNF-LS的MCF-7细胞,因TNF-LS表达量不同而对卡铂的敏感性不同,即TNF-LS表达量越高的MCF-7细胞对卡铂的敏感性越差(IC50>400μg/ml),而亲本MCF-7细胞的IC50则为231μg/ml。用PDTC特异性抑制NF-κB的活性,可以在一定程度上逆转高表达TNF-LS的MCF-7细胞对卡铂的敏感性。提示tmTNF-α反向信号与乳腺癌细胞耐药相关。
     3. tmTNF-α反向信号导致ERK组成性磷酸化:转染tmTNF-α可导致T47D细胞ERK组成性磷酸化增加,卡铂对其无明显影响;但是卡铂可明显诱导未转染T47D细胞ERK的磷酸化。
     4. tmTNF-α反向信号抑制卡铂诱导的JNK磷酸化:卡铂作用T47D细胞可诱导JNK一过性磷酸化;然而,转染tmTNF-α可明显抑制卡铂诱导JNK的磷酸化。提示tmTNF-α反向信号抑制JNK磷酸化,从而抵抗卡铂的胞毒效应。
     5. tmTNF-α反向信号导致PI3K组成性表达:卡铂作用T47D细胞可诱导PI3K亚单位p85微量表达;转染tmTNF-α则导致T47D细胞PI3K高水平组成性表达,但卡铂对其无明显影响。提示tmTNF-α反向信号诱导PI3K组成性活化,可能通过促进抗凋亡因子表达而抵抗卡铂的胞毒效应。
     6. tmTNF-α反向信号诱导p53组成性表达:卡铂作用T47D细胞可诱导p53高表达,而转染tmTNF-α则导致T47D细胞p53高水平组成性表达,卡铂对之无明显影响。提示tmTNF-α反向信号诱导p53组成性高表达,可能通过增强DNA修复,抵抗卡铂造成DNA损伤而导致的细胞凋亡。
     综上所述,本工作阐明了tmTNF-α反向信号复合物成员的相互作用,即通过其胞浆段脱磷酸化,募集TRAF1,后者将IKK-α募集到tmTNF-α反向信号复合物中,活化NF-κB旁路,通过上调抗凋亡基因表达,导致肿瘤细胞抵抗sTNF-α和化疗药物的杀伤。此外,tmTNF-α反向信号还通过促进肿瘤细胞PI3K和p53组成性表达,诱导ERK组成性磷酸化,抑制卡铂诱导的JNK磷酸化而导致肿瘤细胞耐药。该研究通过深入探索tmTNF-α反向信号通路及其保护肿瘤抵抗凋亡的分子机制,为临床干预肿瘤耐药提供新的线索和分子靶点。
transmembrane TNF-a(tmTNF-a) can not only interact directly with TNFR and transduce forward signaling into TNFR bearing cells to play effects, this signaling pathway is also called forward signaling pathway. Meanwhile, tmTNF-a can also work as receptors to accept membrane bound TNFR or soluble TNFR stimulation, and transdues signaling into tmTNF-a bearing cells, this signaling pathway is called reverse signaling pathway, which mediate several biological effects. The reverse signaling of tmTNF-a can upregulate activated T cells to secret IFN-y and downregulate generation of IL-4; it can also inhibit induced monocytes by LPS to secret proapoptotic factors and proinflammation factors, such as TNF-α、IL-1、IL-6 generation; but it upregulate IL-12 secretion. Furthermore, reverse signaling pathway induced by tmTNF-a can induce HTLV infected T cells or PHA activated CD4+T cells expression of E-selectin. We previously found that tumor cells with high expression of tmTNF-a can protect tumor cells from secretory TNF-a (sTNF-a) cytotoxicity. However, the reverse signaling pathway is still unknown.
     We previously prepared a specific monoclonal tmTNF-a antibody, and we used this specific antibody to immunoprecipitate, and we had got IKKα、TRAF1 and NF-κBp52 to interact with the intracellular domain of tmTNF-a. This research is mainly studying the relationship of the member of the reverse signaling pathway of tmTNF-a, and their relationship with mitochondria. We also worked on the relationship between tmTNF-a expression on tumor cells and chemoresistance, and we also further study into the molecular mechanism of the chemoresistance induced by tmTNF-a, so as to provide new target molecular and theory basis for clinical intervention. Main results as below:
     I. Construction and identification of prokaryotic、eukaryotic and fluorescence fusion expression vectors of TNF-LS、IKKαand TRAF1
     1. Construction and identification of prokaryotic、eukaryotic and fluorescence fusion expression vectors of TNF-LS、IKKαand TRAF1:
     PCR and molecular cloning techniques were used to construct prokaryotic fusion vectors of pTriEx-4C-TNF-LS、pTriEx-4C-TRAF1、pTrieX-4C-IKKα、pET28a-his-TRAF1 and pET28a-his-IKKa; fluorescence expression vectors of pEGFPNl-TNF-LS、pDsRedN1-TNF-LS、pCFPN1-TNF-LS and pEGFPC1-IKKa; eukaryotic fusion vectors of pTriEx-4C-TNF-LS、pTriEx-4C-TRAF、pTriEx-4C-IKKa and pcDNA3.1-IKKa. And they were successfully constructed by sequencing and blasting.
     2. Construction and identification of the mutated TNF-LS in eukaryotic and fluorescence fusion expression vectors
     pcDNA3.1/V5-His-TOPO-TNF-LS was taken as a template, PCR amplification of a fragment about 208 bp, restriction to connect to pcDNA3.1, transformation of the ligated product into competent DH5a bacteria, choosing positive clones, restriction enzyme digestion and sequencing. And then the correct sequenced pcDNA3.1-△-75--69-TNF-LS and pcDNA3.1-△-68~-62-TNF-LS digested, recycling the fragment, after digestion, connected to digested pEGFPNl, the identification of the positive clones by digesttion.
     II. Identification of the major members of the reverse signaling pathway of tmTNF-αTRAFl and IKKa and the relationship among them
     1. IKKα、TRAF-1 and NF-κBp52 can be immunoprecipitated by tmTNF-αmonoclonal antibody
     In order to investigate into the reverse signaling pathway of tmTNF-α, specific tmTNF-αmonoclonal antibody was used to IP-Wetern. The results show that TRAFl, IKK-αand NF-κBp52 can be sedimentated by tmTNF-αantibody. However, TNFR1/2, TRAF2/3, NIK, SODD, FADD and NF-κBp65 can not be immunoprecipitated. Conversely, using TRAF1, IKKa and NF-κBp52 antibody to re-IP, all of them can immunoprecipitated tmTNF-α. The results imply that TRAFl and IKKa might participitate in the formation of reverse signaling complexes of tmTNF-αso as to activate NF-κB.
     2. TNF-LS directly interact with TRAFl
     First of all, we intend to explore the relationship between TNF-LS and TRAFl, direct or indirect interactions. Prokaryotic expression with his label with TRAF1 and prokaryotic expression of the non-his tagged TNF-LS in vitro Pull down, we confirmed that TNF-LS and TRAFlinteract directly. In order to further confirm this direct interaction, we transfected TRAF1 and TNF-LS plasmid alone or co-transfected into 293T cells to overexpress, and then by IP-Western to verify their interaction in vivo and found that tmTNF-αwith monoclonal antibodies can pull down significantly higher TRAFl in cells cotransfected with TNF-LS and TRAF1 than that of the single-TRAFl transgenic group or the blank control group. Further, we build TRAFl and TNF-LS fluorescence fusion vectors with different corresponding fluorescence to study their cellular localization, found that over-expression of TRAFl in 293T cells showed the limited point-like distribution, and TNF-LS distributed near the membrane. Co-transfected TRAF1 and TNF-LS resulted in gathering of TNF-LS to TRAF1 localization, the confocal results showed that the fluoresence of the TRAF1 and the fluorescence of the TNF-LS merged. Direct interaction of TNF-LS with TRAF1 confirmed in Three-pronged approach.
     3.-75~-69 amino acids of the N terminal of TNF-LS determined the direct interaction of TNF-LS and TRAFl
     The intracellular domain of TNF-LS has only 30 amino acids, and we produced mutation of TNF-LS deletion of the N-terminal -75~-69 or -68~-61 amino acids. Mutants or wild type tmTNF-αor TNF-LS together with TRAF1 were co-transfected into 293T cells and found that the TNF-LS deletion of the N-terminal of -75~-69 amino acids influenced greatly on the interaction of TRAF1 and TNF-LS, suggesting that the N-terminal -75~-69 amino acids of TNF-LS plays a decisive role in TRAF1 and TNF-LS interaction.
     4. Dephosphorylation of the intracellular domain of TNF-LS caused the recruitment of the reverse signaling complex, leading to NF-κB activation, resulting in the resistance of tmTNF-αhigh expression tumors resistance to ADM and sTNF-α
     The N-terminal-75 to -69 amino acids decides TRAFl and TNF-LS interaction, we found that the N-terminal-75 to -69 amino acids of tmTNF-αis the site for CKI phosphorylation. Using specific inhibitors of CKI inhibitor D4476 to inhibit the activity of CKI, and then tmTNF-a monoclonal antibody was used to IP, compared with untreated Raji cell group, treatment group IP to TRAF1, IKKa and NF-κBp52 significantly more than untreated group. The results implies that phosphorylation of tmTNF-a by CKI inhibited the reverse transmission signal pathway. CKI inhibitor with Raji cells inhibited the activity of CKI can lead to NF-κB activation and further lead to Raji cells resistant to sTNF-a and chemotherapy drug doxorubicin. Suggesting that tmTNF-a may be involved in a reverse signal of NF-κB activation and resistance to chemotherapy drugs.
     5. TRAFl and IKKa interacted directly
     We also confirmed direct interaction of TRAF1 and IKKa from three-pronged approaches. First of all, we prokaryotically expressed TRAF1 and IKKa, Pull down assay was done in vitro and confirmed that TRAF1 directly interacted with IKKa. In addition, we use IP in the body to further give evidence that TRAF1 directly interacted with IKKa. Finally, TRAF1 and IKKa with different color fluorescent protein fusion expressed in 293T cells, after co-transfection of TRAF1 and IKKa, TRAF1 resulted in partial aggregation of IKKa protein and the fluorescence of TRAFl and IKKa merged.
     6. TNF-LS can not interact directly with IKKa
     Prokaryotically expressed TNF-LS and IKKa, and in vitro pull down assay was done, we found that TNF-LS can not directly interact with IKKa
     III. The close relationship of mitochondrial with the reverse signaling complex molecular TNF-LS、TRAF1 and IKKα
     1. TRAFl co-localized with mitochondria
     In 293T cells, mitochondria showed the mesh point distribution, after transfection of TRAF1, the distribution of mitochondria changed into point-like distribution, and co-localized with TRAF1.
     2. Members of the reverse signaling of tmTNF-a all exist in the mitochondria
     mitochondira was extracted, and western blot was taken to indentify if there was any relationship between members of the reverse signaling complex members of TRAF1、 IKKa and NF-κBp52 and mitochondria. We found that TRAF1、IKKαand NF-κB p52 all could localize in the mitochondria. Co-transfection of 293T cells with TNF-LS and TRAF1 could induce mitochondria aggregation, and TRAF1 changed the TNF-LS distribution on the membrane which assembled to the position of TRAF1. IP was further taken to immunoprecipitated mitochondria proteins with monoclonal tmTNF-αantibody and NF-KBp52 can be precipitated, implying that the reverse signaling pathway might occur in the mitochondria.
     3. tmTNF-αand related reverse signaling complex members can be found in the nucleus
     nuclear proteins were prepared, and western blot was used and we identified the nuclear localization of tmTNF-a and related molecular TRAF1、IKKa and NF-κB p52, but there is no report about their relationship until now.
     IV. TNFLS stably high expression in MCF-7 induced the tolerance of such cells to sTNF-α
     1. High expression of tmTNF-a protects cells from the sTNF-a induced cytotoxicity
     Sources of the same breast cancer tumor, some sensitive to sTNF-a induced cytotoxicity,some resistant, we found that high expression of tmTNF-a in the MDA-MB-231 induced sTNF-αtolerance, while low tmTNF-a expression in the MCF-7 cells were sensitive to sTNF-α. Prompt, tmTNF-a expression may be the protection effect from sTNF-αinduced cytotoxicity.
     2. Down-regulation of tmTNF-a in MDA-MB-231 cells reduced NF-κB activity with a reversal of the cells on the sensitivity to sTNF-α
     Interestingly, down-regulation of tmTNF-a expression in MDA-MB-231 cells with TNF siRNA resulted in the recovery of MDA-MB-231 cells sensitive to sTNF-αto some extent.
     3. TNF-LS expressed on the membrane of MCF-7 cells
     After transfection of pIRES2-EGFP/TNF-LS into MCF-7 cells, the expression of EGFP and TNF-LS were separate. tmTNF-a monoclonal antibody were used for staining, and then adding the second TRITC labeled antibody. Indirect fluorescence under the microscope shows that the diffuse cytoplasmic green fluorescence with TNF-LS distribution in the cell membrane, which shows a red aperture under the fluorescence microscope.
     4. High expression of TNFLS in MCF-7 cells caused the cells tolerant to sTNF-αand persistent NF-κB activation
     Establishment of TNF-LS stably expressed in MCF-7 cells, we found that TNF-LS/MCF-7 cells are tolerant to sTNF-a and persistent NF-κB activation, showing the same features like another breast cancer cell line MDA-MB-231 cell with high tmTNF-a expression. Prompt, TNF-LS has some tmTNF-a properties.We speculated that the reverse signaling pathway of tmTNF-a may determined by TNF-LS.
     5. NF-κB inhibitor PDTC inhibited stably transfected MCF-7 cells with TNF-LS NF-κB activity, resulting in reversal of the stable cell lines TNF-LS/MCF-7 sensitive to sTNF-α
     PDTC can selectivly inhibited the activity of NF-κB. Selective inhibition of NF-κB activity in TNF-LS/MCF-7 cells and found that the sensitivity of TNF-LS/MCF-7 cells to sTNF-a increased, suggesting that TNF-LS lead to the stability of the TNF-LS/MCF-7 cells to sTNF-a for NF-κB activation.
     6. Anti-apoptotic gene expression leading to TNF-LS/MCF-7 cells resistant to sTNF-a induced cytotoxicity
     NF-κB is an important factor in determining cell death and survival, and cIAPl is one of the target gene of NF-κB which is an antiapoptotic factor. comparing before and after STNF-a stimulation, the expression of cIAPl was significantly higher in MCF-7 cells stably transfected with TNF-LS than MCF-7 cells untranfected or transfected empty vectors.sTNF-a stimulation led to further cIAPl gene expression. The results suggest that regulation of antiapoptotic gene expression by NF-κB activation may be the reason for TNF-LS/MCF-7 cells resistant to sTNF-αinduced cytotoxicity.
     7. The intracellualr domain of tmTNF-a induced durable NF-κB activation in MCF-7 cells
     High tmTNF-a expression in breast cancer cell line MDA-MB-231 cells can lead to NF-κB activation,while, TNF-LS stabily expressed on MCF-7 cells also results in a persistent activation of NF-κB. Comparison transfection of Acs-tmTNF-α、TNF-LS and tmTNF-a into MCF-7 cell lines, we only could find durable NF-κB activation in cells instant transfection of tmTNF-a and TNF-LS. Cells transfected with Acs-tmTNF-a could not activate NF-κB when compared with untransfected or transfected empty vector groups. Our results implied that high tmTNF-a expression in breast cancer cells induced durable NF-κB activation possibly by TNF-LS.
     8. Endocytosis inhibitor MDC pretreatment TNF-LS/MCF-7 cellS induced surface expression of TNF-LS
     Inhibition of TNF-LS endocytosis, TNF-LS/MCF-7 increased cell surface expression of TNF-LS may be a further increase in NF-κB activity in TNF-LS/MCF-7 cells.
     9. Signal peptide peptidase inhibitor ZLL pretreatment increased TNF-LS/MCF-7 cell surface TNF-LS expression, resulting in further NF-κB B activation
     Inhibition TNF-LS shear from membrane by signal peptide peptidase inhibitor increased TNF-LS/MCF-7 cell surface TNF-LS expression, and this may be a reason for further increase in NF-κB activity in TNF-LS/MCF-7 cells.
     V. Reverse signaling of tmTNF-a induced the resistance of breast cancer cells to chemotherapy and related molecular mechanisms
     1. High expression of tmTNF-a on breast cancers induced carboplatin resistance
     Comparing the sensitivity difference of breast cancer cells with different tmTNF-αexpression to carboplatin, we found that MDA-MB-435 cells with high level of tmTNF-αexpression were much more resistant to carboplatin than T47D cells with low level of tmTNF-αexpression did, and found that MDA-MB-435 cells with high tmTNF-αexpression showed durable NF-κB activation, while no obvious NF-κB activity was observed in T47D cells with low tmTNF-αexpression.
     2. Upregulation of tmTNF-αexpression on T47D cells induced their resistance to carboplatin with the phenomenon that the cleavage of caspase-9 decreased, and NF-κB inhibitor PDTC can reverse the resistance
     After transfection of T47D with tmTNF-α, the cells are resistant to carboplatin cytotoxicity, the cleavage of caspase-9 decreased. NF-κB inhibitor can reverse the resistance to carboplatin at a certain level.
     3. MCF-7 cells stably transfected with TNF-LS were resistant to carboplatin cytotoxicity
     It has been confirmed that stable transfection of TNF-LS into MCF-7 cells resulted in durable NF-κB activation and tolerance to sTNF-α. In this, we have further found that TNF-LS/MCF-7 cells are more resistant to carboplatin chemotherapy treatment than untransfected or transfected with empty vectors.
     4. MCF-7 cells with TNF-LS inhibited the sensitivity of MCF-7 cells to carboplatin
     Treatment of transfected and untransfected MCF-7 cells with different concentration of carboplatin, we found that the IC50 of carboplatin to untransfected MCF-7 cells was just 231μg/ml, however, the IC50 of transfected MCF-7 cells were much higher than 400μg/ml.
     5. The proliferation of MCF-7 cells with high expression of tmTNF-αis quicker than MCF-7 cells with low tmTNF-αexpression after treatment of MCF-7 cells with carboplatin
     We got two lines of MCF-7 cells with high tmTNF-αexpression and low tmTNF-αexpression, and we compared these two lines sensitivity to carboplatin. We found that high expression of tmTNF-αin MCF-7 cells proliferated significantly faster than the speed of low tmTNF-αexpression MCF-7 cells treated with carboplatin. And extended over time, the inhibitory effect of carboplatin to the MCF-7 cells with high tmTNF-αexpression becomes weaker and weaker.
     6. Inhibition NF-κB activation in MCF-7 cell line 2-E8 stably transfected with TNF-LS could reverse sensitivity of 2-E8 to carboplatin at a certain extent
     As has reported in part four that stably transfected MCF-7 cells with TNF-LS induced durable NF-κB activation in these cell lines, however, inhibiting the NF-κB activity in these cells can reverse the sensitivity of these cells to carboplatin.
     7. Comparing the ERK phosphorylation status of T47D cells untransfected or transfected with tmTNF-a after treatment with carboplatin
     ERK phosphorylation was not very clear for untransfected T47D cells.After carboplatin treatment, as early as five minutes after treatment with carboplatin can resulted in ERK phosphorylation, and the ERK phosphorylation level reached peak at 10 minutes with significant decrease at 30 minutes, suggesting that stimulation of carboplatin resulted in a transient ERK phosphorylation. Instant transfection of tmTNF-a into MCF-7 cells resulted in durable ERK phosphorylation to certain degree, and activation was not affected by treatment with carboplatin.
     8. Comparing the JNK phosphorylation status of T47D cells untransfected or transfected with tmTNF-αafter treatment with carboplatin
     Both transfected and untransfected T47D cells have no JNK phosphorylation without stimulation. After treatment with carboplatin, the JNK phosphorylation level of untransfected T47D cells were significantly higher than T47D cells transfected with tmTNF-α, and both JNK phosphorylation status reduced after 30 min stimulation.
     9. Comparing the PI3K expression status of T47D cells untransfected or transfected with tmTNF-αafter treatment with carboplatin
     T47D cells transfected with tm TNF-α, we can see continuous PI3K p85 expression, and carboplatin treatment has little effect on the expression level of PI3K. However, no observed PI3K p85 expression could be found in non-transfected T47D cells in the resting state. Carboplatin treatment of untransfected T47D cells led to a small amount of PI3K p85 expression, suggesting that PI3K may be involved in a high tmTNF-a expression in tumor cells resistant to chemotherapeutic drugs.
     lO.Comparing the expression of p53 in T47D cells untransfected or transfected with tmTNF-a after treatment with carboplatin
     Comparing the expression status of p53, we found a very interesting results. We found that after treatment of untransfected T47D cells with carboplatin, the expression of p53 in cells gradually upregulated as time went by. While, we could see p53 expression even after transfection of cells with tmTNF-αwithout treatment of carboplatin, and expression of p53 in T47D cells transfected with tmTNF-awas independent on carboplatin treatment.
引文
1. Black, R. A., C. T. Rauch, C. J. Kozlosky, J. J. Peschon, J. L. Slack, M. F. Wolfson, B. J. Castner, K. L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K. A. Schooley, M. Gerhart, R. Davis, J. N. Fitzner, R. S. Johnson, R. J. Paxton, C. J. March, and D. P. Cerretti.1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729-733.
    2. Vilcek, J., and T. H. Lee.1991. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 266:7313-7316.
    3. 石文芳,李卓娅,龚非力等.1998.跨膜型与分:泌型TNF-a细胞毒效应的比较.中华微生物学和免疫学杂志18:499-504.
    4. 李清芬,冯玮,李卓娅.1999.比较跨膜型和分泌型TNF-(?)在体内的杀瘤效应.中国肿瘤生物治疗杂志6:250-252。
    5. Rothe, J., G. Gehr, H. Loetscher, and W. Lesslauer.1992. Tumor necrosis factor receptors—structure and function. Immunol Res 11:81-90.
    6. Utsumi, T., T. Takeshige, K. Tanaka, K. Takami, Y. Kira, J. Klostergaard, and R. Ishisaka.2001. Transmembrane TNF (pro-TNF) is palmitoylated. FEBS Lett 500:1-6.
    7. Domonkos, A., A. Udvardy, L. Laszlo, T. Nagy, and E. Duda.2001. Receptor-like properties of the 26 kDa transmembrane form of TNF. Eur Cytokine Netw 12:411-419.
    8. Watts, A. D., N. H. Hunt, Y. Wanigasekara, G. Bloomfield, D. Wallach, B. D. Roufogalis, and G. Chaudhri.1999. A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in'reverse signalling'. Embo J 18:2119-2126.
    9. Pocsik, E., E. Duda, and D. Wallach.1995. Phosphorylation of the 26 kDa TNF precursor in monocytic cells and in transfected HeLa cells. J Inflamm 45:152-160.
    10. Kirchner, S., S. Boldt, W. Kolch, S. Haffner, S. Kazak, P. Janosch, E. Holler, R. Andreesen, and G. Eissner.2004. LPS resistance in monocytic cells caused by reverse signaling through transmembrane TNF (mTNF) is mediated by the MAPK/ERK pathway. J Leukoc Biol 75:324-331.
    11. Shi, G., H. Luo, X. Wan, T. W. Salcedo, J. Zhang, and J. Wu.2002. Mouse T cells receive costimulatory signals from LIGHT, a TNF family member. Blood 100:3279-3286.
    12. Shi, G., Y. Wu, J. Zhang, and J. Wu.2003. Death decoy receptor TR6/DcR3 inhibits T cell chemotaxis in vitro and in vivo.J Immunol 171:3407-3414.
    13. Chen, N. J., M. W. Huang, and S. L. Hsieh.2001. Enhanced secretion of IFN-gamma by activated Thl cells occurs via reverse signaling through TNF-related activation-induced cytokine. J Immunol 166:270-276.
    14. Cayabyab, M., J. H. Phillips, and L. L. Lanier.1994. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol 152:1523-1531.
    15. Pollok, K. E., Y. J. Kim, J. Hurtado, Z. Zhou, K. K. Kim, and B. S. Kwon.1994. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24:367-374.
    16. Stuber, E., M. Neurath, D. Calderhead, H. P. Fell, and W. Strober.1995. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2:507-521.
    17. van Essen, D., H. Kikutani, and D. Gray.1995. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378:620-623.
    18. Wiley, S. R., R. G Goodwin, and C. A. Smith.1996. Reverse signaling via CD30 ligand. J Immunol 157:3635-3639.
    19. Chen, A., G. Zheng, and M. L. Tykocinski.2003. Quantitative interplay between activating and pro-apoptotic signals dictates T cell responses. Cell Immunol 221:128-137.
    20. Ferran, C., F. Dautry, S. Merite, K. Sheehan, R. Schreiber, G Grau, J. F. Bach, and L. Chatenoud.1994. Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo. J Clin Invest 93:2189-2196.
    21. Higuchi, M., K. Nagasawa, T. Horiuchi, M. Oike, Y. Ito, M. Yasukawa, and Y. Niho. 1997. Membrane tumor necrosis factor-alpha (TNF-alpha) expressed on HTLV-I-infected T cells mediates a costimulatory signal for B cell activation—characterization of membrane TNF-alpha. Clin Immunol Immunopathol 82:133-140.
    22. Kadokami, T., C. F. McTiernan, T. Kubota, C. S. Frye, G S. Bounoutas, P. D. Robbins, S. C. Watkins, and A. M. Feldman.2001. Effects of soluble TNF receptor treatment on lipopolysaccharide-induced myocardial cytokine expression. Am J Physiol Heart Circ Physiol 280:H2281-2291.
    23. Harashima, S., T. Horiuchi, N. Hatta, C. Morita, M. Higuchi, T. Sawabe, H. Tsukamoto, T. Tahira, K. Hayashi, S. Fujita, and Y. Niho.2001. Outside-to-inside signal through the membrane TNF-alpha induces E-selectin (CD62E) expression on activated human CD4+ T cells. J Immunol 166:130-136.
    24. Zhang, H., D. Yan, X. Shi, H. Liang, Y. Pang, N. Qin, H. Chen, J. Wang, B. Yin, X. Jiang, W. Feng, W. Zhang, M. Zhou, and Z. Li.2008. Transmembrane TNF-alpha mediates "forward" and "reverse" signaling, inducing cell death or survival via the NF-kappaB pathway in Raji Burkitt lymphoma cells. JLeukoc Biol 84:789-797.
    25. Takaesu, G., S. Kishida, A. Hiyama, K. Yamaguchi, H. Shibuya, K. Irie, J. Ninomiya-Tsuji, and K. Matsumoto.2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649-658.
    26. Zapata, J. M., and J. C. Reed.2002. TRAF1:lord without a RING Sci STKE 2002:PE27.
    27. Devergne, O., E. Hatzivassiliou, K. M. Izumi, K. M. Kaye, M. F. Kleijnen, E. Kieff, and G Mosialos.1996. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation:role in NF-kappaB activation. Mol Cell Biol 16:7098-7108.
    28. Bradley, J. R., and J. S. Pober.2001. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20:6482-6491.
    29. Zapata, J. M., M. Krajewska, S. Krajewski, S. Kitada, K. Welsh, A. Monks, N. McCloskey, J. Gordon, T. J. Kipps, R. D. Gascoyne, A. Shabaik, and J. C. Reed. 2000. TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 165:5084-5096.
    30. Wang, C. Y, M. W. Mayo, R. G Korneluk, D. V. Goeddel, and A. S. Baldwin, Jr. 1998. NF-kappaB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680-1683.
    31. Rothe, M., V. Sarma, V. M. Dixit, and D. V. Goeddel.1995. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269:1424-1427.
    32. Duckett, C. S., R. W. Gedrich, M. C. Gilfillan, and C. B. Thompson.1997. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17:1535-1542.
    33. Chung, J. Y, Y C. Park, H. Ye, and H. Wu.2002. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679-688.
    34. Speiser, D. E., S. Y. Lee, B. Wong, J. Arron, A. Santana, Y Y Kong, P. S. Ohashi, and Y. Choi.1997. A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 185:1777-1783.
    35. Hui, W. C. A. M. R. W. X.2003. Epstein-Barr virus encoded latent membrane protein 1 induces TRAF1 expression to promote anti-apoptosis activity via NF-κB signaling pathway in nasopharyngeal carcinoma. Chinese Medical Journal 116:7.
    36. Henkler, F., B. Baumann, M. Fotin-Mleczek, M. Weingartner, R. Schwenzer, N. Peters, A. Graness, T. Wirth, P. Scheurich, J. A. Schmid, and H. Wajant.2003. Caspase-mediated cleavage converts the tumor necrosis factor (TNF) receptor-associated factor (TRAF)-1 from a selective modulator of TNF receptor signaling to a general inhibitor of NF-kappaB activation. J Biol Chem 278:29216-29230.
    37. Hacker, H., and M. Karin.2006. Regulation and function of IKK and IKK-related kinases.Sci STKE 2006:re13.
    38. Zarnegar, B., S. Yamazaki, J. Q. He, and G. Cheng.2008. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 105:3503-3508.
    39. Tapia, M. A., I. Gonzalez-Navarrete, A. Dalmases, M. Bosch, V. Rodriguez-Fanjul, M. Rolfe, J. S. Ross, J. Mezquita, C. Mezquita,O. Bachs, P. Gascon, F. Rojo, R. Perona, A. Rovira, and J. Albanell.2007. Inhibition of the canonical IKK/NF kappa B pathway sensitizes human cancer cells to doxorubicin. Cell Cycle 6:2284-2292.
    40. Inoue, J., L. D. Kerr, D. Rashid, N. Davis, H. R. Bose, Jr., and I. M. Verma.1992. Direct association of pp40/I kappa B beta with rel/NF-kappa B transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci USA 89:4333-4337.
    41. Hatada, E. N., M. Naumann, and C. Scheidereit.1993. Common structural constituents confer I kappa B activity to NF-kappa B p105 and I kappa B/MAD-3. Embo J 12:2781-2788.
    42. Perkins, N. D.2007. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49-62.
    43. Senftleben, U., Z. W. Li, V. Baud, and M. Karin.2001. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14:217-230.
    44. Sizemore, N., N. Lerner, N. Dombrowski, H. Sakurai, and G. R. Stark.2002. Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B.J Biol Chem 277:3863-3869.
    45. Birbach, A., P. Gold, B. R. Binder, E. Hofer, R. de Martin, and J. A. Schmid.2002. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 277:10842-10851.
    46. Yamamoto, Y., U. N. Verma, S. Prajapati, Y. T. Kwak, and R. B. Gaynor.2003. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423:655-659.
    47. Anest, V., J. L. Hanson, P. C. Cogswell, K. A. Steinbrecher, B. D. Strahl, and A. S. Baldwin.2003. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423:659-663.
    48. Karin, M., and F. R. Greten.2005. NF-kappaB:linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749-759.
    49. Luo, J. L., H. Kamata, and M. Karin.2005. IKK/NF-kappaB signaling:balancing life and death—a new approach to cancer therapy.J Clin Invest 115:2625-2632.
    50. Qing, G., Z. Qu, and G Xiao.2005. Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 280:40578-40582.
    51. Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and M. Rothe.1997. Identification and characterization of an IkappaB kinase. Cell 90:373-383.
    52. Tuazon, P. T., and J. A. Traugh.1991. Casein kinase Ⅰ and Ⅱ—multipotential serine protein kinases:structure, function, and regulation. Adv Second Messenger Phosphoprotein Res 23:123-164.
    53. Tuazon, P. T., D. T. Pang, J. A. Shafer, and J. A. Traugh.1985. Phosphorylation of the insulin receptor by casein kinase I. J Cell Biochem 28:159-170.
    54. Beyaert, R., B. Vanhaesebroeck, W. Declercq, J. Van Lint, P. Vandenabele, P. Agostinis, J. R. Vandenheede, and W. Fiers.1995. Casein kinase-1 phosphorylates the p75 tumor necrosis factor receptor and negatively regulates tumor necrosis factor signaling for apoptosis. J Biol Chem 270:23293-23299.
    55. Darnay, B. G, S. Singh, and B. B. Aggarwal.1997. The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354-397 of the p80 cytoplasmic domain:similarity to casein kinase. FEBS Lett 406:101-105.
    56. Lee, N. K., and S. Y. Lee.2002. Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 35:61-66.
    57. Hsu, H., H. B. Shu, M. G Pan, and D. V. Goeddel.1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299-308.
    58. Kohno, T., M. T. Brewer, S. L. Baker, P. E. Schwartz, M. W. King, K. K. Hale, C. H. Squires, R. C. Thompson, and J. L. Vannice.1990. A second tumor necrosis factor receptor gene product can shed a naturally occurring tumor necrosis factor inhibitor. Proc Natl Acad Sci USA 87:8331-8335.
    59.潘玉玲等,王.王.2007. TRAF1-DsRed真核表达载体的构建及其在COS-7细胞中的定位.免疫学杂志23:491-493,498.
    60. Karbowski, M., and R. J. Youle.2003. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870-880.
    61. Chen, H., and D. C. Chan.2004. Mitochondrial dynamics in mammals. Curr Top Dev Biol 59:119-144.
    62. Guo, Y, S. M. Srinivasula, A. Druilhe, T. Fernandes-Alnemri, and E. S. Alnemri. 2002. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430-13437.
    63. Legros, F., A. Lombes, P. Frachon, and M. Rojo.2002. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343-4354.
    64. James, D. I., P. A. Parone, Y. Mattenberger, and J. C. Martinou.2003. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373-36379.
    65. Lee, Y. J., S. Y. Jeong, M. Karbowski, C. L. Smith, and R. J. Youle.2004. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001-5011.
    66. Olichon, A., L. Baricault, N. Gas, E. Guillou, A. Valette, P. Belenguer, and G Lenaers.2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743-7746.
    67. Sugioka, R., S. Shimizu, and Y. Tsujimoto.2004. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279:52726-52734.
    68. Guseva, N. V., A. F. Taghiyev, M. T. Sturm, O. W. Rokhlin, and M. B. Cohen.2004. Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-kappaB in prostatic carcinoma cell lines. Mol Cancer Res 2:574-584.
    69. Bottero, V., F. Rossi, M. Samson, M. Mari, P. Hofman, and J. F. Peyron.2001. Ikappa b-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 276:21317-21324.
    70. Murphy, K. M., A. B. Heimberger, and D. Y. Loh.1990. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250:1720-1723.
    71. Cammarota, M., G. Paratcha, L. R. Bevilaqua, M. Levi de Stein, M. Lopez, A. Pellegrino de Iraldi, I. Izquierdo, and J. H. Medina.1999. Cyclic AMP-responsive element binding protein in brain mitochondria. J Neurochem 72:2272-2277.
    72. Cahir-McFarland, E. D., D. M. Davidson, S. L. Schauer, J. Duong, and E. Kieff. 2000. NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci USA 97:6055-6060.
    73. Engedal, N., and H. K. Blomhoff.2003. Combined action of ERK and NF kappa B mediates the protective effect of phorbol ester on Fas-induced apoptosis in Jurkat cells. J Biol Chem 278:10934-10941.
    74. Ma, Y., V. Temkin, H. Liu, and R. M. Pope.2005. NF-kappaB protects macrophages from lipopolysaccharide-induced cell death:the role of caspase 8 and receptor-interacting protein. J Biol Chem 280:41827-41834.
    75. Lee, D. R., C. H. Kwon, J. Y. Park, Y. K. Kim, and J. S. Woo.2009. 15-Deoxy-Delta(12,14)-prostaglandin J(2) induces mitochondrial-dependent apoptosis through inhibition of PKA/NF-kappaB in renal proximal epithelial cells. Toxicology 258:17-24.
    76. Hengartner, M. O.2000. The biochemistry of apoptosis. Nature 401:770-776.
    77. Kluck, R. M., E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer.1997. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science 275:1132-1136.
    78. Ogita, K., H. Okuda, M. Kitano, Y. Fujinami, K. Ozaki, and Y. Yoneda.2002. Localization of activator protein-1 complex with DNA binding activity in mitochondria of murine brain after in vivo treatment with kainate. J Neurosci 22:2561-2570.
    79. Ogita, K., Y. Fujinami, M. Kitano, and Y. Yoneda.2003. Transcription factor activator protein-1 expressed by kainate treatment can bind to the non-coding region of mitochondrial genome in murine hippocampus. J Neurosci Res 73:794-802.
    80. Yoshida, Y, H. Izumi, T. Torigoe, H. Ishiguchi, H. Itoh, D. Kang, and K. Kohno. 2003. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729-3734.
    81. Scheller, K., P. Seibel, and C. E. Sekeris.2003. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol 222:1-61.
    82. Boulikas, T.1993. Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr 3:193-227.
    83. Friedmann, E., E. Hauben, K. Maylandt, S. Schleeger, S. Vreugde, S. F. Lichtenthaler, P. H. Kuhn, D. Stauffer, G. Rovelli, and B. Martoglio.2006. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8:843-848.
    84. Lwin, T., L. A. Crespo, A. Wu, S. Dessureault, H. B. Shu, L. C. Moscinski, E. Sotomayor, W. S. Dalton, and J. Tao.2009. Lymphoma cell adhesion-induced expression of B cell-activating factor of the TNF family in bone marrow stromal cells protects non-Hodgkin's B lymphoma cells from apoptosis. Leukemia 23:170-177.
    85. Schutze, S., T. Machleidt, D. Adam, R. Schwandner, K. Wiegmann, M. L. Kruse, M. Heinrich, M. Wickel, and M. Kronke.1999. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274:10203-10212.
    86. Forster, R., E. Kremmer, A. Schubel, D. Breitfeld, A. Kleinschmidt, C. Nerl, G Bernhardt, and M. Lipp.1998. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets:rapid internalization and recycling upon activation. J Immunol 160:1522-1531.
    87. Bollen, Y. J., and C. P. van Mierlo.2005. Protein topology affects the appearance of intermediates during the folding of proteins with a flavodoxin-like fold. Biophys Chem 114:181-189.
    88. Broxterman, H. J., G. Giaccone, and J. Lankelma.1995. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol 7:532-540.
    89. Reed, J. C.1995. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7:541-546.
    90. Harrison, D. J.1995. Molecular mechanisms of drug resistance in tumours. J Pathol 175:7-12.
    91. Nakshatri, H., P. Bhat-Nakshatri, D. A. Martin, R. J. Goulet, Jr., and G. W. Sledge, Jr. 1997. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629-3639.
    92. Raziuddin, A., D. Court, F. H. Sarkar, Y. L. Liu, H. Kung, and R. Raziuddin.1997. A c-erbB-2 promoter-specific nuclear matrix protein from human breast tumor tissues mediates NF-kappaB DNA binding activity. J Biol Chem 272:15715-15720.
    93. Shattuck-Brandt, R. L., and A. Richmond.1997. Enhanced degradation of I-kappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res 57:3032-3039.
    94. Kochetkova, M., P. O. Iversen, A. F. Lopez, and M. F. Shannon.1997. Deoxyribonucleic acid triplex formation inhibits granulocyte macrophage colony-stimulating factor gene expression and suppresses growth in juvenile myelomonocytic leukemic cells. J Clin Invest 99:3000-3008.
    95. Oza, S., and D. J. Wilber.2006. Substrate-based endocardial ablation of postinfarction ventricular tachycardia. Heart Rhythm 3:607-609.
    96. Manna, S. K., P. Manna, and A. Sarkar.2007. Inhibition of Re1A phosphorylation sensitizes apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ 14:158-170.
    97. Riggins, R. B., A. Zwart, R. Nehra, and R. Clarke.2005. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 4:33-41.
    98. Zhou, Y, S. Eppenberger-Castori, U. Eppenberger, and C. C. Benz.2005. The NFkappaB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 12 Suppl 1:S37-46.
    99. Boland, M. P., S. J. Foster, and L. A. O'Neill.1997. Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem 272:12952-12960.
    100. Das, K. C., and C. W. White.1997. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C.J Biol Chem 272:14914-14920.
    101. Piret, B., and J. Piette.1996. Topoisomerase poisons activate the transcription factor NF-kappaB in ACH-2 and CEM cells. Nucleic Acids Res 24:4242-4248.
    102. Perez, C., N. E. Vilaboa, L. Garcia-Bermejo, E. de Blas, A. M. Creighton, and P. Aller.1997. Differentiation of U-937 promonocytic cells by etoposide and ICRF-193, two antitumour DNA topoisomerase Ⅱ inhibitors with different mechanisms of action. J Cell Sci 110 (Pt 3):337-343.
    103. Collins, T., M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis. 1995. Transcriptional regulation of endothelial cell adhesion molecules:NF-kappa B and cytokine-inducible enhancers. Faseb J 9:899-909.
    104. Roshak, A. K., J. R. Jackson, K. McGough, M. Chabot-Fletcher, E. Mochan, and L. A. Marshall.1996. Manipulation of distinct NFkappaB proteins alters interleukin-lbeta-induced human rheumatoid synovial fibroblast prostaglandin E2 formation. J Biol Chem 271:31496-31501.
    105. Huhtala, P., A. Tuuttila, L. T. Chow, J. Lohi, J. Keski-Oja, and K. Tryggvason.1991. Complete structure of the human gene for 92-kDa type Ⅳ collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem 266:16485-16490.
    106. Wang, C. Y, M. W. Mayo, and A. S. Baldwin, Jr.1996. TNF- and cancer therapy-induced apoptosis:potentiation by inhibition of NF-kappaB. Science 274:784-787.
    107. Lindholm, P. F., J. Bub, S. Kaul, V. B. Shidham, and A. Kajdacsy-Balla.2000. The role of constitutive NF-kappaB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis 18:471-479.
    108. Voboril, R., and J. Weberova-Voborilova.2006. Constitutive NF-kappaB activity in colorectal cancer cells:impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis. Neoplasma 53:518-523.
    109. Lezoualc'h, F., Y. Sagara, F. Holsboer, and C. Behl.1998. High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18:3224-3232.
    110. Schwarz, E. M., D. Van Antwerp, and Ⅰ. M. Verma.1996. Constitutive phosphorylation of IkappaBalpha by casein kinase Ⅱ occurs preferentially at serine 293:requirement for degradation of free IkappaBalpha. Mol Cell Biol 16:3554-3559.
    111. Lu, T., and G R. Stark.2004. Cytokine overexpression and constitutive NFkappaB in cancer. Cell Cycle 3:1114-1117.
    112. Khoshnan, A., C. Tindell, Ⅰ. Laux, D. Bae, B. Bennett, and A. E. Nel.2000. The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes.J Immunol 165:1743-1754.
    113. Zamble, D. B., D. Mu, J. T. Reardon, A. Sancar, and S. J. Lippard.1996. Repair of cisplatin—DNA adducts by the mammalian excision nuclease. Biochemistry 35:10004-10013.
    114. Chu, G 1994. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269:787-790.
    115. Giaccone, G 2000. Clinical perspectives on platinum resistance. Drugs 59 Suppl 4:9-17; discussion 37-18.
    116. Eliopoulos, A. G, D. J. Kerr, J. Herod, L. Hodgkins, S. Krajewski, J. C. Reed, and L. S. Young.1995. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11:1217-1228.
    117. Bunz, F., P. M. Hwang, C. Torrance, T. Waldman, Y. Zhang, L. Dillehay, J. Williams, C. Lengauer, K. W. Kinzler, and B. Vogelstein.1999. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263-269.
    118. Razzini, G., C. P. Berrie, S. Vignati, M. Broggini, G Mascetta, A. Brancaccio, and M. Falasca.2000. Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. Faseb J 14:1179-1187.
    119. Nicholson, K. M., and N. G Anderson.2002. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381-395.
    120. Gelfanov, V. M., G S. Burgess, S. Litz-Jackson, A. J. King, M. S. Marshall, H. Nakshatri, and H. S. Boswell.2001. Transformation of interleukin-3-dependent cells without participation of Stat5/bcl-xL:cooperation of akt with raf/erk leads to p65 nuclear factor kappaB-mediated antiapoptosis involving c-IAP2. Blood 98:2508-2517.
    121. Burow, M. E., C. B. Weldon, L. I. Melnik, B. N. Duong, B. M. Collins-Burow, B. S. Beckman, and J. A. McLachlan.2000. PI3-K/AKT regulation of NF-kappaB signaling events in suppression of TNF-induced apoptosis. Biochem Biophys Res Commun 271:342-345.
    122. Wu, J. C., H. C. Yan, W. T. Chen, W. H. Chen, C. J. Wang, Y. C. Chi, and W. Y. Kao. 2008. JNK signaling pathway is required for bFGF-mediated surface cadherin downregulation on HUVEC. Exp Cell Res 314:421-429.
    123. Wei, Y., D. Weng, F. Li, X. Zou, D. O. Young, J. Ji, and P. Shen.2008. Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis 13:1031-1042.
    124. Ogino, T., M. Ozaki, M. Hosako, M. Omori, S. Okada, and A. Matsukawa.2009. Activation of c-Jun N-terminal kinase is essential for oxidative stress-induced Jurkat cell apoptosis by monochloramine. Leuk Res 33:151-158.
    125. DeHaan, R. D., E. M. Yazlovitskaya, and D. L. Persons.2001. Regulation of p53 target gene expression by cisplatin-induced extracellular signal-regulated kinase. Cancer Chemother Pharmacol 48:383-388.
    126. Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg.1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326-1331.
    127. Gross, A., J. M. McDonnell, and S. J. Korsmeyer.1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899-1911.
    128. Green, D. R., and J. C. Reed.1998. Mitochondria and apoptosis. Science 281:1309-1312.
    129. Evtodienko, Y. V., V. V. Teplova, S. S. Sidash, F. Ichas, and J. P. Mazat.1996. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 393:86-88.
    130. Narita, M., S. Shimizu, T. Ito, T. Chittenden, R. J. Lutz, H. Matsuda, and Y. Tsujimoto.1998. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681-14686.
    131. Eskes, R., B. Antonsson, A. Osen-Sand, S. Montessuit, C. Richter, R. Sadoul, G Mazzei, A. Nichols, and J. C. Martinou.1998. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions.J Cell Biol 143:217-224.
    132. Yang, J. C., A. Kahn, and G Cortopassi.2000. Bcl-2 does not inhibit the permeability transition pore in mouse liver mitochondria. Toxicology 151:65-72.
    133. Loomis, W. F.1949. The role of mitochondria in cellular metabolism. Bull New Engl Med Cent 11:107-110.
    134. Plaut, G. W., and K. A. Plaut.1952. Oxidative metabolism of heart mitochondria.J Biol Chem 199:141-151.
    135. Emmelot, P., C. J. Bos, and I. H. Reyers.1960. Swelling of normal, preneoplastic and neoplastic liver mitochondria. I. Spontaneous and thyroxine-induced swelling of normal liver mitochondria as affected by succinate and adenine nucleotides. Z Krebsforsch 64:22-34.
    136. Carafoli, E., and A. L. Lehninger.1964. Binding of adenine nucleotides by mitochondria during active uptake of CA++. Biochem Biophys Res Commun 16:66-70.
    137. Sacktor, B.1961. The role of mitochondria in respiratory metabolism of flight muscle. Annu Rev Entomol 6:103-130.
    138. Hassinen, Ⅰ.1967. Hydrogen transfer into mitochondria in the metabolism of ethanol. Ⅱ. Effect of disulfiram on the hydrogen and energy transfer. Ann Med Exp Biol Fenn 45:46-56.
    139. Fischer, J. E.1955. Metabolism of beta-methyl-C5 fatty acids by mitochondria of rat liver:effect of biotin nutriture. Proc Soc Exp Biol Med 88:227-230.
    140. Stumpf, P. K., and G. A. Barber.1956. Fat Metabolism in Higher Plants.Ⅶ. beta-Oxidation of Fatty Acids by Peanut Mitochondria. Plant Physiol 31:304-308.
    141. Szekely, M.1957. [Importance of mitochondria structure for citric acid synthesis.]. Experientia 13:24-25.
    142. Lofrumento, N. E., G De Gregorio, G Paradies, G Procacci, and M. A. Zanghi. 1967. [Metabolism of glutamic acid and activity of the citric cycle in rat brain mitochondria]. Acta Vitaminol Enzymol 21:217-226.
    143. Moreland, D. E., and M. R. Boots.1971. Effects of optically active 1-(alpha-methylbenzyl)-3-(3,4-dichlorophenyl)urea on reactions of mitochondria and chloroplasts. Plant Physiol 47:53-58.
    144. Law, R. H., and P. Nagley.1990. Import into mitochondria of precursors containing hydrophobic passenger proteins:pretreatment of precursors with urea inhibits import. Biochim Biophys Acta 1027:141-148.
    145. Li, M., T. Kondo, Q. L. Zhao, F. J. Li, K. Tanabe, Y. Arai, Z. C. Zhou, and M. Kasuya.2000. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria- dependent pathways. J Biol Chem 275:39702-39709.
    146. Clayton, R., J. B. Clark, and M. Sharpe.2005. Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit:implications for apoptosis and neurodegenerative disease. J Neurochem 92:840-849.
    147. Kitson, J., T. Raven, Y. P. Jiang, D. V. Goeddel, K. M. Giles, K. T. Pun, C. J. Grinham, R. Brown, and S. N. Farrow.1996. A death-domain-containing receptor that mediates apoptosis. Nature 384:372-375.
    148. Hu, S., C. Vincenz, M. Buller, and V. M. Dixit.1997. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 272:9621-9624.
    149. Bender, L. M., M. J. Morgan, L. R. Thomas, Z. G. Liu, and A. Thorburn.2005. The adaptor protein TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 12:473-481.
    150. Yuan, P., X. P. Miao, X. M. Zhang, Z. H. Wang, W. Tan, Y. Sun, B. H. Xu, and D. X. Lin.2005. [Polymorphisms in nucleotide excision repair genes XPC and XPD and clinical responses to platinum-based chemotherapy in advanced non-small cell lung cancer]. Zhonghua Yi Xue Za Zhi 85:972-975.
    151. Chaudhary, P. M., M. Eby, A. Jasmin, A. Bookwalter, J. Murray, and L. Hood.1997. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7:821-830.
    152. Milner, A. E., D. H. Palmer, E. A. Hodgkin, A. G Eliopoulos, P. G Knox, C. J. Poole, D. J. Kerr, and L. S. Young.2002. Induction of apoptosis by chemotherapeutic drugs:the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ 9:287-300.
    153. Woo, M., R. Hakem, M. S. Soengas, G S. Duncan, A. Shahinian, D. Kagi, A. Hakem, M. McCurrach, W. Khoo, S. A. Kaufman, G Senaldi, T. Howard, S. W. Lowe, and T. W. Mak.1998. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806-819.
    154. Juin, P., M. Pelletier, L. Oliver, K. Tremblais, M. Gregoire, K. Meflah, and F. M. Vallette.1998. Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 273:17559-17564.
    155. Tatton, N. A.2000. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 166:29-43.
    156. Rendl, M., J. Ban, P. Mrass, C. Mayer, B. Lengauer, L. Eckhart, W. Declerq, and E. Tschachler.2002. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119:1150-1155.
    157. Chien, A. J., R. B. Presland, and M. K. Kuechle.2002. Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochem Biophys Res Commun 296:911-917.
    158. Siegmund, D., D. Mauri, N. Peters, P. Juo, M. Thome, M. Reichwein, J. Blenis, P. Scheurich, J. Tschopp, and H. Wajant.2001. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 276:32585-32590.
    159. Xerri, L., E. Devilard, R. Bouabdallah, A. M. Stoppa, J. Hassoun, and F. Birg.1999. FADD expression and caspase activation in B-cell lymphomas resistant to Fas-mediated apoptosis. Br J Haematol 106:652-661.
    160. Condorelli, G., R. Roncarati, J. Ross, Jr., A. Pisani, G. Stassi, M. Todaro, S. Trocha, A. Drusco, Y. Gu, M. A. Russo, G Frati, S. P. Jones, D. J. Lefer, C. Napoli, and C. M. Croce.2001. Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977-9982.
    161. Liang, X., Y. Yang, C. Deng, W. Meng, T. Liu, Y. Jia, Y. Cheng, and L. Li.2003. [The variation of Caspase3 activity in tanshinone induced NB4 cells apoptosis]. Sichuan Da Xue Xue Bao Yi Xue Ban 34:549-551.
    162. Li, H., H. Zhu, C. J. Xu, and J. Yuan.1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501.
    163. Garnett, T. O., M. Filippova, and P. J. Duerksen-Hughes.2007. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. Apoptosis 12:1299-1315.
    164. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner, N. Larochette, M. C. Prevost, P. M. Alzari, and G. Kroemer.1999. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J Exp Med 189:381-394.
    165. Lassus, P., X. Opitz-Araya, and Y. Lazebnik.2002. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352-1354.
    166. Cory, S., and J. M. Adams.2002. The Bcl2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647-656.
    167. Korsmeyer, S. J., M. C. Wei, M. Saito, S. Weiler, K. J. Oh, and P. H. Schlesinger. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166-1173.
    168. Schwarz, C., P. Hauser, R. Steininger, H. Regele, G Heinze, G. Mayer, and R. Oberbauer.2002. Failure of BCL-2 up-regulation in proximal tubular epithelial cells of donor kidney biopsy specimens is associated with apoptosis and delayed graft function. Lab Invest 82:941-948.
    169. Peherstorfer, E., B. Mayer, S. Boehm, A. Lukas, P. Hauser, G Mayer, and R. Oberbauer.2002. Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. Am J Physiol Renal Physiol 283:F190-196.
    170. Cande, C., F. Cecconi, P. Dessen, and G Kroemer.2002. Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727-4734.
    171. Cerveny, K. L., Y. Tamura, Z. Zhang, R. E. Jensen, and H. Sesaki.2007. Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563-569.
    172. Hoppins, S., L. Lackner, and J. Nunnari.2007. The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751-780.
    173. Merz, S., M. Hammermeister, K. Altmann, M. Durr, and B. Westermann.2007. Molecular machinery of mitochondrial dynamics in yeast. Biol Chem 388:917-926.
    174. Meeusen, S., J. M. McCaffery, and J. Nunnari.2004. Mitochondrial fusion intermediates revealed in vitro. Science 305:1747-1752.
    175. Meeusen, S., R. DeVay, J. Block, A. Cassidy-Stone, S. Wayson, J. M. McCaffery, and J. Nunnari.2006. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgml. Cell 127:383-395.
    176. Ishihara, N., Y. Fujita, T. Oka, and K. Mihara.2006. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J 25:2966-2977.
    177. Herlan, M., F. Vogel, C. Bornhovd, W. Neupert, and A. S. Reichert.2003. Processing of Mgml by the rhomboid-type protease Pcpl is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781-27788.
    178. Duvezin-Caubet, S., R. Jagasia, J. Wagener, S. Hofmann, A. Trifunovic, A. Hansson, A. Chomyn, M. F. Bauer, G Attardi, N. G Larsson, W. Neupert, and A. S. Reichert. 2006. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281:37972-37979.
    179. Brooks, C., Q. Wei, L. Feng, G Dong, Y. Tao, L. Mei, Z. J. Xie, and Z. Dong.2007. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104:11649-11654.
    180. Delivani, P., C. Adrain, R. C. Taylor, P. J. Duriez, and S. J. Martin.2006. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 21:761-773.
    181. Eura, Y, N. Ishihara, T. Oka, and K. Mihara.2006. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 119:4913-4925.
    182. Hajek, P., A. Chomyn, and G. Attardi.2007. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 282:5670-5681.
    183. Choi, S. Y, P. Huang, G. M. Jenkins, D. C. Chan, J. Schiller, and M. A. Frohman. 2006. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255-1262.
    184. Tsujimoto, Y, and S. Shimizu.2002. The voltage-dependent anion channel:an essential player in apoptosis. Biochimie 84:187-193.
    185. Vander Heiden, M. G., X. X. Li, E. Gottleib, R. B. Hill, C. B. Thompson, and M. Colombini.2001. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414-19419.
    186. Kuwana, T., M. R. Mackey, G. Perkins, M. H. Ellisman, M. Latterich, R. Schneiter, D. R. Green, and D. D. Newmeyer.2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331-342.
    187. Finucane, D. M., N. J. Waterhouse, G P. Amarante-Mendes, T. G Cotter, and D. R. Green.1999. Collapse of the inner mitochondrial transmembrane potential is not required for apoptosis of HL60 cells. Exp Cell Res 251:166-174.
    188. Matsuyama, S., and J. C. Reed.2000. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155-1165.
    1. Gross, A., J. M. McDonnell, and S. J. Korsmeyer.1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899-1911.
    2. Reed, J. C., J. M. Jurgensmeier, and S. Matsuyama.1998. Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127-137.
    3. Wang, H. G, U. R. Rapp, and J. C. Reed.1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87:629-638.
    4. Evtodienko, Y. V., V. V. Teplova, S. S. Sidash, F. Ichas, and J. P. Mazat.1996. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 393:86-88.
    5. Narita, M., S. Shimizu, T. Ito, T. Chittenden, R. J. Lutz, H. Matsuda, and Y. Tsujimoto.1998. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A 95:14681-14686.
    6. Eskes, R., B. Antonsson, A. Osen-Sand, S. Montessuit, C. Richter, R. Sadoul, G. Mazzei, A. Nichols, and J. C. Martinou.1998. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217-224.
    7. Yang, J. C., A. Kahn, and G Cortopassi.2000. Bcl-2 does not inhibit the permeability transition pore in mouse liver mitochondria. Toxicology 151:65-72.
    8. Loomis, W. F.1949. The role of mitochondria in cellular metabolism. Bull New Engl Med Cent 11:107-110.
    9. Plaut, G. W., and K. A. Plaut.1952. Oxidative metabolism of heart mitochondria. J Biol Chem 199:141-151.
    10. Emmelot, P., C. J. Bos, and I. H. Reyers.1960. Swelling of normal, preneoplastic and neoplastic liver mitochondria. I. Spontaneous and thyroxine-induced swelling of normal liver mitochondria as affected by succinate and adenine nucleotides. Z Krebsforsch 64:22-34.
    11. Carafoli, E., and A. L. Lehninger.1964. Binding of adenine nucleotides by mitochondria during active uptake of CA++. Biochem Biophys Res Commun 16: 66-70.
    12. Sacktor, B.1961. The role of mitochondria in respiratory metabolism of flight muscle. Annu Rev Entomol 6:103-130.
    13. Hassinen, I.1967. Hydrogen transfer into mitochondria in the metabolism of ethanol. II. Effect of disulfiram on the hydrogen and energy transfer. Ann Med Exp Biol Fenn 45:46-56.
    14. Fischer, J. E.1955. Metabolism of beta-methyl-C5 fatty acids by mitochondria of rat liver:effect of biotin nutriture. Proc Soc Exp Biol Med 88:227-230.
    15. Stumpf, P. K., and G A. Barber.1956. Fat Metabolism in Higher Plants. VII. beta-Oxidation of Fatty Acids by Peanut Mitochondria. Plant Physiol 31:304-308.
    16. Szekely, M.1957. [Importance of mitochondria structure for citric acid synthesis.]. Experientia 13:24-25.
    17. Lofrumento, N. E., G De Gregorio, G Paradies, G. Procacci, and M. A. Zanghi. 1967. [Metabolism of glutamic acid and activity of the citric cycle in rat brain mitochondria]. Acta Vitaminol Enzymol 21:217-226.
    18. Moreland, D. E., and M. R. Boots.1971. Effects of optically active 1-(alpha-methylbenzyl)-3-(3,4-dichlorophenyl)urea on reactions of mitochondria and chloroplasts. Plant Physiol 47:53-58.
    19. Law, R. H., and P. Nagley.1990. Import into mitochondria of precursors containing hydrophobic passenger proteins:pretreatment of precursors with urea inhibits import. Biochim Biophys Acta 1027:141-148.
    20. Li, M., T. Kondo, Q. L. Zhao, F. J. Li, K. Tanabe, Y. Arai, Z. C. Zhou, and M. Kasuya.2000. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 275:39702-39709.
    21. Clayton, R., J. B. Clark, and M. Sharpe.2005. Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit:implications for apoptosis and neurodegenerative disease. J Neurochem 92:840-849.
    22. Kitson, J., T. Raven, Y. P. Jiang, D. V. Goeddel, K. M. Giles, K. T. Pun, C. J. Grinham, R. Brown, and S. N. Farrow.1996. A death-domain-containing receptor that mediates apoptosis. Nature 384:372-375.
    23. Hu, S., C. Vincenz, M. Buller, and V. M. Dixit.1997. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J Biol Chem 272:9621-9624.
    24. Bender, L. M., M. J. Morgan, L. R. Thomas, Z. G Liu, and A. Thorburn.2005. The adaptor protein TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 12:473-481.
    25. Sun, B. H., X. P. Zhao, B. J. Wang, D. L. Yang, and L. J. Hao.2000. FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. World J Gastroenterol 6:223-227.
    26. Chaudhary, P. M., M. Eby, A. Jasmin, A. Bookwalter, J. Murray, and L. Hood.1997. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7:821-830.
    27. Milner, A. E., D. H. Palmer, E. A. Hodgkin, A. G. Eliopoulos, P. G Knox, C. J. Poole, D. J. Kerr, and L. S. Young.2002. Induction of apoptosis by chemotherapeutic drugs:the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ 9:287-300.
    28. Woo, M., R. Hakem, M. S. Soengas, G. S. Duncan, A. Shahinian, D. Kagi, A. Hakem, M. McCurrach, W. Khoo, S. A. Kaufman, G. Senaldi, T. Howard, S. W. Lowe, and T. W. Mak.1998. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806-819.
    29. Juin, P., M. Pelletier, L. Oliver, K. Tremblais, M. Gregoire, K. Meflah, and F. M. Vallette.1998. Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 273:17559-17564.
    30. Tatton, N. A.2000. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 166:29-43.
    31. Rendl, M., J. Ban, P. Mrass, C. Mayer, B. Lengauer, L. Eckhart, W. Declerq, and E. Tschachler.2002. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119:1150-1155.
    32. Chien, A. J., R. B. Presland, and M. K. Kuechle.2002. Processing of native caspase-14 occurs at an atypical cleavage site in normal epidermal differentiation. Biochem Biophys Res Commun 296:911-917.
    33. Siegmund, D., D. Mauri, N. Peters, P. Juo, M. Thome, M. Reichwein, J. Blenis, P. Scheurich, J. Tschopp, and H. Wajant.2001. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 276:32585-32590.
    34. Xerri, L., E. Devilard, R. Bouabdallah, A. M. Stoppa, J. Hassoun, and F. Birg.1999. FADD expression and caspase activation in B-cell lymphomas resistant to Fas-mediated apoptosis. Br J Haematol 106:652-661.
    35. Condorelli, G, R. Roncarati, J. Ross, Jr., A. Pisani, G Stassi, M. Todaro, S. Trocha, A. Drusco, Y. Gu, M. A. Russo, G Frati, S. P. Jones, D. J. Lefer, C. Napoli, and C. M. Croce.2001. Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci U S A 98:9977-9982.
    36. Liang, X., Y. Yang, C. Deng, W. Meng, T. Liu, Y. Jia, Y. Cheng, and L. Li.2003. [The variation of Caspase3 activity in tanshinone induced NB4 cells apoptosis]. Sichuan Da Xue Xue Bao Yi Xue Ban 34:549-551.
    37. Li, H., H. Zhu, C. J. Xu, and J. Yuan.1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501.
    38. Garnett, T. O., M. Filippova, and P. J. Duerksen-Hughes.2007. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. Apoptosis 12:1299-1315.
    39. Zamzami, N., and G. Kroemer.2001. The mitochondrion in apoptosis:how Pandora's box opens. Nat Rev Mol Cell Biol 2:67-71.
    40. Lassus, P., X. Opitz-Araya, and Y. Lazebnik.2002. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352-1354.
    41. Tsujimoto, Y, and S. Shimizu.2002. The voltage-dependent anion channel:an essential player in apoptosis. Biochimie 84:187-193.
    42. Cory, S., and J. M. Adams.2002. The Bcl2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647-656.
    43. Korsmeyer, S. J., M. C. Wei, M. Saito, S. Weiler, K. J. Oh, and P. H. Schlesinger. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166-1173.
    44. Schwarz, C., P. Hauser, R. Steininger, H. Regele, G. Heinze, G Mayer, and R. Oberbauer.2002. Failure of BCL-2 up-regulation in proximal tubular epithelial cells of donor kidney biopsy specimens is associated with apoptosis and delayed graft function. Lab Invest 82:941-948.
    45. Peherstorfer, E., B. Mayer, S. Boehm, A. Lukas, P. Hauser, G. Mayer, and R. Oberbauer.2002. Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. Am J Physiol Renal Physiol 283: F190-196.
    46. Cande, C., F. Cecconi, P. Dessen, and G. Kroemer.2002. Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727-4734.
    47. Cerveny, K. L., Y. Tamura, Z. Zhang, R. E. Jensen, and H. Sesaki.2007. Regulation of mitochondrial fusion and division. Trends Cell Biol 17:563-569.
    48. Hoppins, S., L. Lackner, and J. Nunnari.2007. The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751-780.
    49. Merz, S., M. Hammermeister, K. Altmann, M. Durr, and B. Westermann.2007. Molecular machinery of mitochondrial dynamics in yeast. Biol Chem 388:917-926.
    50. Meeusen, S., J. M. McCaffery, and J. Nunnari.2004. Mitochondrial fusion intermediates revealed in vitro. Science 305:1747-1752.
    51. Meeusen, S., R. DeVay, J. Block, A. Cassidy-Stone, S. Wayson, J. M. McCaffery, and J. Nunnari.2006. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383-395.
    52. Ishihara, N., Y. Fujita, T. Oka, and K. Mihara.2006. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J 25:2966-2977.
    53. Herlan, M., F. Vogel, C. Bornhovd, W. Neupert, and A. S. Reichert.2003. Processing of Mgml by the rhomboid-type protease Pcpl is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781-27788.
    54. Duvezin-Caubet, S., R. Jagasia, J. Wagener, S. Hofmann, A. Trifunovic, A. Hansson, A. Chomyn, M. F. Bauer, G Attardi, N. G. Larsson, W. Neupert, and A. S. Reichert. 2006. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281:37972-37979.
    55. Rojo, M., F. Legros, D. Chateau, and A. Lombes.2002. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663-1674.
    56. Brooks, C., Q. Wei, L. Feng, G Dong, Y. Tao, L. Mei, Z. J. Xie, and Z. Dong.2007. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci U S A 104:11649-11654.
    57. Delivani, P., C. Adrain, R. C. Taylor, P. J. Duriez, and S. J. Martin.2006. Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 21:761-773.
    58. Eura, Y., N. Ishihara, T. Oka, and K. Mihara.2006. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci 119:4913-4925.
    59. Hajek, P., A. Chomyn, and G Attardi.2007. Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J Biol Chem 282:5670-5681.
    60. Choi, S. Y, P. Huang, G M. Jenkins, D. C. Chan, J. Schiller, and M. A. Frohman. 2006. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255-1262.
    61. Vander Heiden, M. G, X. X. Li, E. Gottleib, R. B. Hill, C. B. Thompson, and M. Colombini.2001. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414-19419.
    62. Kuwana, T., M. R. Mackey, G Perkins, M. H. Ellisman, M. Latterich, R. Schneiter, D. R. Green, and D. D. Newmeyer.2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331-342.
    63. Finucane, D. M., N. J. Waterhouse, G. P. Amarante-Mendes, T. G. Cotter, and D. R. Green.1999. Collapse of the inner mitochondrial transmembrane potential is not required for apoptosis of HL60 cells. Exp Cell Res 251:166-174.
    64. Matsuyama, S., and J. C. Reed.2000. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155-1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700