芽孢杆菌β-甘露聚糖酶基因的分子克隆及高效表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半纤维素作为一类可再生能源物质广泛存在于自然界中。其总量占植物干重的30%左右,是仅次于纤维素的第二大组成部分。因此半纤维素的分解利用对解决环境问题与能源危机都具有重大意义。β-甘露聚糖酶是一类能够降解甘露聚糖的半纤维素水解酶,作为添加剂广泛应用于动物饲料中,同时在食品、药学、医学、造纸和纺织业中也具有重要的应用价值。因此通过各种方法获得高酶活和高耐受能力的β甘露聚糖酶一直是研究的热点。本研究从新疆极端干燥的环境采集土样筛选获得具有较高酶活性的β-甘露聚糖酶的菌株,构建了高产β-甘露聚糖酶的重组大肠杆菌,初步开展了重组大肠杆菌诱导表达的条件优化,并进行了目的蛋白的分离纯化,以及β-甘露聚糖酶的酶学特性的分析。
     利用水解圈筛选法从新疆极端干燥环境土壤样品中分离到三株具有高酶活β-甘露聚糖酶的菌株。根据16S rDNA序列分析以及菌落形态观察分别鉴定为芽孢杆菌(Bacillus sp.)、柠檬酸杆菌(Citrobacter sp.)、多粘类芽孢杆菌(Paenibacillus sp.)。水解圈相对较大的芽孢杆菌被命名为Bacillus sp. MX,并作为本研究的实验材料。
     从芽孢杆菌MX基因组DNA中克隆β-甘露聚糖酶基因(man),连接到表达载体pET-28a中,转化大肠杆菌BL21获得转化子BL21(pET-man)。使用IPTG作为诱导物,37℃培养3个小时表达出带有组氨酸标签的β-甘露聚糖酶。SDS-PAGE分析表明,BL21((pET-man)表达出的β-甘露聚糖酶主要以包涵体形式存在于细胞质中。试验证明:β-甘露聚糖酶诱导表达的最佳培养条件为30℃,0.5mM IPTG诱导5小时,在优化条件下获得可溶性β-甘露聚糖酶的含量较高的细胞培养物。SDS-PAGE分析显示该蛋白的相对分子量为43kDa。以Ni树脂为介质,采用不同浓度咪唑进行洗脱,获得纯化的β-甘露聚糖酶。3,5-二硝基水杨酸(DNS)法测定该酶在25-95℃,pH3.0-9.6范围内均具有酶活。最适作用温度和pH值分别为55℃和5.0,酶比活力达4572U/mg。在pH4.0,或80℃和90℃处理10min后,该酶相对酶活力仍保持84%或33%和14%,表明该β-甘露聚糖酶具有较好的耐酸性和热稳定性。
     为了在真核生物中表达β-甘露聚糖酶,将该酶编码基因插入连接到穿梭质粒pPIC9K中,转化至大肠杆菌JM109,获得携带表达β-甘露聚糖酶基因的多拷贝数的质粒(pPIC9K-man),并将BglII线性化产物电转至巴斯德毕赤酵母宿主菌GS115中。经过甲醇诱导表达出该蛋白,测得比活力为345U/mg,低于在大肠杆菌中表达的比活。其原因可能是由于细菌基因在真菌中表达受到了密码子偏好性的影响,且man基因整合到染色体上,大大降低β-甘露聚糖酶基因的表达量。尚需对β-甘露聚糖酶基因的密码子进行优化以提高酶活。
Hemicellulose is a widely used substance which accounts for from 1/4 to 1/3 of plants dry weight. Degradation and utilization of hemicellulose is of great significance in resolving energy crisis, food shortage and environmental pollution. Thus, finding a hemicellulosic hydrolase with high activity and tolerance to adversity seems crucial.β-mannanase is a important kind of hemicellulose hydrolases, which is ubiquitous in animal feed,food, medicine and widely used in paper making and textile industry. In this study, a Bacillus sp. strain with highβ-mannanase activity was isolated from an extreme environment in Xinjiang.Further efforts of expression optimization and enzyme identification were made in the E.coli.
     Three strains with highβ-mannanase activity were isolated from an extremely dry environment by comparing the size of hydrolyzed circle produced by each strain, which were further identified as belonging to Bacillus sp., Citrobacter sp. and Paenibacillus sp. respectively using 16S rDNA sequence analysis and colonial morphology methods. The Bacillus sp. strain with the biggest hydrolyzed circle, named Bacillus sp. MX, was selected for further research.
     Theβ-mannanase gene was cloned from Bacillus sp. MX chromosome and inserted into pET-28a, further transduction of this recombinant plasmid into an E.coli BL21 strain resulted in a transformant, named BL21 (pET-man).The target protein with a His-tag was expressed efficiently when BL21 (pET-man) was induced by IPTG at 37℃for 3 hours. SDS-PAGE analysis showed that most of theβ-mannanase expressed in the cytoplasm exists in the form of inclusion bodies.
     Different temperatures、IPTG concentrations and inducing time were tested for a higher yield of solubleβ-mannanase. The optimum condition found in this study was 0.5mM IPTG at 30℃for 5 hours. Purified fusion protein was obtained using BBST NTA Resin.The molecular mass of the purified protein determined by SDS-PAGE approximates to 43 kDa . The enzyme was identified to be active within the range of 25-95℃and pH3.0-9.6 using the dinitrosalicylic acid (DNS) method, with the optimum temperature at 55℃, pH at 5.0 (specific activity reached 4572 U/mg). Purifiedβ-mannanase remained 84%, or 33% and 14% of its initial activity, respectively, when expose in a pH 4.0 or 80℃or90℃condition for 10min, suggesting good acid resistance and thermo-stability.
     The gene ofβ-mannanase was cloned and inserted into the shuttle plasmid pPIC9K to develop a recombinant plasmid named pPIC9K-man. The plasmid pPIC9K-man was then digested with endonuclease BglII and integrated into pichia pastoris GS115 chromosome by PEG transformation. The fusionβ-mannanase expressed by the eukaryotic recombinant showed a highest specific activity of 345U/mg, which is lower than that expressed in the E.coli. Presumably, it's because that the expression of the procaryotic man gene was reduced due to codon bias in the eukaryote system, or due to the reduction in copy number when man was integrated in the GS115 chromosome. Further efforts will be needed on codon optimization and improvement of the enzymic activity.
引文
1.陈小兵.里氏木霉RUT-C30甘露聚糖酶基因man1在毕赤酵母中的高效表达.中国农业科学院硕士学位论文.
    2.崔福绵,石家骥,鲁茁壮.枯草芽孢杆菌中性β-甘露聚糖酶的产生及性质,微生物学报,1999,39(l):60~6.
    3.崔立等,饲料中的抗营养因子及酶法技术研究.中国禽业导刊,1999,12.
    4.邓立红.黑曲霉合成β-甘露聚糖酶及制各功能性甘露低聚糖的研究.中南林学院硕士论文,株洲:2002.
    5.傅红.我国低温油井破胶有新突破.中国科学报.第四版,1996,4,10.
    6.嵇美华.非淀粉多糖酶提高大麦饲用价值的研究进展.2004,35(4):272~274.
    7.蒋燕军,程立忠,丁骅孙.枯草芽孢杆菌β-甘露聚糖酶的一种纯化方法研究.云南大学学报(自然科学版),1998,20(3):200~202.
    8.李文玉,董志扬,崔福锦.枯草芽孢杆菌中性内切β-甘露聚糖酶的纯化及性质.微生物学报, 2000,40(4):420~424.
    9.李海燕,祝令香,毛爱军,等.黑曲霉木聚糖酶在工业酒精酵母中的分泌表达.微生物学报,2005,45(1):135~138.
    10.李江华,邬敏辰,房峻,等.黑曲霉固态发酵生产酸性β-甘露聚糖酶.生物技术,2002,12(1):26~28.
    11.李剑芳,王斌林,邬敏辰.黑曲霉酸性β-甘露聚糖酶的发酵工艺.食品与发酵工业,2002,28(9): 19~22.
    12.林加涵,魏文铃,彭宣宪.现代生物学实验(下册).北京:高等教育出版社,2001,5.
    13.刘同军等.半纤维素酶的应用进展.食品与发酵工业,1998,24(6):58~61.
    14.罗强,孙启玲,张兴宇等.β-甘露聚糖酶菌株的复合诱变选育及发酵条件的优化.四川大学学报(自然科学版),2003,40(1):131~134.
    15.马骏双.饲料用β-甘露聚糖酶和β-1,3葡聚糖酶的研究.江南大学硕士学位论文,2005.
    16.马建华,高扬,牛秀田等.枯草芽孢杆菌中性β-甘露聚糖酶的纯化及性质研究.中国生物化学与分子生物学报,1999,13(1):79~82.
    17.马延和,周培谨,田新玉,等.碱性β-甘露聚糖酶发酵工艺的研究.微生物学通报,1992,19(1):13~17.
    18.马延和.嗜碱芽孢杆菌N16-5碱性甘露聚糖酶的研究.江南大学博士学文论文,2005
    19.毛胜勇.甘露寡聚糖在动物生产中的应用研究.粮食与饲料工业,2000(9):31~33.
    20.蒙海林.β-甘露聚糖酶产生菌的选育及发酵条件的研究.广西大大学硕士论文,2006.
    21.齐军茹,廖劲松,彭志英.β-甘露聚糖酶的制备及应用.中国食品添加剂,2002,6:12~15.
    22.秦湘红,张群芳.魔芋粉酶解产物与低聚果糖对双歧杆菌的促生长作用比较研究.中国微生态学杂志,2003,15(5):261~263.
    23.乔欣君,邹晓庭.β-甘露聚糖酶的营养功能及在动物生产中的应用.饲料研究,2006,2:53~56.
    24.唐国敏,杨开宇.黑曲霉糖化酶基因在酿酒酵母基因组中的整合及其在整合子中的稳定表达.生物工程学报,1995,11(4):321~324.
    25.史益敏,沈曾佑,张志良,等.魔芋球茎中的β-甘露聚糖酶.植物生理学报,1990,16(3) :30~31.
    26.田亚平,金其荣.黑曲霉β-甘露聚糖酶酶学性质及化学组成.无锡轻工大学学报,1998,17(3):31~35.
    27.田新玉,徐毅,马延和等.嗜碱芽孢杆菌N16-5β-甘露聚糖酶的纯化与性质.微生物学报,1993,33(2):115~121.
    28.涂宣林,宋后燕。P.pastoris高效表达外源蛋白的研究进展。
    29.王溪森,刘正初,李斌,冯湘沅,段盛文,郑科,成莉凤。甘露聚糖酶基因3’端缺失研究。安徽农业科学, Journal of Anhui Agri. Sci. 2009, 37 (8) : 3496 - 3497, 3579.
    30.王正祥,马骏双,牛丹丹,等.地衣芽孢杆菌β-甘露聚糖酶的基因克隆和鉴定.应用与环境生物学报,2007,13(2):253~256.
    31.吴襟,何秉旺.微生物β-甘露聚糖酶.微生物学通报,1999,26(2):134~136.
    32.文静.里氏木霉RutC-30β-甘露聚糖酶基因在大肠杆菌中的外分泌型表达.内蒙古农业大学硕士论文,呼和浩特:2004.
    33.吴襟,何秉旺.诺卡氏菌形放线菌β-甘露聚糖酶的化学修饰及活性中心的研究.中国生物化学与分子生物学报,2000,16(2):227~230.
    34.熊郃,干信.β-甘露聚糖酶产生菌R10发酵条件研究.湖北工学院学报,2004,19(1):17~20.
    35.许牡丹,杨伟东,许宝红,等.微生物β-甘露聚糖酶的制备与应用研究进展.动物医学进展,2006(27)9:31~34.
    36.杨文博,沈庆,佟树敏.产β-甘露聚糖酶地衣芽孢杆菌的分离筛选及发酵条件.微生物学通报,1995,22(3):154~157.
    37.杨清香,曹军卫.嗜碱细菌NTT33碱性NTTβ-甘露聚糖酶的纯化与性质研究.武汉大学学报,1998,44(6):761~764.
    38.杨文博,佟树敏,沈庆,等.甘露聚糖酶酶解植物树胶及其产物对双歧杆菌促生长作用.微生物学通报,1995,22(4):204~207.
    39.杨清香,李学梅,李用芳.嗜碱芽孢杆菌NTT33β-甘露聚糖酶的特性研究.河南师范大学学报(自然科学版),1999,27(3):70~74.
    40.杨文博,佟树敏,沈庆.地衣芽孢杆菌β-甘露聚糖酶的纯化及酶学性质.微生物学通报,1995,22(6):338~34.
    41.杨新建,徐福洲,王金洛,等.环状芽孢杆菌产β-甘露聚糖酶的产酶条件及粗酶性质研究.华北农学报,2006,21(3):108~111.
    42.姚斌等。高效表达具有生物学活性的植酸酶的毕赤酵母。中国科学(C辑) 28(3):237~243.
    43.余红英,孙远明,王炜军等.枯草芽孢杆菌SA-22β-甘聚糖酶的纯化及其特性.生物工程学报,2003,19(3):327~331.
    44.余红英,杨幼慧,孙远明,等.β-甘露聚糖酶作用魔芋胶条件的研究.食品工业科技,2003,24(7): 33~35.
    45.余红英,孙远明,王炜军,等.双水相萃取直接从枯草芽孢杆菌发酵液中提取β-甘露聚糖酶.化学世界,2003,11:569~571.
    46.余红英,孙远明,杨跃生,等.活性炭对枯草芽孢杆菌β-甘露聚糖酶的作用.食品科学,2003,24(9): 106~108.
    47.张建之,柴建华.定位克隆中寻找新基因的方法.生物化学与生物物理进展,1995;22 (2):126~132.
    48.张峻,何志敏,胡鳃,等.地衣芽孢杆菌β-甘露聚糖酶的制备.食发酵工业,2001,
    49.张晓军,沈佳佳,王浩大,等.综述饲用半纤维素酶的研究进展.饲料博览,2005,12:8~10.
    50.赵玉林,陈中豪,王福君.半纤维素酶在制浆造纸工业的应用研究进展.中国造纸学报, 2001,16:146~151.
    51.中国畜牧杂志第54册合订本.1995,27(10):65~67.
    52.周响艳,谭会泽.β-甘露聚糖酶在饲料中的应用研究.养殖与饲料,2006,4:21~25.
    53.周海燕,赵文魁,吴永尧.甘露聚糖的多样性分析,生物技术通报,2008,61-63.
    54.朱劫,邬敏辰.酸性β-甘露聚糖酶的固体发酵和一般特性.生物技术,2003,13(2):30~32.
    55.崔福绵,石家骥,鲁茁壮.枯草芽孢杆菌中性β-甘露聚糖酶的产生及性质.微生物学报,1999,39(l):60~6.27(2):5~7.
    56. Ai-Sheng Xiong, Quan-Hong Yao, Ri-He Peng, Zhen Zhang, Fang Xu, Jin-Ge Liu, Pei-Lai Han,Jian-Min Chen. High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol (2006) 72: 1039–1047.
    57. Akino T, Kato C, Horikoshi K. The clonedβ-Mannanase gene from alkalophilic Bacillus sp. AM-001 produces twoβ-Mannanases in Escherichia coli. Arch Microbiol. 1989,152:10~15.
    58. Akino T, Nakamura N, Horikoshi K. Characterization of threeβ-mannanases of an alkalophilic Bacillus sp. Agric Biol Chem, 1988,52:773~779.
    59. Akino T, Nakamura N, Horikoshi K. Characterization ofβ-mannosidase of an alkalophilic Bacillus sp. Agric.Biol.Chem. 1988, 52:1459~1464.
    60. AlbertoAraujo, owenp, Ward. Mannanase Components from Baeilluspumilus. Applied and Environmental Mierobiology. 1990,56(6):1954~1956.
    61. Anna M. Larsson, Lars Anderson, Bingze Xune′s G. Mun?oz, Isabel Uso′n, Jan-Christer Janson
    62. Araki T. Purification and characterization of an endo-β-mannanase from Aeromonas sp. F-25. FacAgric. Kyushu. Univ. 1983,27(3,4):89~98.
    63. Araujo A, Ward OP. Hemicellulase of Bacillus species: preliminary comparative studies on production and properties of mannanase and galactanases. Appl. Bacteriol,1990,68:253~261.
    64. Arison-Atac I, Hodits R, Kristufek D, et al. Purification and characterization of aβ-mannanase of Trichoderma reesei C-30. Appl. Microbiol. Biotechno, 1993,39:58~62.
    65. Aspinall G O. Biochen,1980,3:473~500.
    66. Bassel GW, Zielinska E, Mullen RT, Berley JD. Down-regulation of della genes is not essential for germination of tomato, soybean and arabidopsis seeds. Plant Physiology. 2004,136:2782~2789.
    67. Bouquelet S, Spik G, Montreuil J. Properties of a,β-mannanase from Aspergillusniger. Biochen. Biophy Acta. 1978,552:521~530.
    68. Chad H.Stahl,David B.Wilson & Xin Gen Lei. Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnology Letters 25: 827–831, 2003.
    69. Chesson A. Supplementary enzymes to improve the utilization of pig and poultry diets. In Recent Adcances in Animal Nutrition. 1987,71~89.
    70. Clarke, J.H, Davidson,K, Rixon,E, et al. A comparison of enzyme-aided bleaching of softwood paperpulp using combinations of xylanase, mannanase andα-galactosidase. Applied Microbiology and Biotechnology. 2000,53(6):661~667.
    71. Courtios J E, Petek F and Kada T. Research on galactomannans.II. Action of takadiastase on the glactomannan of luceren. Bull.Soc.Chem.Biol.1958,40: 2031~2037.
    72. Daskiran M, Teeter R G, Fodge D W, et al. An evaluation of endo-β-mannanase(Hemicell) effects on broiler performance and energy use in diets varying inβ-mannan content. Poult. Sci. 2004,83:662~668.
    73. DownieB.,Hilhorst H.W.M,Benley J.D. A new assay for quantiyfing endo-β-D-mannanase activity using congo dye. Phytochemisty, 1994,36(4):829~835.
    74. Duffaud G, Mccutchen C, Pascal L, Kimberleyn P, et al. Purification and Characterization of Extremely Thermostableβ-Mannanase,β-Mannosidase and a-Galactosidase from the Hyperthermophilic Eubacterium Thermotoga neapolitana 5068. Appl. Environ. Microbiol, 1997,63(1):169~177.ebiotrade.com/)生长工程进展1998,18(4):19~21.
    75. Eebitz, G.M, Schnitzhofer. W, Balakrishnan.H, Steiner.W: Two mannanases from Sclerotium rolfsii in total chlorine free bleaching of softwood kraft pulp, J.Biotechnol. 1996,50 (2-3):181~188.
    76. Emi S, Fukumoto J, Yamamoto T. Crystallization and some properties of mannanase. Agric Biol Chem. 1972,36:991~1001.
    77. Emi S, Fukumoto J, Yamamoto T. Crystallization and some properties ofβ-mannanase. Agric Biol Chem. 1972,36:991~1001.
    78. Eriksson KE, Winell M. Purification and characterization of a funga-mannanase. ActaChem.Scand. 1968,22:1924~1934.
    79. Fueloep L, Ponyi T. Rapid screening for endo-beta-l,4-glucanase and endo-beta-1,4-mannanase activities and specific measuerment using soluble dye-labelled substrates. Joumal of Microbiological Methods. 1997,29(l):15~21.
    80. Graf R. Maltose-binding protein as afusion tagfor the localiization and purification of cloned proteins in Dictyostelium. Anal Biochem. 2001, 289(2):297~300.
    81. Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y, Grant W.D, Ito S, Horikoshi K. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp.strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles. 2005,9(6):497~500. Henrik Sta lbrand and Jerry Sta hlberg. Three-dimensional crystal structure and enzymic characterization of b-Mannanase Man5A from blue mussel mytilus edulis. J. Mol. Biol. (2006) 357, 1500–1510.
    82. HenrikStalbrand, AnuSaloheitno, Jarivehmaanpera, BernardHenrissat, Merja Penttila. Cloning and ExPressionin Saccharomyces cerevisiae of a Triehodermareeseiβ-Mannanase Gene Containing a Cellulose Binding. Domain APPlied and Enviromnental Microbiology. 1995,61(3):1090~1097.
    83. HilgeM,GloorSM,RypniewskiW,etal.High-resolution native and complex strurtcuters of thermostbale beta-mnannanase fromThermomonospora fusca- subsrtate specificity in glycosyl hydrolase family5.Strucuter.1998,6(11):
    84. HoggD, PelIG, DupreeP, et al. The modular arehiteeture of Cellvibrio japonicus mannanases in glyeoside hydrolase families 5 and 26 points to difference in their role in mannan degradation. Biochemical Journal. 2003,371:1027~1043.
    85. Hossain MZ, Abe J, Hizukuri S. Mutiple forms ofβ-mannanase from Bacillus sp.KK01. Enzyme Microbiol Technol. 1996,18(2):95~98.
    86. Jackson M E, Anderson D M, Hsiao H Y, et al. Beneficial effect ofβ-mannanase feed enzyme on performance of chicks challenged with Eimerla sp. and Clostridium perfringens. Avian Dis. 2003,47(3):759~763.
    87. Jackson M E, Fodge D, Hsiao H Y. Effects ofβ-mannanase in corn-soybean meal diets on laying hen performance. Poult Sci. 1999,78:1737~1741.
    88. Jiang Z, Wei Y, Li D, et al. High-level production, purification and characterization of a thermostableβ-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym. 2006,66:88~96.
    89. Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., & Kusakabe, I. (2006). Carbohydrate Polymers, 66, 88–96.doi:10.1016/j.carbpol.2006.02.030.
    90. Jiang Z, Wei Y, Li D, et al. High-level production, purification and characterization of a thermostableβ-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym. 2006,66:88~96.
    91. Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., & Kusakabe, I. (2006). Carbohydrate Polymers, 66, 88–96.doi:10.1016/j.carbpol.2006.02.030.
    92. Kansoh,A.L ,Nagie,Z.A, Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 2004,85:103~114.
    93. KenKYWong,Shawn D Mansfield.Enzymatic proeessing for pulp and paper manufaeture -areview. APPitaJ. 1999,52(6):409~41.
    94. Ki-Hong Yoon , Seesub Chung , Byung-Lak Lim . The Journal of Microbiology. 2008,46(3):344~349.
    95. Kontos,F.S, pyropoulos,C.G. Prodution and Secretion of galactosidase and endo-β-mannanase by carob endosperm protoplasis. Botany. 1995,46(286):577~583.
    96. Kye Man Cho & Su Young Hong & Sun Mi Lee &,Yong Hee Kim & Goon Gjung Kahng & Hoon Kim &Han Dae Yun.A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl Microbiol Biotechnol .2006,73:618– 630.
    97. Kye-Man Cho Renukaradhya K. Math Su-Young Hong Shah Md. Asraful Islam ? Jong-Ok Kim Sun-Joo Hong Hoon Kim Han-Dae Yun. (2008)Changes in the activity of the multifunctional b-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C- terminal region to minimum size. Biotechnol Lett . DOI 10.1007/s10529-008-9640-6.
    98. Li, Y, Yang, P, Meng, K, Wang, Y, Luo, H, Wu, N, et al. Journal of Microbiology and Biotechnology. 2008,18,160~166.
    99. McCleary BV.Exo-β-D-mannanase from cyamopsis tetragonolobus guar seed. Methods in Enzynol. 1988,160:589~595.
    100. McCleary Y, B.V.β-mannanase.Methods in Enzynwlogy.1988,160:596~610.
    101. Mccleary, B.V. Comparision of endolytic hydmLases that depolymerize 1,4-β-mannanase,1,5-α-L-Arabinan,and1,4-β-D-galactan.Enzymes in Bionutss conversion. American chemical society. 1991,437~442.
    102. Mendoza N S, Arai M, Kawaguchi T, et al. Purification and properties of mannanase from Bacillus subtilis. World Microbiol Biotechnol. 1994a,10:551~555.
    103. Nakajima T, Ballou CE. Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. Biol.Chem. 1974,249(23):7685~94.
    104. Nakajima T. Ballou CE. Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. Biol.Chem. 1974,249 (23):7685~7694.
    105. Nelson E, Ward, Doug Fodge. Ingredients to counter anti-nutritional factors: Soybean-based feeds need enzymes too. The Journal of Feed Technology and Marketing, Feed Management. 1996,43:7~11.
    106. Nonogaki.H, Morohashi.Y. An endo-β-mannanase develops exclusively in the micropylarendosperm of tomato seeds prior to radlicle emergence. Plant physical. 1996,110:555~559.
    100. Numoa S , KuntzDA , WihtersSqRose DR. Insights into the mechnaism of D or so Philamelnaogaster Golgialph-amnanosidase 11thorughhte structure alanyalsis of covalenter action inter mediates.Jbiol Chem. 2003.278(48):48074~48083.
    101. Pettey LA, Carter SD, Senne B W, et al.. Effects ofβ-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weanling and growing-finishing pigs. Anim Sci. 2002, 80(4):1012~1019.
    102. Politz O, Krah M, Thomsen K K, et al. A highly thermostable endo-(1,4)- beta- mannanase from marine bacterium Rhodothennus marinus. Appl Microbiol Biotechnol. 2000,53(6):715~721.
    103. Praneoise M, GhakisC, DupontC, et al.. ApplEnviroMierobiol,1996,62: 4656~ 4658.
    104. Rol F. Locust bean gum, In industrial Gums: Polysaccharides and their derivatives, 2nded., (R.L. Whistler and J.N.DeMiller eds.),Academic Press N.Y. 1973,323~337.
    105. Sachslehner, A, Foidl,G, Foidl,N, et al. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii,Journal of Biotechnology. 2000,80(2):127~134.
    106. Samonie.J.L, Mendoza,E.M.t, Ilag,L.L, et al.Galactomannan degrading enzymes in maturing normal and makapuno and germinating nomral coconut endosperm. Phyrochenistry. 1989, 28(9):2269~2273.
    107.Schombug D, Salzmann M. Enzyme handbook(4) Springer-Verlag Berlin Heideberg, 1991,1~5
    108. Shimahara,H, Suzuki,H, Sugiyama,N, Nisizawa,K, Partial purification ofβ-mannanase from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agric.Biol.Chem.1975,39,301~312.
    109. Sunna A, Gibbs M D, Chin C W J, et al.. A gene encoding a novel multidomainβ-1,4–mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on Kraft pulp. Applied and Environmental Microbiology. 2000,66: 664~670.
    110. ThomasK. NGt, J.G. Zeikus. Comparison of Extraeellular Cellulase Aetivities of Clostridium thermoeellum LQRI and Triehoderma reesei QM9414,APPliedand Enviromnental Mierobiology, 1981,42(2):231~240.
    111. Timell T E.Wood Sci.Technol. 1967,1:45~70.
    112. Tsujisaka Y, Hiyama K, Takenishi S. and Fukumoto J. Studies on the hemicellulase Part III.Purification and some properties of mannanase from Aspergillus niger van Tieghem sp.(in Japanese). Nippon Nogeikagaku Kaishi. 1972,46:155~161.
    113. Viikali, L, et al. Application of Trichoderma enzyme in the pulp and paper in dustry. l993, 255~262.
    114.Wilkie K C B,Adv.Carbohydr.Chem.Biochem.1979,36:215~264.
    115. Xiao-Xue Yan, Xiao-Min An, Lu-Lu Gui and Dong-Cai Liang.From structure to function: Insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis Mannanase Bcman. J. Mol. Biol. (2008) 379, 535–544.
    116. Xu B, Sellos D, Janson J C. Cloning and exprssion in Pichia pastoris of a blue mussel(Mytilus edulis) beta-mannanase gene. Eur J Biochem. 2002, 269(6): 1753~1760.
    117. Yamaura I, Matsumoto T, Funatsu M, Funatsu Y. Purification and some properties of endo-1,4-β-D-mannanase from Pseudomonas sp. PT-5. Agric. Biol. Chem. 1990,54:2425~2427.
    118. Zakaria MM, Yamamoto S, & Yagi, T. (1998). FEMS Microbiology Letters, 158, 25~31.
    119. Zeilinger S, Kriscufek D, Arsan-Atac I et al. Condition of formation, Purification and characterization of an-mannanase of Trichoderma reesei RUTC-30. Appl. Environ. Microbial.1993,59(5):1347~1353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700