新型抗糖尿病药物的设计、合成和生物活动性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes Mellitus,DM)是由多种原因引起的内分泌代谢疾病,是世界上第三大非传染性慢性疾病。糖尿病的治疗药物很多,但大部分药物都具有明显的毒副作用。寻找高效低毒的新型药物,仍然是化学与药学工作者的艰巨任务。
     β-氨基酮类化合物是合成许多药物及天然产物的关键中间体,同时也是重要的生物活性物质,具有止咳、抗菌、抗炎、抗癌、抗病毒、镇静、止痛、降压、抑制水肿和抗凝血等多种生物功能。研究该类化合物的合成方法和应用很有意义。本课题组合成了大量β-氨基酮类化合物,进行了广泛的生物活性研究,发现了多种生物活性,其中部分化合物具有抗糖尿病活性。β-氨基酮类化合物作为抗糖尿病药物先导化合物的研究未见报道。本文在以上研究工作的基础上,根据药物设计原理,结合生物活性实验结果,重新设计并合成了多个系列的β-氨基酮类化合物及其衍生物,并进行了生物活性和构效关系的初步研究。
     (1)1-芳(芳烷)基-3-芳基-3-芳胺基-1-丙酮的设计、合成和生物活性初步研究
     结合文献报道的类似物合成方法,对该类化合物的合成进行了方法学研究,探索出了该类化合物的最佳合成条件和合成通法。在乙醇、正丙醇或乙醇/氯仿溶剂中,以浓盐酸为催化剂,反应组分在室温反应10h-90h,可以直接生成1-芳(芳烷)基-3-芳基-3-芳胺基-1-丙酮(T-1~T-3),收率30.9%~98.6%。合成的49个该类化合物中,48个为未见报道的新物质。所有化合物的结构经IR和~1H NMR确证,部分产物还经过~(13)C NMR和MS确证。初步筛选结果显示,大多数目标化合物具有强度不等的α-葡萄糖苷酶的抑制活性以及过氧化物酶体增殖物激活受体(PPAR)反应元件激活活性,其中有12个化合物对α-葡萄糖苷酶的抑制活性达到或超过了同浓度的阿卡波糖,有4个化合物显示出很好的过氧化物酶体增殖物激活受体反应元件(PPRE)激活活性。尤为可喜的是,4-(1-(3-氯苯胺基)-3-氧代-5-(6-甲氧基萘-2-基)戊氨基)-N-(5-甲基异噁唑-3-基)苯磺酰胺(5c)显示了良好的α-葡萄糖苷酶的抑制活性和PPRE激活活性,有望成为新型的具有双重作用靶点的抗糖尿病药物的候选先导化合物!
     (2)1-芳(芳烷)基-3-芳基-3-芳胺基-1-丙醇的设计、合成和生物活性初步研究
     为了增加样品的溶解性,进而增强其抗糖尿病活性,我们选择了KBH_4还原Mannich碱的羰基以制备醇的研究思路。在还原1-芳(芳烷)基-3-芳基-3-芳胺基-1-丙酮类化合物的反应中,研究了不同活化剂对KBH_4的还原能力、反应速度和产物收率的影响,最后通过溶剂、反应温度、原料配比等的改变,对此反应进行了优化。实验发现,以甲醇做溶剂,按1.5倍KBH_4投料,室温反应5h~18h均可以得到很好的实验结果,收率大多在90%以上;LiCl有助于KBH_4在常温下将酯还原。该反应具有条件温和、操作简便、收率高等优点。利用这种方法,我们将合成的Mannich碱(T-1~T-3)在上述优化条件下还原,经薄层层析,分离得到37个新化合物。还原产物的结构经IR、~1H NMR确证,部分化合物还经过~(13)C NMR和MS确证。
     绝大多数目标化合物比对应Mannich碱的α-葡萄糖苷酶抑制活性增强几倍到十几倍。特别是产物的3-芳基上有2个取代基和3-芳胺基上有-COOH时其α-葡萄糖苷酶的抑制活性超过了浓度是其10倍的阿卡波糖。还原后的得到的两组非对映异构体对α-葡萄糖苷酶的抑制活性差别很大。
     (3)1-(4-羟基)芳基-3-芳基-3-芳胺基-1-丙酮的设计、合成和生物活性初步研究
     根据上述两个系列化合物构效关系结论,设计了六个系列1-(4-羟基)芳基-3-芳基-3-芳胺基-1-丙酮类化合物。进行了该类化合物合成方法的研究,探索了该类化合物的最佳合成条件和合成通法。IR、
     1H NMR、~(13)C NMR和MS检测显示,在乙醇或正丙醇溶剂中,适量浓盐酸或I_2为催化剂,在室温条件下,通过直接Mannich反应,成功地实现了对羟基苯乙酮和3-硝基-4-羟基苯乙酮羰基的α-C上的Mannich反应,而非文献报道的苯环羟基邻位的Mannich反应。反应的产物单一而没有后续成环反应,收率达到50.0%~98.6%。所合成56个化合物均为未见报道的新化合物。其中,4-(1-(3,4~二氯苯基)-3-(4-羟基苯基)-3-氧代丙氨基)苯甲酸(Q-1-14)对α-葡萄糖苷酶的抑制活性超过了浓度是其10倍的阿卡波糖。多数化合物显示出中等的PPAR反应元件的抑制活性。
     (4)噻唑烷二酮类化合物的设计、合成和生物活性初步研究
     对文献报道的3条合成噻唑烷-2,4-二酮的路线进行了比较和改进,高纯度地合成了噻唑烷-2,4-二酮。再利用克脑文格反应和改进的固相缩合反应制得了6个5-芳亚甲基噻唑烷-2,4-二酮中间体。通过N-Mannich反应和与BrCH_2COOCH_3的缩合对5-芳亚甲基噻唑烷-2,4-二酮的3-N进行了修饰,得到7个目标产物。所有中间体和目标产物都经过了IR、~1H NMR确证,部分样品进行了~(13)C NMR和MS确证。α-葡萄糖苷酶抑制活性实验显示,中间体5-(4-羟基苯亚甲基)噻唑烷-2,4-二酮(Si)和目标化合物5-(4-羟基苯亚甲基)-3-((4-硝基苯胺)甲基)噻唑烷-2,4-二酮(SM-1)的α-葡萄糖苷酶抑制活性超过了10倍浓度的阿卡波糖。部分化合物显示中等的PPAR反应元件的激活活性。
     本研究共合成了8个原料和中间体、149个目标化合物,其中148个目标化合物为新物质。本研究发现了β-氨基酮类化合物新的生物活性,为研发高效、低毒的抗糖尿病药物先导化合物提供了新的思路。
Diabetes is a kind of the endocrine and metabolic diseases caused by many factors,and is the third largest non-communicable chronic disease in the world.There are a lot of drugs used for the treatment of diabetes,but most of them have serious side effects.For chemists and pharmacy researchers it should be a fascinating task to find other high efficiency and safety antidiabetic drugs.
     β-amino ketones are not only the key intermediates for many drugs and natural products,but also important bioactive substances.Someβ-amino ketones possess anticough,antibacterial,antiinflammatory, anticancer,antivirus,sedation,analgesia,antihypertension,anticoagulation,and so on. It is of great significance to explore the effective synthetic methodology and medicinal applications for these compounds.Our research group synthesized differentβ-amino ketones and extensively evaluated bioactivity previously,and found various biological activities,such as anticancer, antibacterial,antiestrogen.Surprisingly,some of these compounds have obvious antidiabetic activity. As our knowledgement,it hasn't been reported thatβ-amino ketones have antidiabetic activity before our discovery.In this study,based on above experimental results and the principles of drug design,we redesigned and synthesized a number of series ofβ-amino ketones and their derivatives for carrying out the preliminary study on antidiabetic activities and structure-activity relationships.
     [1]Design,synthesis and bioactivities research of 3-aryl-1-aryl(arylalkyl)-3-aryamino-1-acetone Based on the synthetic methods ofβ-amino ketones and its analogues reported in the literature, the synthetic methodology of the title compounds were studied comprehensively,and the optimum synthetic conditions and synthetic rules of such compounds were also explored deeply.The components stirred at the room temperature in ethanol,1-propanol,or ethanol/chloroform,catalyzed with concentrated hydrochloric acid,directly to give 3-aryl-1-aryl(arylalkyl)-3-arylamino-1-acetone with the yields of 30.9%to 98.6%.The structures of the forty eight new compounds were confirmed by IR and ~1H NMR,some also confirmed by ~(13)C NMR and MS.The preliminary bioassay showed that most target molecules had a certainα-glucosidase inhibitory activity and peroxisome proliferator-activated receptor(PPAR) responce element activated activity.There were tweelve compounds whose a glucosidase inhibitory activity reached or exceeded acarbose in the same range of concentration and four compounds which possess good PPAR responce element activated activity. It was particularly gratified that 4-(1-(3-chlorophenyl)-3-hydroxy-5-(6-meth-oxynaphthalen-2-yl) -pentylamino)-N-(5- methylisoxazol-3-yl) benzenesulfonamide(5c) posses goodα-glucosidase inhibitory activity and PPAR response element(PPRE) activated activity,which is deserved further researched as double targeted antidiabetic leading compound.
     [2]Design,synthesis and bioactivities assay of 3-aryl-1-aryl(arylalkyl)-3-arylamino-1-propanol
     In order to increase the solubility of samples and to enhance their antidiabetic activity,we selected KBH_4 to reduce the carbonyl of Mannich bases to prepareβ-aminoalcohol.In the reduction of 3-aryl-1-aryl(arylalkyl)-3-arylamino-1-acetones,different activating agents affected on reducting capacity of KBH_4,reacting rate and the yield.The reaction conditions were optimized via the change of solvents,reacting temperatures,the ratios of starting materials,and so on.It was found that in methanol and 1.5 equivalent KBH_4 used,the reduction reaction could be carried out at room temperature for 5~18 h,the reduction yields of mostβ-amino ketones were more than 90%.It was also found that LiCl could help KBH_4 reduce esters at room temperature.The reaction was mild, handy and with high yields.In this optimized condition,the selected Mannich bases(T-1~T-3) was reduced and thirty seven new compoudi were pured by TLC,All of them were confirmed by IR, ~1H NMR,some also were confirmed further by ~(13)C NMR and MS.
     The vast majority of target compounds ofα-glucosidase inhibitory activity was enhanced several times to over 10 times more than the corresponding Mannich bases.Theα-glucosidase inhibitory activity of the compounds,which had two substituted groups on the 3- site of aryl ring and withα-COOH on the 3-arylamino surpassed the positive control drug acarbose with 10 times concentration. Two groups of non-enantiomers exhibited great difference inα-glucosidase inhibitory activity.
     [3]Design,synthesis and bioactivities research of 3-aryl-1-(4-hydroxyl)aryl-3-arylamino-1-acetone
     Based on the structure-activity relationship of the above two series of compounds,six series of 1-(4-hydroxyl)-3-aryl-3-arylamino-1-acetones were designed.We studied the synthetic method of such kind of compouds,and explored the optimum synthetic conditions and synthetic law of these kind ofβ-amino acetones beating hydroxy group on the aromatic ring.The chemical structure detection of IR,~1H NMR,~(13)C NMR and MS showed that the Mannich reaction could realize successfully through direct Mannich reaction and take placed atα-carbon atom of the carbonyl of p-hydroxyl acetophenone and 3-nitro-4-hydroxylacetophenone rather than on the neighboring carbon atom of-OH reported in ethanol or 1-propanol catalysed by suitable concentrated hydrochloric acid or I_2 at room temperature.The products were classica-amino acetones and without further cyclization.The fifty six new compounds were obtained in the yields of 50.0%~98.6%.Theα-glucosidase inhibitory activity of 4-(1-(3,4-dichlorophenyl)-3-(4-hydroxyl phenyl)-3-oxo-propyl amino)benzoic acid(H-1-14) surpassed the positive controlled drug acarbose with 10 times concentration.Most compounds showed moderate PPRE inhibitory activity.
     [4]Design,synthesis and bioactivities research of thiazolidine-2,4- diones
     To get our designed target compounds,the three synthetic routes reported in the literature were adopted in our research and some were improved,and then the thiazolidine-2,4-dione was synthesized with high yield and purity successfully.Moreover,six thiazole-2,4-dione at 5-site substituted on benzene ring intermediates were produced through Knoevenagel condensation and improved solid phase condensation.The modification stucturally was carried out on 3- N atom of thiazole-2,4- dione at 5-site substituted on benzene ring by N-Mannich reaction and condensation with BrCH_2COOCH_3.Sevne target products were gained with satisfied yield.All the intermediates and target products were verified by IR,~1H NMR,some confirmed further by ~(13)C NMR and MS. The results ofα-glucosidase inhibitiory activity showed that theα-glucosidase inhibitory activity of the intermediate 5-(4-hydroxylbenzylidene)thiazolidine-2,4-dione(Si) and the target compound 5-(4-hydroxylbenzylidene)-3-((4-nitrophenylamino)-methyl)thiazolidine-2,4-dione(SM-1) exceeded the positive control Acarbose although the concentration of Acarbose is 10 times of Si and SM-1. Moreover,some compounds performed PPRE activated activity moderately.
     In this paper,eight intermediates,one hundred and forty nine target compounds were synthesized totally,among of them,one hundred and forty-eight target compounds were new compounds.This study found out the new pharmacological effects ofβ-amino ketones,and thus it provided a new approach for the R&D of pharmaceuticals for treatment of diabetes with high efficiency,low toxicity.
引文
[1]宁光.糖尿病——肆虐全球的流行病[J].世界科学.1999.11:25
    [2]戴为信.糖尿病药物治疗[J].临床药物治疗,2004,2(4):25-29
    [3]World Health Organization.The World Health Report Life in the 21~(th) century,avision for all.Geneva:WHO,1998
    [4]文世林.糖尿病流行的全球趋势和国内状况[J].河南诊断与治疗杂志,2002,16(1):14-17
    [5]翁建平.2型糖尿病对社会造成的负担不容忽视[J].广东医学,2003,24(10):1025-1026
    [6]姚明辉.基础与临床药理学[M].北京:人民卫生出版社,2002,300
    [7]李端等.药理学(第四版)[M].北京:人民卫生出版社,1999,275
    [8]World Health Organization.The World Health Report Conquering suffering enriching humanity.Geneva:WHO,1997
    [9]Pearson J G,Antal E J,Reahl C L,et al.Pharmacokinetic disposition of C14-glibenclamide in patients with varying renal function[J].Clin Pharmacol Ther.1986,39:93-99
    [10]Perfetti R,Barnett P S,Mathur P,et al.Novel therapeutic strategies for the treatment of type 2 diabetes[J].Diabetes Metab Rev.1998,14(2):207-225
    [11]Stairs P,Thien T.Cardiovascular effects of sulphonylurea derivatives:implications for the treatment of NIDDM?[J].Diobetologia.1995,38(I):116-121
    [12]Bell G I,Santerre R F,Mullenhach G T.Hamster preproglueagon contains the sequence of glucagon and related peptides[J].Nature.1983,302(5910):716-718.
    [13]Coutts S J,Kelly T A,Snow R J,et al.Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptide Ⅳ.1.Variation of the P_2 position of X_(as)-boro pro-dipeptides[J].J Med Chem.1996,39(10):2087-2091
    [14]Hughes T E,Balkan B,Villhauer E B.NVP-DPP-728,a novel,orally active dipeptidyi peptide Ⅳ(DPP-Ⅳ)inhibitor,prevents glucagon-like peptide-1(GLP-1) inactivation in rats[J].Diabetes.1999,48(suppl 1):421
    [15]Momose Y,Megnro K,Ikeda H,et al.Studies on antidiabetie agents.X.Synthesis and biological activities of pioglitazone and related compounds[J].Chem Pharm Bull.1991,39(6):1440-1445
    [16]Oakes N D,Kennedy C J,Jenkins A B,et al.A new antidiabetic agent,BRL249653,reduces lipid availability and improve insulin action and glucoregulation in the rat[J].Diabetes.1994,43(10):1203-1210
    [17]Mahler R J,Adler M L.Type 2 diabetes mellitus:update on diagnosis,pathophysiology,and treatmeant[J].J.Clin..Endocrinol Metab.1999,84:1165-1171
    [18]Standi E.Cardiovascular risk in type Ⅱ diabetes[J].Diabetes Obesity Metab.1999,2(suppl 1):24-36
    [19]Haffner S M.The hnportanee of hyperglycaemia in the nonfasting stateto the development of cardiovascular disease[J].Endocr.Rev.1998,19:583-592
    [20]Zimmerman B R.Preventing long term complications,implications forcombination therapy with acarbose[J].Drugs.1992,44(suppl 3):54-59
    [21]Andrew J,Krentz,Clifford J.Bailey.Oral antidiabetic agents curren rote in type 2 disbetes mellitus[J].Drugs.2005,65(3):385-411
    [22]Lebovitz H E.α-Glucosidasc inhibitors as agents in the treatment of diabetes[J].Diabetes Revs.1998,6:132-145
    [23]李宪璀,范晓.海藻中α-葡萄糖苷酶抑制剂的分离鉴定及其活性机理的研究.中国优秀博硕士学位论文全文数据库
    [24]舒任庚,刘玉凤等.几种动物中药降血糖作用的研究[J].江西学医学院学报.2003,15(4):75-78
    [25]全吉淑,尹学哲等.大豆胚轴提取物的降糖作用及其机制研究[J].营养学报.2004,26(3):206-210
    [26]徐莉,希雨.几种传统药物的降糖活性和降糖机理[J].国外医学植物药分册.1996,11(4):166-168
    [27]倪德江,陈玉琼.绿茶、乌龙茶、红茶的茶多糖组成、抗氧化及降血糖作用研究[J].营养学报.2004,26(2):57-60
    [28]邹宇晓等.桑叶资源治疗糖尿病研究[J].天然产物研究与开发.2004,16(3):265-268
    [29]欧阳臻等.桑叶的化学成分及其药理作用研究进展[J].江苏大学学报.2003,24(6):39-43
    [29]Pierre C,Roland R,Tremblay P.Nhroophcnol α-glucopyramosideas sabsiraic for measurement of malaise activity in human semen[J].J Clinic Chem.1978,24:208-211
    [31]沈忠明,沈莉娟等.虎杖鞣质的分离纯化及其糖苷酶抑制活性[J].上海大学学报(自然科学版).2006,12(1):74-77
    [32]唐文倩,沈忠明等.虎杖鞣质的糖苷酶抑制作用研究[J].天然产物研究与开发.2006,18:266-268
    [33]赵一文,史玉俊.杜仲茶对α-葡萄糖苷酶抑制效果及其主要成分的分离研究[J].中草药.1999,30(5):23
    [34]杨军衡,曾雷等.中药知母新皂苷成分的研究[J].天然产物研究与开发.2001,13(5):18-19
    [35]李宪璀,范晓等.海藻提取物中α-葡萄糖苷酶抑制剂的初步筛选[J].中国海洋药物.2002,86(2):8-11
    [36]征革凡,王金平,张辉等.拜糖平治疗非胰岛素依赖型糖尿病的临床观察[J].中华内分泌代谢杂志.1995,13(3):163-164
    [37]Kelley D E,Bidot P,Freedman Z,et al.Clinical efficacy of acarbose in diabetes mellitus:a critical review of controlled trials[J].Diabetes Metab.1998,21(12):311-320
    [38]Bliclde J F,Andies E,Brogard J M.Current atatus of the treatment of type 2 diabetes mellitus alpha-glucosidase inhibitors[J].Rev Med Interne.1992,20(Suppl.3):379-383
    [39]河盛隆造.伏格列波糖用药病例总计[J].糖尿病.1996,39(7):527-530
    [40]Raptis S,Dimitriadis G,Etzrodt H,et al.The effects of acarbose treatment on release of pancreatic and gastro-intestinal hormones in man.In creutzfeldt W.(Ed.) Proceedings of First International Symposium on Acarbose.Montreux 1981,210-215,Excerpta Medica,Amsterdam 1982s
    [41]许志彪,俞伟男.伏格列波糖治疗2型糖尿病的有效性和安全性——附50例临床观察[J].山东医药工业.2000,19(1):53-54
    [42]陈海敏,严小军等.α-葡萄糖苷酶抑制剂的构效关系[J].中国生物化学与分子生物学.2003,19(6):780-784
    [43]Sirichai Adisakwattana,Kasem Sookkongwaree.Structure activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition[J].Bio.& Med.Chem.Let.2004,14:2893-2896
    [44]Kim J S,Kwon C S,Son K H.Inhibition of alpha-glucosidase and amylase by luteolin,a flavonoid[abstract].Biosci.Biotechnol Biochem.2000,64(11):2458-2461
    [45]Yoshikawa M,Morikawa T,Matsuda H,et al.Absolute stereostructure of potent alpha-glucosidase inhibitor,Salacinol,with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata [abstract].Bioorg.Med.Chem.2002,10(5):1547-1554
    [46]Sou S,Takahashi H,Yamasaki R,et al.Alpha-glucosidase inhibitors with a 4,5,6,7-tetrachlorophthalimide skeleton pendanted with a cycloalkyl or dicarba-closododecaborane group[abstract].Chem.Pharm.Bull.2001,49(6):791-793
    [47]Kwon O S,Park S H,Yun B S,et al.Cyclo(dehydroalanine),an alpha-glucosidase inhibitor from Penicillium sp.F70614[abstract].J.Antibiot.2000,53(9):954-958
    [48]Willson T M,Cobb J E,Cowan D J,et al.The Structure-Activity Relationship between Peroxisome Proliferator-Activated Receptor Agonism and the Antihyperglycemic Activity of Thiazolidinediones[J].J.Med.Chem.1996,39(3):665-668.
    [49]Braissant O,Foufelle F,Scotto C,et al.Differential expression of peroxisome proliferators-activated receptors(PPARs):tissue distribution of PPARα,Bandrin the adult rat[J].Endocrinology,1996,137(1):354-366.
    [50]Auboeuf D,Rieusset J,Fajas,et al.Tissue distribution and quantification of the exepression of mRNAs of peroxisome proliferators-activated receptors and liver X receptor-alpha in humans:no alteration in adipose tissue of obese and NIDDM patients[J].Diabetes,1997,46(8):1319-1327
    [51]Willson TM,Brown P J,Sternbach D D,et al.The PPARs:fromorphan receptors to drug discovery[J].J Med Chem.2000,43(4):527-550
    [52]Wilison TM,Brown P J,Sternbach D D,et al.The PPARs:fromorphan receptors to drug discovery[J].J Med Chem.2000,43(4):527-550
    [53]Tordjiman K,Mizrach B C,Zemany L,et al.PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice[J].J Clin Invest,2001,107:1025-1034
    [54]Berger,J;Leibowitz,M.D;D oebber,T.W.et al.Novel peroxisome proliferator activated receptorδ(PPARδ)and PPARβ ligands produce distinct biological effects[J].J.Biol.Chem.1999,274:6718-6725
    [55]Grossman,S.L.;Lessem,J.Mechanisms and clinical effects of thiazolidinediones[J].Expert Opin.Invest Drugs,1997,6:1025-1040.
    [56]Okuno A,Tamemoto H,Tobe K et al.Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats[J].J Clin Invest,1998,101(6):1354-1361
    [57]田浩明.FFA在肥胖症与Ⅱ型糖尿病胰岛素抵抗中的作用[J].国外医学内分泌分册,1999,19(5):193-196
    [58]De Vos P,Lefebvre AM,Miller SG.et al.Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome peroferator-activated receptor gamma[J].J Clin Invest,1996,98(4):1004-1009
    [59]Mueller E,Sarraf P,Tontonoz P,et al.Terminal differentiation of human breast cancer through PPARδ[J].Mol Cell,1998,1(3):465-470.
    [60]Brockman TA,Gupta RA,Dubois RN.Activation of PPAR gamma leads to inhibition of anchorage-independeng growth of human colorectal cancer cells[J].Gastroerology,1998,115:1049-1055
    [61]Fernandez AZ,Lopez F,Tablante A.et al.Intravascular hemolysis increases atherogenicity of diet-induced hypercholesterolemia in rabbits in spite of heme oxygenase-1 gene and protein induction[J].Atherosclerosi,2001,158(1):113-119
    [62]Banner C D,Gotllicher M,Widmark E.et al.A systermatic analytical chemistry/cell assay approach to isolate activators of orphan nuclear receptors from biological extracts:characterization of peroxisome proliferators-activated receptor activators in plasma[J].J Lipid Res,1993,34:1583-1591
    [63]Xu H E,Lambert M H,Montana V G.et al.Molecular recognition of fatty acids by peroxisome proliferators-activated receptors[J].Mol cell,1999,3:397-403
    [64]Ram VJ.Therapeutic significance of peroxisome proliferators-activated receptor modulators in diabetes[J].D rugs Today,2003,39(8):609-632
    [65]彭司勋.药物化学进展(2)[M](第三卷).北京:北京化学工业出版社.2003,233-235.
    [66]Nomura M,Tanase T,Ide T.et al.Design,synthesis,and evaluation of substituted phenypropanoic acid derivatives as human peroxisome proliferator activated receptor activators.Discovery of potent and human peroxisome proliferator activated receptor α subtype-selective activators[J].J Med Chem,2003,46(17):3581235991
    [67]HsuehWA.Law R.The central role of fat and effect of peroxisome proliferator-activated recep tot-gamma on progression of insulin resistance and cardiovascular disease[J].Americn Journal of Cardiology,2003,92(4A):31-39
    [68]陈利群,甘华.PPARs、TZD与肾脏疾病[J].国外医学泌尿系统分册,2004,24(4):526-528.
    [69]Kurogi Y.Three-dimensional quantitative structure-activity relationships(3D-QSAR) of antidiabetic thixzolidinediones[J].Drug Design Discov,1999,16:109-118
    [70]Yutaka N,Seiichiro M,Shogo S.Preparation of thiazolidinedione or oxazolidinedione derivative as hypoglyeemic agents.WO 9,635,688,1996
    [71]Nanteuil G,Herve Y,Duhanlt G,et al.Euglycaemic and biological activities of novel thiazolidine-2,4-dione derivatives[J].Arzneim-Forsch/Drug Res,1995,45(2):1176-1181
    [72]Spencer CM,Markham A.Troglitazone.Drugs,1997,54:89-10
    [73]Stumvoll M,Hating HU Glitazones:clinical effects and molecular mechanisms[J].Ann Med.2002,34(3):21
    [74]B.B.Lohray and V.Bhushan,Drugs of the Future,1999,24(7):751
    [75]B.B.Lohray,Vidya Bhushan and Bheema P.Rao,et al,,J.Med.Chem,,1998,41:1619
    [76]Nobuhisa U,Yukihiro N,Yasuhid M.et al.Pharmcological and pharmacokinetic studies of the newly synthesis thizolidinedione derivatives 5-(4-(1-phenyl-1-cyclopropanecarbonylamino)-benzy)thizolidine-dione [J].Arzneim-Forsch/Drugs Res.1998,48(2):651-657
    [77]Uero H,Takayaki U,Suehiro I.Preparatiion of 5-[2-naphthylmethyl(or methylene)]thizolidine-2,4-dione,t hioxythizolidinedione and H-tetrazolesf or redicing blood sugar and blood lipid levels.US 5594016,1997-01-14
    [78]Yamazaki H,Suzuki M,Tane K,et al.In vitro inhibitory effects of troglitazone and its metabolites on drug oxidation activities of human cytochrome P450 enzymes:comparison with pioglitazone and rosiglitazone[J].Xenobiotica,2000,30:61-70
    [79]Scheen A J.Thiazolidinediones and liver toxicity[J].Diabetes Metab,2001,27:305-313
    [80]Shibata T,Matsui K,Nagao K.et al.Pharmacological profiles of a novel oral antidiabetic agent JTT-501,an isoxazolidinedione derivative[J].Eur.J.Pharmacol.1999,364:211-219
    [81]Shinkai H,Onogi S;Tanaka M.et al.Isoxazolidine-3,5-dione and noncyclic 1,3-dicarbonyl compounds as hypoglycemica gents[J].J.Med.Chem.1998,41(11):1927-1933
    [82]Cobb J E,Blanchard S G,Bosweli E G.et al.N-(2-Benzoylphenyl)-L-tyrosine PPAR agonists 3.Structure-activity relationship and optimization of N-aryl substituent[J].J.Med.Chem.1998,41:5055-5069.
    [83]Collins J L,Blanchard S G,Boswell E G.et al.N-(2-Benzoylphenyl)-L-tyrosine PPAR agonists 2.Structure-activity relationship and optimization of the phenyl alkyl ether moiety[J].J Med.Chem.1998,41:5037-5054.
    [84]Sordea LA,Nartin LA,Gaster L.Farglitazar antidiabetie PPARδ agonist[J].Drugs Fut.2001,26(4):354-363.
    [85]Yuji I,Kazuhiro W,Hidekazu T.et al.Effects of the novel oral antidiabetie agent HQL-975 on glucose and lipid metabolism in diabetic db/db mice[J].Arzneim-Forsch/Drugs Res.1998,48(1):245-250.
    [86]Liu KG,Lambert M H,Ayscue H A.et al.Synthesis and biological activity of L-tyrosine based PPARδagonists with reduced molecular weight[j].Biorg.Med.Chem.Lett.2001,11:3111-3113
    [87]Henke B R,Adkison K K,Blanchard S G.et al.Synthesis and biological activity of a novel series of indol derived PPARδ agonists[J].Biorg.Med.Chem.Lett.1999,9:3329-3334.
    [88]Momose Y,Tsuyoshi M,Hiroyaki O.et al.Novel 5-substituted-1 H-tetrazole derivatives as potent glucose and lipid lowering agents[J].Chem.Pharm.Bull.2002,50(1):100-111.
    [89]Bebemitz G R,Argentieri G,Battle B.et al.Novel antidiabetic and hypolipidemie agents.3.the effect of 1,3-diaryl-[1H]-pyrazole-4-acetamides on glucose utilization in ob/ob mice[J]J.Med.Chem.2001,44(16):2601-2611.
    [90]Thor M,Beierlein K,Dykes G.et al.Synthesis and pharmacological evalution of a new class of peroxisome proliferator activated receptor modulators[J].Biorg.Med.Chem.Lett.2002,12:3565-3567
    [91]Mclntype J A,Castaner J,Bayes M.Tesaglitar.Drugs of the future,2003,28(10):959-965.
    [92]Soren E,Ingrid P,Hanne B R,et al.Synthesis and Biological and Structural Characterization of the Dual-Acting Peroxisome Proliferator-Activated Rcepyor α/δ Agonist Ragaglitazar[J].J Med Chem,2003,46:1306-1317.
    [93]Alexander G G,Dawn A B,Lynne A H,et al.Application of the Dakin-West Reaction for the Synthesis of Oxazole-Containing Dual PPAR α/δ Agonists[J].J Org Chem,2003,68:2623-2632.
    [94]丁世英,中竹芳,谢明智.PPAR与胰岛素抵抗[J].中国药理学通报,2002,7,18(3):241-245
    [95]Mogensen J P,Jeppesen L,Bury P S.et al.Design and synthesis of novel PPAR α/β/δ triple activators using a known PPARα/δ dual activator as structural tamplate[J].Bioorg.Med.Chem.Lett.2003,13(2):257-260
    [96]Adams A D,Winston Y,Hu Z.et al.Amphipathic 3-phenyl-7-propylbenzisoxazoles;human PPARδagonists[J].Bioorg.Med.Chem.Lett.2003,13(7):931-935
    [97]范莉,杨大成.4-苯基-2-丁酮与对氨基苯甲酸乙酯和芳香醛的Mannich反应.西南师范大学学报(自然科学版)[J].1998,23(6):726-729
    [98]Sheela Joshi,Navita Khosla,Deepak Khare.et al.Synthesis and in vitro study of novel Mannich bases as antibacterial agents[J].Biorg.Med.Chem.Lett,2005,15:221-226.
    [99]王飚,赵临襄等2-烷基-5-(N,N-二取代胺甲基)-2-环戊烯酮类化合物的合成及其抗癌活性[J].中国药物化学杂志,2000,10(1):26-28
    [100]陈海涛,计志忠等.含有α-亚甲基-δ-丁内酯的天然化合物及其结构类似物的抗癌抗炎活性[J].中国药物化学杂志,1994,4(2):137-149
    [101]Hall H,Lee K H,Mar E C.et al.Antitumor agents 21.A proposed mechanism for inhibition of cancer growth by tenulin and helenalin,and related cyclopentones[J].J Med Chem,1997,20(3):33-337
    [102]陈元柱,吴兹武等.天然萜类分子中部分共轭五员环的内应力与抗肿瘤活性[J].有机化学,1987,7(1):21-28.
    [103]Roth H J,Hagen He.Aminomethylation of enamines of cyclic β dicarbonyl compounds[J].Arch harm,1971,304(5):331-341
    [104]Barluenga Jose,Cuervo Humildad,Olano Bernardo.et al.Synthesis of N-aryl-substituted 2-aminoalkyl and 1.3-alkanediamines,Synthesis,1986,(6):469-473
    [105]Zahouily Mohamed,Bahlaouan Bouchaib.Natural phosphate and potassium fluoride doped natural phosphate:efficient catalysts for the construction of a carbon-nitrogen bond[J].Tetrahedron Lett.,2004,45(21):4135-4138
    [106]Eisch Jphn J,Sanchez Ramiro.Rearrangements of heterocyclic compounds.5.The selective oxophilic imination of ketones with bis(dichloroaluminum) phenylimide[J].J.Org.Chem.1986,51(10):1848-1852
    [107]花文廷,宁福强.β-羰基醚与伯胺的置换反应[J].化学通报,1991,7:27-28
    [108]Panaiotova B,Spasov A.Reaction of benzylmagnesium chloride with differently substituted 2-azetidinones[j].Zh.Org.Khim.1979,15(9):1965-1970
    [109]Gheorghe R,Diana N.Synthesis and reactivity of some Mannich bases.VI.New arylamine Mannich bases derived from 2-Hydroxy-5-Methylacetophenone[J].Turk J Chem.2000,24:67-71
    [110]赵刚,石梅等.N,N-双-(苯并三(或咪)唑基甲基)羟胺与芳香酮的交换反应[J].北京师范达学学报(自然科学版).1997,33(2):221-225
    [111]Koflov N,Basalaeva LI.Synthesis ofUnsymmetrical-Arylaminoketones[J].Russ.J.Gen.Chem.2004,74(6):926-932
    [112]杨大成,范莉.对氨基苯甲酸和苯乙酮与芳香醛的 Mannich 反应[J].西南师大学学(自然科学版),1996,21(6):585-589
    [113]郭宗儒.药物化学导论(第一版)[M].北京.中国医药科技出版社.1994.11(1996.6重印)13-23.
    [114]仇文升,李安良.药物化学(第一版)[M].北京.高等教育出版社.1999.10(2002.8重印)5-10
    [115]刑其毅,徐瑞秋等.基础有机化学(第二版)[M].高等教育出版社.1993.11(2003.3重印)462-468
    [116]D.N.Ku rsanov et al.Synthesis Vol(3):256(1947)
    [117]M.Lu rcheveque.and.T.Cuvigng.Bull.Soc.Chim.Ft.1445(1973)
    [118]何洪华,龚大春等.L-苯丙氨醇的制各[J].化学试剂,2005,27(2):115-116
     119]S.Gohain,D.Prajapati,J.S.Sandhu,A New and Efficient Method for the Selective Reduction of Nitroarenes:Use of Ammonium Sulphate-Sodium Borohydride[J].Chem.Lett..1995:725.
    [120]Bhaskar JV,Periasamy M.Selective reduction of carboxylic acids into alcohols using sodium borohydride and iodine[J].J.Org.Chem.1991,56:5964-5965
    [121]Kenso Soai,Hidekazu Oyamada,Atsuhiro Ookawa.Sodium borohydride-4-butyl alcohol-methanol as an efficient system for the selective reduction of esters[J].Synth.Commun.1992,12(6):463-467
    [123]Ege SN.Organic Chemistry,3rd[M].Lexington:DC Health and Company,1994:510
    [124]DU Hai-Feng,DING Kui-Ling.et al.[J]Chin J Chem,2001,19(7):716
    [125]赵冬梅,刘瑶等,非氨酯的合成[J].中国新药杂志,2005,14(12):1443-1444
    [126]刘茜毓,李之俊.硼氢化钠还原酯实验的探讨[J].山东轻工业学院学报,1996,10(3):62-63
    [127]A.S.Bhanu Prasad,J.V.Bhaskar Kanth,et al.Convenient methods for thereuduction of amides,nitriles,carboxylic esters,acids and hydroboration of alkenes using NaBH_4/I_2 System[J].Tetrahedron,1992,48(22):4623-4628
    [128]C.Narayana and M.Periasamy.A simple conventent method for the generation of diborane from NaBH_4 and I_2[J].J.Org.Chem,1987,323:145-147
    [129]Marc J.Mckermon,A.I.Meyers.A convenient reduction of amino acids and their derivatives[J].J.Org.Chem.,1993,58:3568-3571
    [130]J.V.Bhaskar,Mariappan Periasamy.Selective reduction of carboxylic acids into alcohols using NaBH_4 and I_2[J].J.Org.Chem.1991,56:5964-5965
    [131]Tomio Yamakama,Mitsuo Masaki,Hiroyuki Nohira.et al.A new reduction of some carboxylic with sodium borohydride and zinc chloride in the presence of a tertiary amide[J].Bull.Chem.Soc.Jpn.1991,64:2730-2734
    [132]Myers A I,William D R,Erickson G W.et al.Enantioselective allkytion of ketones via chiral,Nonracemic Lithioenamines,An asymmetric synthesis of a-allkyl and a,a'-dialklyl cyclic ketones[J].J.Am.Chem.Soc.1981,103(11)
    [133]Helder R,Arends R,Bolt W,et al.Alkaloid catalyzed asymmetric synthesis Ⅲ.The addition of mercaptans to 2-cyclohexene-l-one;Determination of enantiomerie excess using carbon-13 NMR[J].Tetrahedron Lett,1997(25):2181-2182
    [134]Hiem H,Wynberg H,Determination of enantiomeric purity of chirai using carbon-13 NMR spectroscopy of their diastereomeric cyclic ketal[J].Tetrahedron Lett,1997(25):2183-2186
    [135]Vente M,Vliegenthart J E A.NMR shift method for determination of the enantiomeric composition of hydroperoxides formed by lipoxygenase[J].Biochim.Biophys.Acta.1979,574(1):103-111
    [136]沈其丰.核磁共振谱[M].北京:北京大学出版社,1988,18
    [137]Doolittle R E,Heath R R.(S)-Tetrahydro-5-oxo-2-furancarboxylic acid:a chiral derivatizing regent for asymmetric alcohols[J].J.Org Chem,1984,49(26):5041-5050
    [138]Morrison J D.A symmetric Synthesis[M].London:Academic Press,1983.140
    [139]赵国锋,杨华铮.药物设计中的生物等排取代与先导化合物的展开[J].化学通报,1995(6):34-38
    [140]Thomber C W.lsosterism and molecular modification in drug design[J].Chem Soc Rev.1979,8:563-579
    [141]仇缀百等.药物设计学(第一版)[M].高等教育出版社,1999,11
    [142]朱志宏,徐秀娟.2,4-二羟基-3-3 芳胺基甲基苯乙酮和8-乙酰基-3-芳基-3,4-二氢-5-羟基-2H-1,3-苯并噁嗪的合成及其相互转化[J].高等化学学报.1995,5:730-734
    [143]赵鸿斌.宁静恒等.系列长链烷氧基苯甲醛的合成研究[J].化学研究.2001.12(1):19-22
    [144]孟团结,辛丽等.碘催化芳香酮、芳香醛和芳香胺的Mannich反应:三组分“一锅法”[J].商丘师范学院学报.2006,22(2):101-103
    [145]Gulgun AK,Nurten A.Synthesis of 3-substituted phenaeyi-5-[2-phenyl-4H-4-oxo-l-(benzopyran-6-yl)-methylenyl]-thiazolidine-2,4-diones and evaluation of their antimicrobial activity[J]Alrzneim.-Forsch..2000,50:154-157.
    [146]黄世亮,于红,孙歆慧等.2,4-噻唑二酮的合成[J].中国药物化学杂志,2000,1O(4):291-292
    [147]张瑞仁,曲有乐等.2,4-噻唑二酮的合成[J].中国医药工业杂志,2002,33(12):578
    [148]黄宝莉.一步法合成2,4-噻唑烷二酮的研究[J].安徽化工,2002,(1):20
    [149]李贵深,王春等.芳香醛与噻唑酮衍生物的固相缩合反应[J].应用化学.2004,21(10):1069.10-71
    [150]Kim L D.Michael E.et al.Synthesis of peptide nucleic acid monomers containing the four natural nucleobases:Thymine,Cytosine,Adenine,and Guanine and their oligomerization[J].J.Org.Chem.1994,59,5767-5773
    [151]杨大成,章国林等.对甲苯乙酮与芳香醛和芳香氨的Mannich反应[J].高等学校化学报,2000,21(11):1694-1696
    [152]杨大成,顾雪元,奉 平.对氨基苯甲酸乙酯与苯乙酮和芳香醛的Mannich反应[J].西南师范大学学报(自然科学版),1997,22(1):54-57
    [153]杨大成.4-苯基-2-丁酮和芳香醛与芳香氨的Mannich反应[J].西南师范大学学报(自然科学版),1996,21(4):354-359
    [154]杨大成,邹君华,陈虎.对硝基苯乙酮与芳香醛和芳香氨的Mannich反应[J].合成化学,1997,5(增刊):122
    [155]刘宝友,许丹倩,罗书平.Bronsted离子液体催化的醛、酮、胺三组分Mannich反应[J].化工学报.2004,55(12):2043-2046
    [156]Berer J,David EM.The mechanisms of action of PPARs[J].Annu Rev Med.2002,53:409-435.
    [157]Barry GS,William JH.Recent advances in peroxisome proliferator-activated receptor science[J].Curr.Top.Med.Chem.2003,10(4):267-280.
    [158]Lee G,Elwood F,McNally J.et al.T0070907,a selective ligand for peroxisome proliferator-activated receptor γ functions as an antagonist of biochemical and cellular activities[J].J.Bio.Chem.2002,277(22):19649-19657
    [159]Oberfield J L,Collins J L,Holmes C P.et al.A peroxisome proliferator-activated receptor γ ligand inhibits adipocyte differentiation[J].Proc.Nat.Acad.Sci.U.S.A.1999,96(11):6102-6106
    [160]Willson T M.Lambert M H.Kliewer S A.Peroxisome proliferator-activated receptor gamma and metabolic disease[J].Annu.Rev.Biochem.2001,70:341-367
    [161]Miyahara T.Schrum L.Rippe R.et al.Peroxisome proliferator-activated receptors and hepatic stellate cell activation[J].J.Biol.Chem.2000,275(46):35715-35722
    [162]Mukherhjee R.Hoener P A.Jow L.et al.A selective peroxisome proliferator-activated receptorγ(PPARγ)modulator blocks adipocyte differentiation but stimulates glucose up-take in 3T3-L1 adipocytes[J].Mol Endocrinol.2000,14(9):1425-1433
    [163]Camp H S.Chaudhry A.Leff T.A novel potent antagonist of peroxisome proliferator-activated receptor γblocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes[J].J.Endocrinol..2001,142(7):3207-3213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700