乳源β-酪啡肽-7降血糖作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高血糖对机体的危害问题越来越引起人们的关注。高血糖发展到一定程度就称为糖尿病(dibaetesmellitus, DM).长期以来糖尿病一直被认为是一种严重危害健康的常见慢性终身疾病,而今已成为现代人类所面临的一个主要健康问题。乳中含有多种活性成分,有报道认为其有降血糖作用,但作用的有效成分并不明确,本文以SD大鼠为实验动物,研究主要的乳源活性肽β-酪啡肽7(β-casomorphin-7,β-CM7)对大鼠血糖水平的影响,探讨其可能的辅助降血糖作用及其机制。研究包括三个部分:
     试验一β-CM7辅助降血糖的作用及机制初探
     选用健康成年SD大鼠16只,随机分成对照组和试验组,分别灌喂生理盐水和β—CM7(7.5×10-6mol/L)。连续灌喂30天后,断颈处死,取血清、肝脏及肌肉等进行如下试验:1)氧化酶法测定血液中葡萄糖浓度;2)肝糖原、肌糖原含量的测定;3)血清中胰岛素(insulin)、胰高血糖素(glucagon)水平的RIA分析;4)小肠黏膜α-葡萄糖苷酶和Na+-K+-ATP酶活性分析;5)小肠黏膜组织中SGLT-1 mRNA表达分析。试验结果显示:连续灌喂p-CM7大鼠血糖浓度较灌喂生理盐水有降低,但二者之间差异不显著(p=0.35);肝糖原、胰岛素、胰高血糖素、α-葡萄糖苷酶活力、Na+-K+-ATP酶活力二组之间均无明显差异;试验组肌糖原含量低于对照组(p=0.001);SGLT-1mRNA表达显著低于对照组(p=0.02)。结论:β-CM7具有辅助降血糖作用,其机制可能是通过下调小肠黏膜上皮SGLT-1 mRNA的表达,减少肠道葡萄糖的转运,并增加肌糖原的消耗。
     试验二β-CM7对大鼠肠道葡萄糖吸收的抑制及其机制
     利用翻转的离体小肠模型研究了β-CM7对葡萄糖转运和小肠黏膜Na+-K+-ATP酶活力的影响,同时利用纳洛酮(NaL)阻断剂与β-CM7按2:1浓度混合,探讨了影响葡萄糖吸收的阿片机制。结果显示,在离体情况下β-CM7在7.5×10-7---7.5×10-5mol/L浓度范围内对葡萄糖的吸收均有一定的抑制作用,抑制作用与其浓度呈正相关(与0mol/L对照组相比,7.5×10-7 mol/-CM7组(L组)p=0.09;7.5×10-6 mol/Lβ-CM7组(M组)p=0.04;7.5×10-5mol/Lβ-CM7组(H组)p=0.01);能够降低葡萄糖跨膜快速转运期的平均速率(L组p=0.09;M组p=0.04;H组p=0.007)。能够显著降低Na+-K+-ATP酶活力,与对照组相比,L组差异极显著p=0.004;SGLT-1和GLUT-2Real-timePCR结果发现:与对照组相比,L组、M组SGLT-1(p=0.02,0.05)和L组GLUT-2(p=0.03)mRNA表达水平显著下降。阿片特异性拮抗剂纳洛酮对β-CM7的抑制作用没有明显的逆转。结果认为提示β-CM 7可以通过非阿片样途径抑制小肠对葡萄糖的吸收,具有辅助降血糖作用,其机制可能是通过降低Na+-K+-ATP酶活力及下调SGLT-1、GLUT-2 mRNA的表达,从而减少了肠道葡萄糖的转运有关。
     试验三β-CM7降糖作用的细胞学验证
     试验一结果显示:β-CM7能够极显著的降低大鼠肌糖原含量,对肝糖原含量无影响。在这个试验中,我们将通过体外培养C2C12细胞和LO2细胞,对调控糖代谢的靶细胞进行筛选,同时观察不同培养条件下β-CM7对C2C12细胞和LO2细胞葡萄糖消耗和细胞活力的影响。结果发现β-CM7能明显的促进高糖状态下C2C12细胞对葡萄糖的消耗;在有胰岛素存在的情况下β-CM7可以大大提高C2C12细胞的葡萄糖消耗。而对LO2细胞作用不明显;低糖条件下,C2C12及LO2细胞对葡萄糖消耗均无影响。提示β-CM7作用的靶细胞是肌细胞,β-CM7本身具有促进C2C12细胞葡萄糖消耗的作用,也能协同胰岛素增加C2C12细胞葡萄糖消耗。
Recently, the harm of hyperglycemia to the body has drawn more and more attention. Being hyperglycemia frequently can easily lead to dibaetesmellitus. It has always been thought that dibaetesmellitus has been a severe chronic disease for life. At present, it has become a main healthy problem faced by mankind.There are all kinds of active components in milk. It was reported that milk may have the effect of reducing blood glucose, but it has still not been cleared about its active components. Thus this paper was focused on the effect of P-casomorphin-7 which was the one of most important active peptides derived from milk on blood glucose in rats. We will explore it's the effect of inducing blood glucose and mechanism. The research consistsof three parts:
     Experiment 1. Effect of P-casomorphin-7 on blood glucose in rats and preliminary study on its mechanism
     Sixteen healthy adult SD rats were randomly derived into control group (administered with saline) and experiment group (P-casomorphin-7 group, administered with 7.5×10-6 mol/L of P-casomorphin-7). All rats of control group and experiment group were killed after they were oral administered continuously for 30 days, and immediately collected the blood, liver, muscles and small intestine mucosa of rats. we designed a few tests as follow:1) The concentration of blood glucose was tested by the method of oxidation enzyme; 2) The concentration of hepatic and muscle glycogen were detected; 3) the contents of insulin and glycagon in serum were analyze by RIA; 4) the activity ofα-glucosidase and Na+-K+-ATPase of small intestinal mucosa were observed; 5) the mRNA expression of sodium-glucose transporter (SGLT-1) in small intestinal mucosa were analyzed by the RT-PCR. The results showed the concentration of blood glucose decreased in experiment group, but there were no significant differences between two groups (p=0.35); the concentration of hepatic glycogen, the activity of Na+-K+-ATPase andα-glucosidase as well as the contents of insulin and glycagon had no apparently differences between two groups; the content of muscle glycogen from experiment group was apparently lesser than that of control group (p=0.001); The expression of SGLT-1 mRNA from small intestinal mucosa of experiment group decreased, and had a significant variance compared with control group (p=0.02). The results believed that oral administering ofβ-casomorphin-7 had a little effect on decreasing blood sugar of rats. It is very possible thatβ-casomorphin-7 reduced blood sugar by inhibiting the mRNA expression level of SGLT-1 in small intestine and increasing the consumption of muscle glycogen.
     Experiment 2. Inhibition ofβ-casomorphin-7 on the absorption of glucose in vitro and its mechanism
     Former studys have showed thatβ-casomorphin-7 may induce the decrease of blood sugar and the expression of SGLT-1. In this experiment, we will investigate the influence ofβ-CM-7 on the absorption of glucose and its absorption mechanism, In this study used reverted sacs of adult rats in vitro which were dipped into culture sample including P-casomorphin-7 and glucose, we explored the transport of glucose and the activity of Na+-K+-ATPase in small intestinal mucosa were analyzed. We also researched its opioid mechanism by choosing opioid special inhibitor called naloxone, which was mixed withβ-casomorphin-7 in the proportion of 2:1. The results showed that Luminally appliedβ-casomorphin-7 of 7.5×10-7-7.5×10-5 mol/L significantly induced glucose concentration;β-casomorphin-7 dose-dependently inhibited the transmitting of glucose in vitro (compared with control group, the low dose group p=0.09;. the middle dose group p=0.04; the high dose group p=0.01); and slowed the transmitted velocity of glucose on average in intestinal sacs at the first transmitted-period; the activity of Na+-K+-ATPase was obviously reduced(p=0.004,0.73,0.54); the mRNA expressions of SGLT-1 and GLUT-2 were also decreased. Compared with control group, the mRNA expressions of SGLT-1 of low-dose group and middle-dose group were significantly different(p=0.02 and P=0.05); The inhibition ofβ-casomorphin-7 cannot be blocked by the naloxone. Conclusion: The present data demonstrated thatβ-casomorphin-7 could inhibit the absorption of glucose of the intestinal sac in vitro without depending on opioid receptor. It is possible that P-casomorphin-7 reduce the absorption of glucose by inhibiting the activity of Na+-K+-ATPase and the mRNA expression level of SGLT-1, GLUT-2 in small intestine of rats.
     Experiment 3. Cytology evidence of the glucose-lowering effect ofβ-casomorphin-7
     Previous studies showed that P-casomorphin-7 may significantly induce the concentration of muscle glycogen and had no effect on the concentration of hepatic glycogen. In this study we will sieve the target cell of glycometabolic regulate by observing the effect of P-casomorphin-7 of the glucose consumption and cell activities of C2C12 and LO2 cells under of the different culture condition. The result showed that In the hyperglycaemia culture, P-casomorphin-7 may not only increase the glucose consumption of C2C12 cell, but also significantly increase the glucose consumption of C2C12 together with insulin. And P-casomorphin-7 had no any effect to the glucose consumption of LO2 cell. Under the culture of low carbohydrates, P-casomorphin-7 have no effct on the glucose consumption of C2C12 and LO2 cells. The result indicated that the target cell of P-casomorphin-7 was muscle cell; P-casomorphin-7 may increase the glucose consumption of C2C12, also may improve the glucose consumption of C2C12 in coordination with insulin. We think that one of the mechanism of lowering blood glucose ofβ-casomorphin-7 is to improve the glucose consumption of muscle cell.
引文
[1]沈同,王镜岩.生物化学(第二版)[M].高等教育出版社,1991.
    [2]周顺伍.动物生物化学(第三版)[M].中国农业出版社,北京,1999.
    [3]周爱儒.生物化学(第五版)[M].北京:人民卫生出版社,2002.
    [4]戴岳,夏玉凤,林巳笼.地肤子正丁醇部分降糖机制的研究[J].中药药理与临床,2003,19(5):21-24.
    [5]Garriga C, Moreto M, Planas J M. Effects of resalination on intestinal glucose transport in chickens adapted to low Na intakes Exoerinental [J]. Physiology,2000,85(4):371-378.
    [6]Stearns A T, Balakrishnan A, Rhoads D B, et al.Diurnal expression of the rat intestinal sodium-glucose cotransporter 1 (SGLT-1) is independent of local luminal factors [J]. Surgery, 2009,145(3):294-302.
    [7]Madadi G, Dalvi P S, Belsham D D. Regulation of brain insulin mRNA by glucose and glucagon-like peptide [J]. Biochem Biophys Res Commun,2008,376(4):694-699.
    [8]Coppari R, Ichinose M, Lee C E, et al. The hypothalamic arcuate nucleus:a key site for mediating leptin's effects on glucose homeostasis and locomotor activity [J]. Cell Metab.,2005,1:63-72.
    [9]Inoue H, Ogawa W, Asakawa A, et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production [J]. Cell Metab.,2006,3:267-275.
    [10]Saltiel A R, Kahn C R. Insulin signaling and the regulation of glucose and lipid metabolism [J]. Nature,2001,414:799-806.
    [11]Hollenbeck C B, Chert N, Chen Y D I, Reaven G M. Relationship between the plasma insulin response to oral glucose and insulin stimulated glucose utilization in normal subjects [J]. Diabetes, 1984,33:460-463.
    [12]Behall KM, Hallfrisch J. Plasma glucose and insulin reduction after consumption of breads varying in amylose content [J]. Eur J Clin Nutr.,2002,56:913-920.
    [13]Authier F, Desbuquoisc B. Glucagon receptors [J]. Cellular and Molecular Life Sciences, Cell. Mol.Life Sci.,2008,65:1880-1899.
    [14]Jiang, G, Zhang, B.B. Glucagon and regulation of glucose metabolism [J]. Am. J.Physiol. Endocrinol. Metab.,2003,284:E671-678.
    [15]Kumar V, Sahu V, Sahu N P, Pal A K, et al. Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet [J]. Fish Physiol Biochem.,2009,2. [Epub ahead of print].
    [16]Barzilai N, Rossetti L. Role of glucokinase and glueose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin [J]. Biol-Chem.,1993,268(33):25019-25025.
    [17]Magnuson M A, Tapscott E B, Frazier N L, et al. Effects of altered glucokinase gene copy number on blood glucose homoeostasis [J]. Biochem Soc Trans.,1996,25(5):113-116.
    [18]Zierler K. Whole body glucose metabolism [J]. American Journal of Physiology,1999,276: E409-426.
    [19]Wright E M. Renal Na glucose cotransporters [J]. American Journal of Physiology,2001,280: F10-F18.
    [20]Reuss L. One hundred years of inquiry:the mechanism of glucose absorption in the intestine [J]. Annual.Review Physiology,2000,62:939-946.
    [21]Wright E M. The intestinal Na/glucose cotransporter [J]. Ann.Rev.Physiology,1993,55:575-589
    [22]Naftalin R J. Osmotic water transport with glucose in GLUT-2 and SGLT [J]. Biophys J.,2008 94(10):3912-3923.
    [23]Lee Y J, Lee Y J, Han H J. Regulatory mechanisms of Na (+)/glucose cotransporters in renal proximal tubule cells [J]. Kidney.Int Suppl.,2007 Aug;(106):S27-35.
    [24]Barfull A, Garriga C, Mitjans M, et al. Ontogenetic expression and regulation of Na+-D glucose cotransporter in jejunum of domestic chicken [J]. American Journal of Physiology,2002,282: G559-G564.
    [25]Zhou L, Cryan E V, d'Andrea M R, et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1(SGLT-1) [J]. J Cell Biochem.,2003,90:339-346.
    [26]Kellett G L. The facilitated component of intestinal glucose absorption [J]. Journal of Physiology, 2001,531(3):585-595.
    [27]Reuss L. One-hundred years of inquiry:the mechanism of glucose absorption in the intestine [J]. Annual Review Physiology,2000,62:939-946.
    [28]Galand G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals.Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications [J]. Comp Biochem Physiol B.,1989,94(1):1-11.
    [29]Nichols B L, Quezada-Calvillo R, Robayo-Torres C C, et al. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice [J]. J Nutr.,2009, 139(4):684-690.
    [30]Quezada-Calvillo R, Robayo-Torres C C, Opekun A R, et al. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis [J]. J Nutr.,2007, 137(7):1725-1733.
    [1]袁申元,杨光燃.低血糖症[J].国外医学内分泌学分册,2005,25(1):0-72.
    [2]杨英姿,巴艳丽,姜丽君.重视低血糖的危害[J].中国医药导报,2008,5(16):165-166.
    [3]Lupia E, Elliot S J, Lenz O, et al. IGF-1 decreases collagen degradation in diabetic NOD mesan gial cells:implications for diabetic nephropathy [J]. Diabetes,1999,48:1638-1644.
    [4]Hannns H P, Wellensick B, Kloting I, et al. The relationship of glycaemic level to advanced glycation end—product (AGE)accumulation and retinal pathology in the spontaneous diabetic hamster[J]. Diabetologia,1998,41:165-168.
    [5]徐爱华,杨浚,白淳衍.糖尿病痛性周围神经病变与血浆β—EP相关研究[J].中华内分泌代谢杂志,1994,10(2):112—113.
    [6]Cohen R A. Dysfunction of vascular endothelium in diabetes mellitus [J]. Circulation,1993,87: 67-69.
    [7]Temelkova-Kurktschiev T S, Koehler C, Henkel E, et al. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbAlc [J]. Diabetes Care,2000,23:1830-183.
    [1]Bickle J F. Meglitinide analogues:a review of clinical data focused on recent trials [J]. Diabetes Metab.,2006,32(2):113-120.
    [2]Papa G, Fedele V, Rizzo M R, et al. Safety of type 2 diabetes treatment with repaglinide compared with glibenelamide in elderly people:a randomized, open label, two period, Cross over trial [J]. Diabetes Care,2006,29:1918-1920.
    [3]衡先培,杨柳清,吴立凤,等.磺脲类降糖药的临床应用[J].中国乡村医药杂志,2006,13(3):33-36
    [4]Tankova T, Koev D, Dakovska L, et al. The effect of repaglinide on insulin secretion and oxidative stress in type 2 diabetic patients [J]. Diabetes-Res-Clin-Pract.,2003,59:43-49.
    [5]Mari A.Gastaldelli A, Foley J E.β-cell function in mild type 2 diabetic patients:effects of 6-month glucose lowering with nateglinide[J]. Diabetes Care,2005,28(5):1132-1138.
    [6]Ambavane V, Patil R, Ainapure S S. Repaglinide:a short acting insulin secretagogue for postprandial hyperglycaemia [J]. J Postgrad Med,2002,48(3):246-248.
    [7]Morita Y, Ueno T, Sasaki N, et al. Nateglinide is useful for nonalcoholic steatohepatitis (NASH) patients with type 2 diabetes[J]. Hepatogastroenterology,2005,52(65):1338-1343.
    [8]罗国春,李海燕,梁真,等.短期双胍类降糖药治疗对糖尿病患者血乳酸水平的影响[J].东南大学学报,2008,27(1):65-67.
    [9]Finmognari F L, Pastorelli P, Incalzi R A, et al. Phenformin-induced lactic acidosis in all older diabetic patient.A recurrent drama(phenformin and lactic acidosis) [J]. Diabetes Care,2006,29: 950-951.
    [10]Eeiag, Garozzom, Zoccalic. Lactic acidosis induced by phenformin is still a public health problem in Italy [J] BMJ.,1997,315:1466-1467.
    [11][Bailey C J, athm R C, Turner R C. Metformin [J]. New Ensl J Med.,1996,334:574-579.
    [12]Salpeter S R, Greyber E, Pasterank G A, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus [J]. Arch Intern Med.,2003,163:2594-2602.
    [13]戴岳,夏玉凤,林巳笼.地肤子正丁醇部分降糖机制的研究[J].中药药理与临床,2003:19(5):21-24.
    [14]王波.番石榴叶提取物辅助降血糖作用及其机制研究[D].四川:四川大学博士论文,2007:34-40.
    [15]Prabhakar Reddy P, Tiwari A K, Ranga Rao R, et al. New Labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham.Ex Smith) rhizomes [J]. Bioorg Med Chem Lett.,2009,19(9):2562-2565.
    [16]Rawlings A J, Lomas H, Pilling A W, et al. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin alpha-glucosidase inhibitors[J].Chembiochem.,2009,10(6):1101-1105.
    [17]周君,邱平.PPARγ配体的肾脏保护作用[J].海南医学,2006,17(9):156-158.
    [18]邱能,罗有福.噻唑烷二酮类药物的研究进展[J].药学进展,2007,31(10):439-446.
    [19]Kersten S, Deavergne B, Wahli W. Roles of PPAPs in health and disease [J]. Narrate.,2000,405: 421-424.
    [20]Kliewer S A, Lehmann J M, Milbum M V, et al. The PPARs and PXPs muelear xenobiotie receptors that define novel hormone signaling pathways [J]. Recent Prog Horm Res.,1999,54: 345-367.
    [21]Glass C K, Rosenfeld M G. The coregulator exchange in transcriptional function of nuclear receptors [J]. Genes Dev.,2000,14:121-141.
    [22]田丽梅,王星,陈卫.枸杞多糖对α-葡萄苷酶抑制作用的系列研究[J].中药药理与临床,2005,21(3):23-25.
    [23]Khanna Pushpa, Jain S C, Panagariya A, al. Hypoglycemic activity of polypeptide from a plant source [J]. Nat Prod.,1981,44(6):648-655.
    [24]肖志艳,阵迪华.常琪苦瓜属植物化学成分及药理作用研究概况[J].国外医药·植物药分册,1999,14(1):14-18.
    [25]何晋浙,蒋天佑,周碧莹.降糖桑叶保健茶的研究[J].现代食品科技,2004,21(2):100—102.
    [26]徐庆,薛长勇.乳清蛋白降血糖作用研究进展中国食物与营养[J].2008,8:63-64.
    [27]Bloueta C, Mariottia F, Mikogami T, et al. Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal [J]. J Nutr Biochem,2007,18:519-524.
    [28]Bowen J, Noakes M, Clifton P M, et al. Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages [J]. Int J Obes.,2007,26:1-8.
    [29]Frid A H, Nilsson M, Hoist J J, et al. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects [J]. Am J Clin Nutr.,2005,82: 69-75.
    [30]Brantl V, Teschemacher H, Henschen A, Lottspeich F. Novel opioid peptides derived from casein (β-Casomorphin)I:Isolation from bovine casein [J]. Hoppe Seylers Z Physiol Chem.,1979,360: 1211-1216.
    [31]Froetsehel M A. Bioactive peptides in digesta that regulate gastrointestinal function and intake [J]. J Anim Sci.,1996,74:2500-2508.
    [32]Ohtani S, Ogawara K, Higaki K, Kimura T. Casein enhances stability of peptides in intestinal lumen:role of digested products of casein [J]. Pharm Res.,2003,20:1746-1751
    [33]Zoghbi S, Trompette A, Claustre J, et al. beta-Casomorphin-7 Regulates the Secretion and the Expression of Gastrointestinal Mucins through a mu-Opioid Pathway [J]. Am J Physiol Gastrointest Liver Physiol.,2006,290:G1105-G1113.
    [34]张源淑,邓艳,宋晓丹,等.酪啡肽及其酪蛋白水解肽对早期断奶仔猪分泌型免疫球蛋白A和细胞因子水平的影响[J].动物营养学报,2008,20:196—199
    [35]宗亚峰.β酪啡肽在胃肠道内的释放、吸收和稳定特性及其对胃肠机能的影响[D].南京:南京农业大学博士论文,2007:104-107
    [1]Brantl V, Teschemacher H, Henschen A, et al. Novel opioid peptides derived from casein (β-Casomorphin)I:Isolation from bovine casein [J]. Hoppe Seylers Z Physiol Chem.,1979,360 (9):1211-1216.
    [2]Daniel H, Vohwinkel M, Rehner G. Effect of casein and beta-casomorphins on gastrointestinal motility in rats [J]. J Nutr.,1990,120(3):252-257.
    [3]Schnittler M, Liebmann C, Schrader U, et al. [3H] naloxone as an opioid receptor label:analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues[J]. BiomedBiochimActa.,1990,49(4):209-218.
    [4]Zoghbi S, Trompette A, Claustre J, et al. beta-Casomorphin-7 Regulates the Secretion and the Expression of Gastrointestinal Mucins through a mu-Opioid Pathway [J]. Physiol Gastrointest Liver Physiol,2006,290(6):G1105-G1113.
    [5]陈伟华,谈寅飞,邹思湘.表面灌流β酪啡肽对离体仔猪胃窦分泌胃泌素的影响[J].上海交通大学学报,2001,19(3):165-168.
    [6]张源淑,陈伟华,邹思湘.用HPLC测定酪蛋白酶解产物中的beta-Casomorphin-7[J].中国乳品工业,1999,27(1):37-38.
    [7]张源淑,宗亚峰,邹思湘,等.仔猪胃肠道食糜和血液中酪啡肽的检测及阿片样活性分析[J].畜牧兽医学报,2006,37(10):1063-1066.
    [8]周文华,陈伟华,邹思湘,等.饲喂β-酪啡肽对大鼠免疫功能的影响研究[J].畜牧与兽医,2002,34(2):13-15.
    [9]宗亚峰.β酪啡肽在胃肠道内的释放、吸收和稳定特性及其对胃肠机能的影响[D].南京:南京农业大学博士论文,2007,104-107.
    [10]Saltiel A R, Kahn C R. Insulin signaling and the regulation of glucose and lipid metabolism [J]. Nature,2001,414:799-806.
    [11]Behall KM, Hallfrisch J. Plasma glucose and insulin reduction after consumption of breads varying in amylose content[J]. Eur J Clin Nutr.,2002,56:913-920.
    [12]Jiang G, Zhang B B. Glucagon and regulation of glucose metabolism [J]. Am.J.Physiol. Endocrinol.Metab.,2003,284:E671-678.
    [13]Luo M J, Chen L L, Zheng J, et al. The effect of calorie restriction on the expression of liver's gluconeogenesis genes of rats fed a high fat diet [J]. Zhonghua Gan Zang Bing Za Zhi.,2008, 16(2):125-128.
    [14]Galand G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications [J]. Comp Biochem Physiol B.,1989,94(1):1-11.
    [15]Nichols B L, Quezada-Calvillo R, Robayo-Torres C C, et al. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice [J]. J Nutr.,2009, 139(4):684-690.
    [16]Gould G W, Holman G D. The glucose transporter family:structure, function and tissue-specific expression [J]. Biochem J.,1993,295:329-341.
    [17]Wright E M. The intestinalNa/glucose cotransporter [J]. Ann.Rev.Physiol.,1993,55:575-589.
    [1]Gould G W, Holman G D. The glucose transporter family:structure, function and tissue specific expression [J]. Biochem J.,1993,295:329-341.
    [2]Joost H G, Wandel S, Schurmann A. Structure function relationship of glucose transporters catalyzing facilitated diffusion [J]. Exp Clin Endocrinol,1994,102:434-438.
    [3]Dyer J, Daly K, Salmon K S, et al. Intestinal glucose sensing and regulation of intestinal glucose absorption[J]. Biochem Soc Trans.,2007,35:1191-1194.
    [4]Zhou L, Cryan E V, D'Andrea M R, et al. Human cardiomyocytes express high level of Na+/glucose cotransporter 1(SGLT-1) [J]. J Cell Biochem.,2003,90:339-346.
    [5]Kellett G L, Brot-Laroche E, Mace O J, et al. Sugar absorption in the intestine:the role of GLUT-2[J]. Annu Rev Nutr.,2008,28:35-54.
    [6]Daniel H, Vohwinkel M, Rehner G. Effect of casein and beta-casomorphins on gastrointestinal motility in rats[J]. J Nutr.,1990,120(3):252-257.
    [7]Schnittler M, Liebmann C, Schrader U, et al. [3H] naloxone as an opioid receptor label:analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues[J]. Biomed Biochim Acta.,1990,49(4):209-218.
    [8]宗亚峰.β酪啡肽在胃肠道内的释放、吸收和稳定特性及其对胃肠机能的影响[D].南京:南京农业大学博士论文,2007:104-107.
    [9]陈其才,严定友,吴政星.生理学实验[M].第一版.北京:科学出版社,1995:110-113.
    [10]张源淑,邓艳,宋晓丹,等.酪啡肽及其酪蛋白水解肽对早期断奶仔猪分泌型免疫球蛋白A和细胞因子水平的影响[J].动物营养学报,2008,20:196-199.
    [11]Froetsehel M A. Bioactive peptides in digesta that regulate gastrointestinal function and intake [J]. J Anim Sci.,1996,74:2500-2508.
    [12]Ohtani S, Ogawara K, Higaki K, et al. Casein enhances stability of peptides in intestinal lumen: role of digested products of casein[J]. PharmRes.,2003,20:1746-1751.
    [13]Zoghbi S, Trompette A, Claustre J, et al. beta-Casomorphin-7 Regulates the Secretion and the Expression of Gastrointestinal Mucins through a mu-Opioid Pathway [J]. Am J Physiol Gastrointest Liver Physiol,2006,290:G1105-G1113.
    [14]Schusdziarra V, Schick A, de la Fuente A, et al. Effect of beta-casomorphins and analogs on insulin release in dogs [J]. Endocrinology,1983,112(3):885-889.
    [15]Zuhike H, Damert A, Eckhardt W, et al. Influence of beta-casomorphins on the function of the endocrine pancreas [M]. beta-Casomorphins and related peptides:recent developments,1994, 161-169.
    [16]Rodriguez S M, Guimaraes K C, Matthews J C, et al. Influence of abomasal carbohydrates on small intestinal sodium-dependent glucose cotransporter activity and abundance in steers [J]. J Anim Sci.,2004,82:3015-3023.
    [17]Wright E M. Renal Na(+)-glucose cotransporters [J]. Am J Physiol Renal Physiol.,2001,280: F10-F18.
    [18]Reuss L. One hundred years of inquiry:the mechanism of glucose absorption in the intestine [J]. Annu Rev Physiol.,2000,62:939-946.
    [19]Morley J E, Levine A S, Yamada T, et al. Effect of exorphins on gastro intestinal function, hormonal release and appetite [J]. Gastroenterology,1983,84 (6):1517-1523.
    [20]Paroli E. Opioid peptides from food (the exorphins) [J]. Wld Rev.Nutr.Diet,1988,55:58-97.
    [1]Naresh Kumar, Chinmoy S Dey. Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal muscle cells [J]. Biochemical Phamacology,2003,65: 249-257.
    [2]Masako Doi,Ippei Yamaoka. Isoleucine,a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes [J]. Biochemical and Biophysical Research Communications, 2003,312:1111-1117.
    [3]Min Suk Kim, J inhwa Lee. ATP stimulates glucose t ransport through activation of P2 purinergic receptors in C2C12 skeletal muscle cells [J]. Archives of Biochemistry and Biophysics,2002,401: 205-214.
    [4]Bimei J iang, Weimin Xiao. Role of Smac/DIABLO in hydrogen peroxide-induced apoptosis in C2C12 myogenic cells [J]. Free radical Biology & Medicine,2005,39:658-667.
    [5]Haniaa Bouzinba Segard, Stephanie. Moulin.Autocrine growth hormone production prevents apoptosis and inhabits differentiation in C2C12 myoblasts [J]. Cellular Signalling,2003,15: 615-623.
    [6]Karsten Mvssig, Hendrik Fiedler. Insulin induced stimulation of JNK and the PI 3-kinase/m TOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes [J]. Biochemical and Biophysical Research Communications,2005,335:819-825.
    [7]Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis [J]. Biochim Biophys Acta.,2002,1585:126-134.
    [8]王雪,丛建波,先宏,等.F苷肽对不同条件下C2C12细胞糖消耗的影响[J].新疆农业大学学报,2006,29(4):89—92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700